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The Brier score does not evaluate the
clinical utility of diagnostic tests or
prediction models
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Abstract

Background: A variety of statistics have been proposed as tools to help investigators assess the value of diagnostic
tests or prediction models. The Brier score has been recommended on the grounds that it is a proper scoring rule
that is affected by both discrimination and calibration. However, the Brier score is prevalence dependent in such a
way that the rank ordering of tests or models may inappropriately vary by prevalence.

Methods: We explored four common clinical scenarios: comparison of a highly accurate binary test with a continuous
prediction model of moderate predictiveness; comparison of two binary tests where the importance of sensitivity versus
specificity is inversely associated with prevalence; comparison of models and tests to default strategies of assuming that
all or no patients are positive; and comparison of two models with miscalibration in opposite directions.

Results: In each case, we found that the Brier score gave an inappropriate rank ordering of the tests and models.
Conversely, net benefit, a decision-analytic measure, gave results that always favored the preferable test or model.

Conclusions: Brier score does not evaluate clinical value of diagnostic tests or prediction models. We advocate,
as an alternative, the use of decision-analytic measures such as net benefit.

Trial registration: Not applicable.
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Background
A variety of statistics have been proposed as tools to
help investigators evaluate diagnostic tests and prediction
models. Sensitivity and specificity are generally reported
for binary tests; for prediction models that give a continu-
ous range of probabilities, discrimination (area under the
curve (AUC) or concordance index) and calibration are
recommended [1].
Recent years have seen considerable methodologic

criticism of these traditional metrics. This was driven, at
least in part, by interest in molecular markers. For in-
stance, it has been argued out that AUC is insensitive, that
it does not markedly increase when a new marker is added
to a model unless the odds ratio for that marker is very
high [2, 3]. In 2008, Pencina and colleagues introduced the
net reclassification improvement (NRI) as an alternative

metric to AUC [4]. The NRI measures the incremental
prognostic impact of a new predictor when added to an
existing prediction model for a binary outcome [5]. The
metric became very widely used within a short period of
time, a phenomenon attributed to the view that change in
AUC will be small even for valuable markers [6]. The NRI
has since been debunked; Kerr et al. provide a comprehen-
sive evaluation of the disadvantages of NRI [7]. Hilden and
Gerds demonstrated that miscalibration can improve NRI
and so, critically, this results in the size of the test for NRI
being much larger than nominal levels under the null [5].
Hilden and Gerds’ commentary on their findings focuses
on the concept of a “proper scoring rule”, that is, a metric
that is maximized when correct probabilities are used [5].
The authors mention the Brier score as an example of a
proper scoring rule.
The Brier score is an improvement over other

statistical performance measures, such as AUC, because
it is influenced by both discrimination and calibration
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simultaneously, with smaller values indicating superior
model performance. The Brier score also estimates a
well-defined parameter in the population, the mean
squared distance between the observed and expected
outcomes. The square root of the Brier score is thus the
expected distance between the observed and predicted
value on the probability scale.
Hence, the Brier score would appear to be an attractive

replacement for NRI, and it has indeed been recommended
and used in statistical practice to evaluate the clinical value
of tests and models. For instance, the Encyclopedia of
Medical Decision Making describes the use of the Brier
score in the “Evaluation of statistical prediction rules”
[Binder H, Graf E. Brier scores. In: [8]]. As a practical
example, a study by la Cour Freiesleben et al. aimed to
develop prognostic models for identification of patients’
risks of low and excessive response to conventional
stimulation for in vitro fertilization/intracytoplasmic
sperm injection in order to ascertain if a low or a high
dosage level should be used. The conclusions concerned
“the best prognostic model” for each of the two endpoints,
with models that were selected on the basis of Brier score.
The authors then recommend that the models “be used for
evidence-based risk assessment before ovarian stimulation
and may assist clinicians in individual dosage [between two
alternatives] of their patients” [9]. This is a clear example
where authors used the Brier score to make clinical
recommendations.
The Brier score has also been used to evaluate binary

diagnostic tests. For instance, Braga et al. [10] compared
six binary decision rules for Zika infection with a novel
prediction model that provided a semi-continuous score.
Brier scores were reported for all comparators. The
authors stated that the “lowest Brier score of 0.096” was
for the prediction model, leading to the conclusion that
“the model is useful for countries experiencing triple
arboviral epidemics”. Similarly, Kloeckner et al. [11] used
Brier scores to compare two binary risk groupings with a
three-group categorization for survival after chemoem-
bolization for liver cancer. They concluded that risk
groupings were not “sufficient to support clear-cut clinical
decisions”.
The Brier score depends on prevalence in such a way

