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Abstract

Background: Competing risks occur when populations may experience outcomes that either preclude or alter the
probability of experiencing the main study outcome(s). Many standard survival analysis methods do not account for
competing risks. We used mortality risk in people with diabetes with and without albuminuria as a case study to
investigate the impact of competing risks on measures of absolute and relative risk.

Methods: A population with type 2 diabetes was identified in Clinical Practice Research Datalink as part of a
historical cohort study. Patients were followed for up to 9 years. To quantify differences in absolute risk estimates of
cardiovascular and cancer, mortality standard (Kaplan-Meier) estimates were compared to competing-risks-adjusted
(cumulative incidence competing risk) estimates. To quantify differences in measures of association, regression
coefficients for the effect of albuminuria on the relative hazard of each outcome were compared between standard
cause-specific hazard (CSH) models (Cox proportional hazards regression) and two competing risk models: the
unstratified Lunn-McNeil model, which estimates CSH, and the Fine-Gray model, which estimates subdistribution
hazard (SDH).

Results: In patients with normoalbuminuria, standard and competing-risks-adjusted estimates for cardiovascular

mortality were 11.1% (95% confidence interval (Cl) 10.8-11.5%) and 102% (95% Cl 9.9-10.5%), respectively. For
cancer mortality, these figures were 8.0% (95% Cl 7.7-83%) and 7.2% (95% Cl 6.9-7.5%). In patients with
albuminuria, standard and competing-risks-adjusted estimates for cardiovascular mortality were 21.8% (95% Cl
20.9-22.7%) and 18.5% (95% Cl 17.8-19.3%), respectively. For cancer mortality, these figures were 10.7% (95% Cl
10.0-11.5%) and 8.6% (8.1-9.2%). For the effect of albuminuria on cardiovascular mortality, regression coefficient values
from multivariable standard CSH, competing risks CSH, and competing risks SDH models were 0.557 (95% Cl 0.491-0.623),
0561 (95% Cl 0494-0628), and 0456 (95% Cl 0.389-0.523), respectively. For the effect of albuminuria on cancer mortality,
these values were 0.237 (95% Cl 0.148-0.326), 0.244 (95% Cl 0.154-0.333), and 0.102 (95% Cl 0.012-0.192), respectively.

Conclusions: Studies of absolute risk should use methods that adjust for competing risks to avoid over-stating risk, such
as the CICR estimator. Studies of relative risk should consider carefully which measure of association is most appropriate
for the research question.

Keywords: Competing risks, Survival analysis, Albuminuria, Type 2 diabetes mellitus, Cardiovascular mortality, Cancer
mortality
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Background

Statistical background

In prognostic studies, time-to-event data may be in-
complete for many subjects as a result of loss to
follow-up, reaching the end of the study, or with-
drawal from the study. The truncation of subject
follow-up resulting from incomplete data is typically
referred to as ‘censoring’. Most standard survival
models, like the Kaplan-Meier estimator [1] and Cox
proportional hazards (Cox-PH) regression [2], assume
that censoring is ‘non-informative, meaning that a
subject censored at a certain time point should be
representative of those still under observation at the
same time point [3], i.e. subject censoring times and
event times should be independent. In practice, when
studying any one cause of mortality, the censoring
that can occur through death from other causes will
rarely be non-informative.

Patients are seldom at risk of experiencing only a sin-
gle type of outcome.

Competing risks are defined as events during
follow-up that either preclude the observation of the
primary outcome, or alter the probability of its occur-
rence [4]. The effect of competing risks was first ac-
knowledged by d’Alembert and Bernoulli in the 1760s
in relation to the effects of inoculation on short- and
long-term mortality from smallpox [5]. The initial de-
terministic model of Bernoulli described two disease
states (a ‘susceptible’ state and an ‘immune’ state), in
addition to the absorbding state of ‘death’. In this
model, subjects could transition from the susceptible
state to the immune state at a rate dependent upon
the force of infection, from either disease state to the
state of death at the background death rate, and from
the susceptible state to the state of death at an add-
itional rate that was also dependent upon the force of
infection. Bernoulli assumed no intermediate ‘infected’
disease state as smallpox infection was typically brief
in duration (weeks) when compared to the other dis-
ease states. d’Alembert produced an alternative solu-
tion, which was more generalizable in its application
as it was not restricted to immunising diseases. In
this approach, d’Alembert described a single state of
being ‘alive’ and two separate absorbing states of
‘death; resulting from either the disease or all other
causes. The rates of transition to each absorbing state
were assumed by d’Alembert to be independent. These
early disparities in approach continue to be born out to
this day with study authors being able to choose from
multiple methods to account for competing risks in stud-
ies. In this paper, we consider two standard survival ana-
lysis methods [1, 2] and compare the results to those
obtained via three survival analysis methods adjusted for
the presence of competing risks [4, 6, 7].
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Clinical background