[12] that it may give undesirable results where clinical
consequences are discordant with prevalence. For instance,
if a disease was rare (low prevalence), but very serious and
easily cured by an innocuous treatment (strong benefit to
detection), the Brier score may inappropriately favor a
specific test compared to one of greater sensitivity. Indeed,
this is approximately what was seen in the Zika virus paper
[10], where the test with high sensitivity and moderate
specificity (81 and 58%) had a much poorer Brier score
than a test with low sensitivity but near perfect specificity
(29 and 97%).

In this paper, we investigate scenarios in which we
anticipate the Brier score might give a counter-intuitive
rank ordering of tests and models. If the Brier score
performs poorly in at least some common scenarios,
this refutes any claim that it has general value as a metric
for the clinical value of diagnostic tests or prediction
models. As a comparator, we apply a decision-analytic net
benefit method to the same scenarios. We start by intro-
ducing the Brier score and the decision-analytic alternative
before applying both to four illustrative scenarios.

Brier score
The Brier score was introduced by Brier in 1950 to
address the issue of verification of weather forecasts and
has since been adopted outside the field of meteorology as
a simple scoring rule for assessing predictions of binary
outcomes. The Brier score was a measure developed to
scale the accuracy of weather forecasts based on Euclidean
distance between the actual outcome and the predicted
probability assigned to the outcome for each observation
[13]. The Brier score simultaneously captures discrimin-
ation and calibration, with low values being desirable.
It has been previously established that the Brier score is a

proper scoring rule [14]. As overfitting results in miscalibra-
tion, this property penalizes overfit. For instance, Hilden
and Gerds generated regression trees (“greedy” and
“modest”) from a training dataset with varying propen-
sities for overfit. When the models were applied to a
validation set, the Brier score was superior for the modest
tree, although the NRI favored the greedy tree [5].
In terms of notation, D is a random variable representing

the outcome and X is a random variable representing the
predicted probability of the outcome. Consider a set of n
patients, let the subscript i index the individual patient. Let
di represent the observed outcome of patient i, such that
di = 0 if the disease is absent and di = 1 if the disease is
present. Let xi denote the predicted probability of the
disease corresponding to the ith patient. The Brier score,
the mean squared prediction error, is defined as:

BS D;Xð Þ ¼ E D−X½ �2

The expected value of the Brier score can be estimated

by using 1
n

Pn
i¼1 di−xið Þ2 provided that 1 ≥ xi ≥ 0 for all i =

0, 1, 2,…, n.
We wish to calculate Brier scores for several hypothetical

scenarios where we vary the prevalence and calibration of
a model. In the case of a binary test, let Ti denote the result
of the test corresponding to the ith patient, such that
Ti = 1 if the test is positive for the disease and Ti = 0 if
the test is negative. The expected Brier score can be
represented by:
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E BS½ � ¼ P T ¼ 1;D ¼ 0ð Þ þ P T ¼ 0;D ¼ 1ð Þ
This equals the misclassification rate in this binary test

setting. We will refer to this derivation as “method 1”.
An alternative to viewing a binary test as giving prob-
abilities of 0 or 1 is to use the probability of disease
among the test positive (positive predictive value) for a
positive test and the probability of disease among the test
negative cases (one minus the negative predictive value)
for a negative test. We will refer to this derivation as
“method 2”. This gives an expected Brier score:

E BS½ � ¼ 1−PPVð Þ2P D ¼ 1;T ¼ 1ð Þ
þ PPV2P D ¼ 0;T ¼ 1ð Þ
þNPV2P D ¼ 1;T ¼ 0ð Þ
þ 1−NPVð Þ2P D ¼ 0;T ¼ 0ð Þ

Method 1 might therefore be seen as a miscalibrated
version of method 2. In the case of logistic regression, the
Brier score can be written as a function of z, a continuous
covariate, and the slope coefficients.

log
PðD ¼ 1jZ ¼ zÞ

1−PðD ¼ 1jZ ¼ zÞ
� �

¼ logitðPðD ¼ 1jZ ¼ zÞÞ
¼ β0 þ β1z;whereZ∼f ZðzÞ

D∣Z ¼ z eBernoulli logit−1 β0 þ β1z
� �� �

The Brier score can be represented using the joint
distribution of D and X, where X = logit−1(β0 + β1z).

BS D;Xð Þ ¼ E D−X½ �2 ¼
X1
d¼0

Z
x¼0

1

d−xð Þ2f DX d; xð Þdx

where

f DX d; xð Þ ¼ f DZ d; zð Þ β1
�� ��−1
x 1−xð Þ ; and f DZ d; zð Þ ¼ f D∣Z¼z dð Þ f Z zð Þ

Therefore, the value of the Brier score in the case of
logistic regression can be directly calculated using the
following equation:

BS D;Xð Þ ¼
X1
d¼0

Z 1

x¼0
d−xð Þ2 β1

�� ��−1
x 1−xð Þ x

d 1−xð Þ1−df Z zð Þdx;

where x ¼ 1

1þ e− β0þβ1zð Þ

Net benefit
Net benefit is a decision-analytic statistic that incorporates
benefits (true positives) and harms (false positives), weight-
ing the latter to reflect relative clinical consequences [15].
Net benefit is often reported as a decision curve, where net
benefit is plotted against threshold probability, pt defined
as the minimum probability of disease p at which a patient

will opt for treatment [16]. For example, a 5% threshold
probability means that if a patient’s risk of disease is 5% or
more, the patient should be treated; if it is less than 5%,
treatment should be avoided. In other words, a threshold
probability of 5% means that if a disease went untreated, it
would be 19 times worse than an unnecessary treatment.
Net benefit has been shown to be a proper scoring rule, as
any difference between the true probability of the event
and the predicted probability decreases net benefit [17, 18].
We wished to compare net benefit at various threshold

probabilities of interest for various binary tests and con-
tinuous prediction models in our example scenarios [16].
The net benefit of the risk prediction weighs the relative
harm of a false-positive and a false-negative result based
on a desired threshold probability [16].

Net benefit ¼ TPR−FPR
pt

1−pt

� �

Methods
Illustrative scenarios
Consider we wish to examine the performance of the Brier
score based on a logistic regression model. In our primary
example, we used an event rate of 20% and a prediction
model with an AUC close to 0.75 that outputs probabilities
that are normally distributed on the logit scale.

logitðPðD ¼ 1jZ ¼ zÞÞ ¼ −1:65þ z;whereZ∼Nð0; 1Þ

This model was then intentionally miscalibrated by shifts
on the intercept coefficient (γ) to assess how miscalibration
affects the Brier score and the net benefit.

logitðPðD ¼ 1jZ ¼ zÞÞ ¼ −1:65þ γ þ z

First, γ was varied from − 2, − 1, 0, to 1 yielding predic-
tions that severely under predicted, under predicted, well
calibrated, and over predicted the true probability of the
outcome, respectively. The calibration plots corresponding
to each of these scenarios are shown in Fig. 1.
We also assumed the availability of two binary tests,