Roughly 3.5 million people are currently living with dia-
betes mellitus in the UK, of which 90% have type 2 dia-
betes mellitus (T2DM) [8]. T2DM is a metabolic
disorder that is characterised by defects in insulin sensi-
tivity or secretion [9]. The disease typically manifests in
later life and is progressive in nature [10], resulting in
systemic macro- and microvascular complications [11].
One such complication is diabetic nephropathy whereby
damage to the microvasculature of the glomerular capil-
laries of the kidneys results in a leakage of proteins into
the urine (albuminuria/proteinuria), hypertension and
reduced glomerular filtration rate [12]. As it is usually
impractical to confirm by biopsy, the disease is typically
diagnosed and monitored by means of subject albumin-
uria levels [12]. Although a continuous variable by na-
ture, albuminuria may be categorised into three stages,
with the lowest stage, Al (normoalbuminuria), implying
an absence of clinically significant nephropathy and
stages A2 (microalbuminuria) and A3 (macroalbumi-
nuria) implying the presence of clinically significant ne-
phropathy [12]. Within 15 years of diagnosis of T2DM,
approximately 35% of patients will have developed clin-
ically significant albuminuria (stage >A2) [13].

T2DM and albuminuria have both been independently
associated with an increased risk of mortality from car-
diovascular disease [14, 15] and cancer [16, 17]. Shared
dependence between the distribution of each of these
outcomes and both T2DM and albuminuria renders the
non-informative censoring assumption unlikely to be
valid, as the distributions of censoring events (primarily
driven by competing mortality) and primary outcome
events will both be associated with the severity of albu-
minuria and T2DM. Hence, significant bias may be
present in measures of risk estimated using standard
survival analysis methods in populations with T2DM
and albuminuria.

Using the impact of albuminuria on competing mor-
tality in T2DM as a case study, we set out to evaluate
the effect of implementing competing-risks-adjusted
methods on measures of absolute risk and measures of
association.

Methods

Data source

The Clinical Practice Research Datalink (CPRD) is the
world’s largest database of anonymised primary care
data, spanning 674 practices in the UK [18]. The data-
base contains the records of 11.3 million patients, 4.4
million of which were alive and under observation on 2
July 2013, representing 6.9% of the UK population [18].
Data on patient diagnostic codes, prescriptions, referrals,
and laboratory and test data are automatically collected
from each contributing practice. The protocol for this
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research was approved by the Independent Scientific
Advisory Committee (ISAC) of the Medicines and
Healthcare Products Regulatory Agency (protocol num-
ber 15_011A), and the approved protocol was made
available to the journal and reviewers during peer re-
view. Ethical approval for observational research using
the CPRD with approval from ISAC has been granted
by a National Research Ethics Service committee
(Trent MultiResearch Ethics Committee, REC refer-
ence number 05/MRE04/87).

Study population

Patient eligibility was defined using only data uploaded
by GP practices after the date they were classified as
up-to-standard. Patients were required to be aged
35 years or over with T2DM on the study start date,
have gender unambiguously recorded, have CPRD re-
cords that could be linked to Office for National Statis-
tics data and have at least 2 years or uninterrupted
follow-up data from their current registered general
practice before the study start date for the evaluation of
baseline risk factors. The presence of T2DM was estab-
lished using a combination of medical codes, product
codes and patient age.

Patients were excluded whose records contained med-
ical codes for other forms of diabetes, polycystic ovary
syndrome, total pancreatectomy or pancreatic or renal
transplant, at any point prior to the study start date.

Follow-up commenced on the study start date of 1
January 2005 and terminated on the study end date of 1
January 2014. Patient follow-up ceased at the earliest
event of the study end date, the date of patient mortality,
the date of last data collection from the patient’s prac-
tice, the date the patient transferred out of their current
practice and the date the patient underwent total pan-
createctomy, or pancreatic or renal transplant.

Main exposure variable

Albuminuria status was defined using definitions present
in the 2013 Kidney Disease Improving Global Outcomes
guidelines [12]. Within this, albuminuria stage Al was
classified as normoalbuminuria, while albuminuria
stages A2 or A3 were classified as albuminuria. The
presence or absence of albuminuria in CPRD patient re-
cords was established using a combination of Read codes
and test results.

Study adjustment variables

Adjustment variable data were extracted from CPRD on
patient: age, gender, body mass index (BMI), smoking sta-
tus, systolic blood pressure (SBP), glycated haemoglobin
(HbA ;) and total-to-high-density-lipoprotein (Total: HDL)
cholesterol ratio.
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Outcomes

Outcome data was established using International Clas-
sification of Diseases version 10 (ICD-10) codes for the
‘underlying cause’ of death listed on UK Office for
National Statistics death certificates. Within these, car-
diovascular mortality was defined as death with ICD-10
codes 110-179, cancer mortality was defined as death
with ICD-10 codes C00-C97 and other mortality as
death with ICD-10 codes other than those listed for
cardiovascular or cancer mortality.

Summary analysis

Comparisons between patient albuminuria status and
baseline patient characteristics were performed using un-
paired two-tailed ¢ tests [19] for continuous outcomes and
Fisher’s exact test [20] for categorical outcomes. All p
values were adjusted using Bonferroni’s method [21-23]
to correct for multiple comparisons.

Log-rank tests [24-27] were used to appraise the
equality of the survival functions for each albuminuria
status towards each outcome, while Gray’s K-sample test
[28] was used to appraise the equality of the cumulative
incidence functions for each albuminuria status towards
each outcome.

Estimators and models

Absolute risk

The complement of the Kaplan-Meier estimate of sur-
vival probability (1-KM) [1], herein referred to as the
‘Kaplan-Meier method, estimates marginal risk: the
cumulative risk by time ¢ is an estimate of the risk of
failure from a specific cause in the hypothetical case that
all other causes of failure are absent. Briefly, the
Kaplan-Meier method achieves this by removing from
the at-risk set, at any instant, individuals who have pre-
viously experienced either the event of interest or any
censoring event that prevents observation of the event
of interest [4]. Competing outcomes are not considered
except as a form of censoring.

The cumulative incidence competing risk (CICR) [3]
method estimates absolute risk accounting for compet-
ing risks: the cumulative risk by time ¢ is an estimate of
the risk of failure from a specific cause, acknowledging
that the absolute risk of the event is lowered by the pres-
ence of other competing risks. Individuals are removed
from the at-risk set, at any instant, only if they have pre-
viously experienced the primary event or any censoring
events that are explicitly assumed to be non-informative
but retained in the at-risk set if they have experienced a
competing outcome [4].

Measures of association
The Cox proportional hazards model [2] estimates
cause-specific relative hazard: the ratio of the
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instantaneous risk in at-risk individuals with one expos-
ure status to the instantaneous risk in at-risk individuals
with another exposure status. To obtain its estimate of
the cause-specific hazard ratio, the Cox proportional
hazards model assumes all individuals under observation
experience  either the primary outcome or
non-informative censoring [29]. The unstratified
Lunn-McNeil competing risk model [6], herein referred
to as the ‘Lunn-McNeil model, also estimates the
cause-specific hazard ratio but allows for the modelling
of non-informative censoring mechanisms as competing
outcomes, while assuming a common baseline hazard
distribution between outcomes. In these estimates of
cause-specific relative hazard, individuals are considered
to be at-risk at any instant if they have not yet experienced
any of the study outcomes. When using the Lunn-McNeil
model to evaluate cardiovascular mortality, cancer mortal-
ity and other mortality were modelled as separate compet-
ing outcomes. When using the Lunn-McNeil model to
evaluate cancer mortality, cardiovascular mortality and
other mortality were modelled as separate competing out-
comes. The Fine-Gray competing risk model [7] estimates
the subdistribution hazard ratio: the ratio of the instantan-
eous risks defined as above, except that individuals are
considered to be at-risk if they have not yet experienced
the primary outcome [29]. Individuals are retained in the
at-risk set if they have previously experienced competing
risk events, analogously to the CICR method for absolute
risk. When using the Fine-Gray model to evaluate cardio-
vascular mortality, non-cardiovascular mortality was mod-
elled as a single competing outcome. When using the
Fine-Gray model to evaluate cancer mortality, non-cancer
mortality was modelled as a single competing outcome.