one with sensitivity 95% and specificity 50% and another
with sensitivity 50% and specificity 95%. In the case of the
binary tests, the AUC is assessed by first constructing the
non-parametric ROC curve. For binary data, the sensitivity
and specificity are calculated at 3 points: ≥ 0, ≥ 1, and > 1.
The first is where sensitivity is 100%, and the last is
where specificity is 100%. The 3 points are plotted,
connected by straight lines, and the AUC is calculated
using the trapezoidal rule.
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Results
Scenarios demonstrating counterintuitive results from
Brier score
Comparison of two binary tests
Assume a clinical scenario where the event is fatal unless
identified early but can be easily cured by a relatively
benign treatment. An example might be cancer surgery
where the event is cancer spread to adjacent lymph nodes.
A positive test for lymph node involvement would lead to
a lymph node dissection, which is a relatively benign pro-
cedure; a false negative would lead to a cancer recurrence.
An aggressive infection that is easily cured with antibiotics
if found early would be a second example. Two tests are
available: one with a specificity of 95% and a sensitivity of
50% and the other has a sensitivity of 95% and specificity
of 50%. As the harms of missing disease far outweigh the
harms of unnecessary treatment, we would favor the test
with a higher sensitivity. However, the Brier score favors
the more specific test (Table 1), because a majority of
patients do not have the disease. The rank ordering of
tests is unaffected by the method of calculating the Brier
score, although method 1—using 0 and 1 as the predicted
probability from the test—gives more extreme results than
method 2, which assumes that the output of a binary test
is negative and positive predictive values. Conversely, the
net benefit for low threshold probabilities—appropriate

given the clinical context where sensitivity is favored—is
greater for the highly sensitive test (0.1689 versus 0.0979
at a threshold of 5%; Table 1).
These findings hold if we reverse the situation, with

disease prevalence above 50%, and a clinical context
where specificity is favored, for instance, if unnecessary
treatment is very harmful. For instance, if prevalence is
70%, the Brier score favors a binary test with sensitivity
of 90% and specificity of 80% over the test with 80% sen-
sitivity and 90% specificity (0.1090 versus 0.1207,
method 2). Net benefit again selects the preferable test.
The net benefit at a threshold probability of 80% is 0.3900
and 0.4400 for the more sensitive and more specific test,
respectively.

Comparison to default strategies of assuming all or no
patients are positive
The alternative to using a prediction model or binary
test is to use a default strategy of considering all patients
are either positive or negative (i.e., assigning all patients
a predicted risk of 1 or 0, respectively). In our cancer
surgery example, where it is important to identify the low
prevalence event of lymph node involvement, assuming
that all patients are positive (e.g., a more extended surgical
resection in all cases) might be a strategy worth consider-
ing, whereas assuming all patients are negative (e.g., no

Fig. 1 Calibration plot for various continuous prediction models of differing degrees of miscalibration. All prediction models have an AUC of 0.75
for predicting an event with prevalence 20%. The prediction models include the following: a well-calibrated prediction model, a model that is
miscalibrated such that it overestimates risk, a prediction model that underestimates risk, and a prediction model that more severely
underestimates risk
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extended resections) is harmful. As shown in Table 1, the
Brier score for the former is extremely poor whereas the
Brier score for the latter is favorable. On the other hand,
assuming that all patients are positive appropriately has
superior net benefit to assuming all patients are negative,
which by definition has a net benefit of 0 at all thresholds.

Binary tests versus prediction models
Consider the primary example where prevalence is 20%,
and missed treatment is much more harmful than un-
necessary treatment of a false positive. Let us assume
that it has been determined that, accordingly, sensitivity
needs to be above 90%. Take two binary tests, one with a
sensitivity of 50% and specificity of 95% and the other
with a sensitivity in the desirable range (95%) and a spe-
cificity of 50%, thus AUC of 0.725 for both. Compare
these with a prediction model that has an AUC of 0.75
which overestimates risk. Note in particular that for a pre-
diction model with an AUC of 0.75 where predictions are
normally distributed on the logit scale, a cut point with a
sensitivity of 95% will be associated with a specificity of
close to 25%, far inferior to the more sensitive binary test.
The Brier score incorrectly favors the highly specific test.
Net benefit provides the correct ordering of tests by rank-
ing the highly sensitive binary test the highest, followed by
the continuous model and with the highly specific binary
test coming in last (5% threshold net benefit is 0.1689,
0.1583, and 0.0979, respectively). Indeed, the specific test
has lower net benefit than the strategy of assuming all

patients are positive, a strategy that is clinically sensible
but is strongly disfavored by Brier score (Table 1).

Brier score and miscalibration
The Brier score inherently incorporates calibration, such
that for two models miscalibrated in the same direction,
the score is positively associated with the degree of mis-
calibration. However, the Brier score can rank models in
an undesirable way where miscalibration is in opposite
directions than what is clinically favorable.
Table 1 shows that when prevalence is 20%, the well-

calibrated model had the best Brier score and net benefit
(0.1386 and 0.1595, respectively). However, the model that
overestimates risk has a poorer Brier score (0.1708) than
the model that underestimates risk (0.1540). This is prob-
lematic because we have a clinical scenario where sensitivity
is key, and hence, we would rather overestimate risk. For
net benefit, low threshold probabilities are of interest for
the clinical scenario where sensitivity is critical. At these
thresholds, net benefit favors the model that overestimates
risk compared to models that underestimate risk (Table 1).
It is easily shown that these findings are consistent if

specificity is favored and prevalence is above 50%: Brier
score but not net benefit favors the model that is misca-
librated in the less desirable direction.

Discussion
We found that although Brier score does have some
desirable properties—for instance, as it is proper scoring

Table 1 Performance characteristics of binary tests and continuous prediction models with various degrees of miscalibration. All
values given were calculated directly from the formulae in the text and independently verified using a simulation approach
(Appendix)

Net benefit

Test Specificity Sensitivity AUC Brier score Threshold: 5% Threshold: 10% Threshold: 20%

Binary tests

Assume all negative 100% 0% 0.500 0.2000 0.0000 0.0000 0.0000

Assume all positive 0% 100% 0.500 0.8000 0.1579 0.1111 0.0000

Highly specific 95% 50% 0.725 0.1400*
0.1169†

0.0979 0.0956 0.0900

Highly sensitive 50% 95% 0.725 0.4100*
0.1386†

0.1689 0.1456 0.0900

Continuous prediction models

Well calibrated – – 0.75 0.1386 0.1595 0.1236 0.0716

Overestimating risk – – 0.75 0.1708 0.1583 0.1160 0.0423

Underestimating risk – – 0.75 0.1540 0.1483 0.0986 0.0413

Severely underestimating risk – – 0.75 0.1760 0.0921 0.0372 0.0076

AUC, Brier score, and net benefit for various threshold probabilities corresponding to binary tests and continuous prediction models with various degrees of
miscalibration predicting an outcome with prevalence of 20%, as shown in Fig. 1. Higher values of AUC and net benefit are desirable whereas lower values of the
Brier score are desirable
*Method 1 calculation: binary test is considered to produce probabilities of 1 and 0 for a positive and negative test, respectively
†Method 2 calculation: binary test is considered to produce probabilities of the positive predictive value and 1 − negative predictive value for a positive and
negative test, respectively
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rule, a well-calibrated model has a better Brier score than
a miscalibrated model with similar discrimination—the
Brier score does not perform well in several common
situations. We have demonstrated that the Brier score will
favor a test with high specificity where the clinical context
requires high sensitivity if it is the case that prevalence is
low. We also found that continuous models have better
Brier scores than binary tests even if the test clearly has
superior properties and the model badly miscalibrated.
The inappropriate rank ordering of binary tests extended
to default strategies of assuming that all or no patient is
positive, so that the clinically sensible approach of treating
all patients at risk of an easily curable but potentially fatal
disease had a worse Brier score than the use of a badly
miscalibrated prediction model that severely underesti-
mates risk. We have also demonstrated that the Brier
score may inappropriately select between models mis-
calibrated in opposite directions.
In contrast, net benefit always gave a rank ordering

that was consistent with any reasonable evaluation of
the preferable test or model in a given clinical situation.
For instance, a sensitive test had a higher net benefit than
a specific test where sensitivity was clinically important. It
is perhaps not surprising that a decision-analytic technique
gives results that are in accord with clinical judgment
because clinical judgment is “hardwired” into the
decision-analytic statistic.
We might also note that Table 1 clearly supports the

current consensus that discrimination is an inadequate
statistic: the AUC of the two binary tests were identical
as were those of the four prediction models, even though
there is an unambiguous preference for one or other tests
or models in all of the clinical scenarios.
The consequence of demonstrating that the Brier