When competing risks are present, the different risk sets
employed by cause-specific hazard models (like the
Cox-PH or Lunn-McNeil model) and subdistribution
hazard models (like the Fine-Gray model) give rise to
different measures of association. The cause-specific haz-
ard ratio may be thought of as a measure of ‘aetiological
association; i.e. best suited to quantifying causal relation-
ships. Conversely, the subdistribution hazard ratio may be
thought of as a measure of ‘prognostic association, i.e.
best suited to quantifying predictive relationships [30].

The proportional cause-specific hazard assumptions of
the Cox-PH and Lunn-McNeil models are assessed
using Schoenfeld residuals [31]. Schoenfeld-type resid-
uals [32] are used to assess the proportional subdistribu-
tion hazard assumption of the Fine-Gray models.

Sensitivity analyses

Sensitivity analyses were conducted to assess the robust-
ness of all risk estimates to the misclassification of cause
of mortality on patient death certificates. Within these
analyses, mortality was reclassified as being attributable to
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either cardiovascular disease or cancer if the competing
cause was listed as a contributing factor. The potential
misspecification of the study primary exposure was
assessed by re-assigning patient baseline albuminuria
status using only read codes, numerical test values or
categorical test values. Additionally, the robustness of esti-
mates of absolute risk was evaluated through the use of an
alternate cumulative risk estimator (the Nelson-Aalen es-
timator), while the robustness of estimates of relative risk
was evaluated through the inclusion of time-interaction
terms to correct for violations of the proportionality as-
sumption, and the use of alternate parameterisations of
the Lunn-McNeil model, in which competing mortality
was restructured into a single outcome, representing all
mortality not attributable to the primary outcome.

Results
Summary analysis
Of the 86,962 patients eligible for inclusion, it was pos-
sible to ascertain the baseline presence/absence of al-
buminuria in 54,801; 42,662 without albuminuria and
12,139 with albuminuria. Patients with albuminuria at
baseline were older, had higher systolic blood pressure,
had worse glycaemic control and were more likely to
be current or ex-smokers. No significant associations
were found between baseline albuminuria and gender,
body mass index or total-to-high-density-lipoprotein
cholesterol ratio. Over the course of 9 years of
follow-up (median 7.7 years), 14,201 patients died:
9558 (67.3%) with normoalbuminuria at baseline and
4643 (32.7%) with albuminuria at baseline. Of these
14,201 patients, 5574 (39.3%) died from cardiovascular
causes, 3455 (24.3%) died from cancer and 5172
(36.4%) died from other causes. Further detail pertain-
ing to the entire study cohort is presented in Table 1.
Among 5574 patients who died from cardiovascular
causes, 3661 (65.7%) had normoalbuminuria at base-
line and 1913 (34.3%) had albuminuria at baseline.
Among 3455 patients who died from cancer, 2564
(74.2%) had normoalbuminuria at baseline and 891
(25.8%) had albuminuria at baseline. Among 5172 pa-
tients who died from causes other than cardiovascular
disease or cancer, 3330 (64.4%) had normoalbuminuria
at baseline and 1842 (35.6%) had albuminuria at base-
line. Statistically significant differences (p < 0.001) were
found between the survival functions and cumulative
incidence functions of the albuminuria strata for both
cardiovascular and cancer mortality.