score gives an inappropriate rank ordering of tests and
models in several scenarios—scenarios that could hardly
be described as extreme or unusual—is that the Brier
score cannot be considered to have general applicability
for evaluating clinical utility. There might be a case for
defining where Brier score is and is not appropriate for
assessing clinical utility, if it were not for the fact that an
alternative, net benefit, is simple to calculate, also fulfills
the criterion for being a proper scoring rule, and chooses
the favored test or model in all of our example scenarios.
It is true that the Brier score gives a single statistic,
whereas net benefit is calculated across a range, but this
only complicates analysis if the rank order of tests and
models varies depending on threshold probability, within
a reasonable range. It is also true that net benefit does
require additional external information—the appropriate
range of threshold probabilities—information that is
subjective. But the degree of external information required
is minor and the subjectivity required is an inherent part
of clinical decision-making. For instance, an opinion that,

say, an untreated infection is 19 times worse than unneces-
sary antibiotics is essential for clinical implementation of a
prediction model that gives the risk of infection (i.e., give
antibiotics if risk is ≥ 5%).
A possible counterargument to our paper is that the

Brier score is an overall measure of the quality of predic-
tions that is independent of any given clinical scenario.
We agree with this point and would like to stress that
we are not making a general argument against the Brier
score. Indeed, we ourselves have used Brier scores, for
instance, when comparing different variable parameteri-
zations in the early stages of model development. Our
aim here focuses on clinical practice: we show that the
Brier score should not be used to evaluate whether a test
or model should be used clinically, or to determine which
of two competing clinical models or tests is preferable.
Another limitation to our approach is that we did not

investigate alternative decision-analytic variants of the
Brier score which have been proposed [19]. These alterna-
tive variants allow for differential penalization for false-
positive and false-negative misclassifications. However,
these variants do not appear to have ever been used in
practice and methodological references are rare. It may
well be that a decision-analytic Brier score has good prop-
erties, but this does not affect our main point. The Brier
score referenced in the literature to determine the clinical
utility of a test, used in practice (for example, on the basis
of a Brier score, a model was recommended to “assist clini-
cians in individual dosage of their patients” [9]), described
in textbooks [8], and coded into software has undesirable
properties in several common scenarios.
We have proposed net benefit as a suitable performance

assessment alternative. That said, this measure is not
without its own limitations, in particular, the assumption
that the benefit and harms of treatment do not vary im-
portantly between patients independently of preference.

Conclusion
The Brier score does not appropriately evaluate the clin-
ical utility of diagnostic tests or prediction models. We
advocate the use of decision-analytic measures such as
net benefit.

Appendix
Simulation verification
Through simulation, we have generated each of the scenar-
ios displayed in Table 1. We generated a data set with an
arbitrarily large sample size (n = 1,000,000) and binary dis-
ease status with the desired prevalence, generated binary
test status based on prespecified sensitivity and specificities
with the outcomes, and generated continuous prediction
models. The prediction models generated using the
simulated data were compared on the basis of their
discrimination and calibration. We then calculated AUC,
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Brier score, and net benefit based on the simulated
disease status, binary test status, and continuous prediction
models.

Binary tests
We randomly generated disease status using a binomial
distribution with the desired event rate. We then randomly
generated the test status among those with the disease
using a binomial distribution with the probability of a posi-
tive test equaling the sensitivity. Among those without the
disease, we randomly generated the test status using a
binomial distribution with the probability of a positive test
equaling 1-specificity. The method 1 Brier score, AUC, and
net benefit were calculated using the binary test status and
disease status. When generating the Brier score under
method 2, we added the following step: generating the
probability of disease by test status (PPV and NPV). We
calculated the probability of disease among those with a
positive test and negative test, separately, and calculated
the Brier score using the updated probability of disease in
place of the binary test outcome.

Continuous prediction models
Four prediction models were created: a well-calibrated
model and, alternatively, models that overestimated or
underestimated risk. We generated an arbitrarily large
dataset with the desired event rate of 20% and a difference
of a 1 standard deviation increase among those with the
disease. The model was then miscalibrated to various
degrees by shifts on the intercept coefficient. The AUC,
Brier score, and net benefit were calculated using the con-
tinuous predicted value and disease status.
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