Measures of absolute risk

Estimates from Kaplan-Meier and CICR estimators were
similar for the first 2 to 3 years but progressively di-
verged with the passage of time (Fig. 1). For both out-
comes in patients with and without albuminuria,
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Table 1 Baseline characteristics of the study cohort, stratified by albuminuria status. Data represent means + SD unless a percentage

(%) is stated

Baseline variable Everyone (n=54,801) Normoalbuminuria (n =42,662) Albuminuria (n=12,139) p value*
Men, n (%) 30,164 (55.0%) 23,611 (553%) 6553 (54.0%) 0.081
Age (years) 674+£119 668+11.8 694 +£12.2 <0.001
BMI (kg/m?) 297+59 29.7+£59 298+6.2 0.135
SBP (mmHg) 1384+ 169 1377 £164 1408+ 184 <0.001
Total: HDL cholesterol ratio 38+12 38+12 38+12 0423
HbA; ¢ (mmol/mol) 569+ 153 56.1+14.7 596+ 170 <0.001
Never smoked, n (%) 13,308 (24.3%) 10,499 (24.6%) 2809 (23.1%) <0.001

28,755 (52.5%)
12,738 (23.2%)

Ex-smokers, n (%)

Current smokers, n (%)

22,604 (53.0%)
9559 (22.4%)

6151 (50.7%)
3179 (26.2%)

*Adjusted for multiple comparisons using Bonferroni’s method

cumulative risk estimates from Kaplan-Meier estimators
produced higher 9-year risk estimates than cumulative
incidence estimates from CICR estimators (Table 2).

Measures of relative risk

Albuminuria was found to be significantly associated
with the cause-specific hazards and subdistribution
hazards of cardiovascular and cancer mortality in
both univariable and multivariable analyses (Table 3,
Additional file 1: Table S1 and Additional file 2:
Table S2). For all types of proportional hazards
models, the coefficient for the albuminuria variable
(Pamuminuria) Was larger in variable-unadjusted models and

larger for the outcome of cardiovascular mortality. For a
given outcome, model estimates from the Cox-PH and
Lunn-McNeil cause-specific hazard models were similar,
whereas model estimates from the subdistribution hazard
Fine-Gray model were lower. Regardless of these trends,
model estimates within respective outcomes did not differ
to a degree that would have resulted in drastically different
clinical implications had the incorrect measure of risk
been modelled.

Sensitivity analyses
All analyses were robust to the use of alternative outcome
structures in the Lunn-McNeil model, the use of different

Probability
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00 10 20 30 40 50 60 7.0 80 90
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risk, dashed lines; normoalbuminuria, green lines; albuminuria, blue lines

Fig. 1 Cumulative risk estimates for cardiovascular (left) and cancer (right) mortality. Kaplan-Meier, solid lines; cumulative incidence competing
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Table 2 Nine-year absolute risk estimates (and 95%Cls) for cardiovascular and cancer mortality from Kaplan-Meier and cumulative

incidence competing risk estimators

Albuminuria status Cardiovascular mortality risk (%)

Cancer mortality risk (%)

Kaplan-Meier CICR Kaplan-Meier CICR
Normoalbuminuria 11.1 (108-11.5) 10.2 (9.9-10.5) 8.0 (7.7-823) 7.2 (69-75)
Albuminuria 21.8 (20.9-22.7) 18.5 (17.8-19.3) 10.7 (10.0-11.5) 86 (8.1-9.2)

components of CPRD to define albuminuria and the im-
putation of missing patient albuminuria status as nor-
moalbuminuria. Absolute risk estimates were sensitive to
the reclassification of mortality, while relative risk esti-
mates were sensitive to the inclusion of time interactions.
In all analyses, where values of cumulative risk or Bapumi.
nuria Were not similar to those described by the primary
analyses, the patterns of association described between es-
timators and models remained unchanged.

Discussion

Key results

Numerical measures of absolute risk were consistently
higher by the Kaplan-Meier estimator than by the CICR
estimator, especially in patients with albuminuria. This
was true for both outcomes studied, cardiovascular and
cancer mortality.

Numerical measures of association between albu-
minuria and each outcome varied according to the
approach taken to competing risks. Competing risks
adjusted estimates of cause-specific hazard ratios,
from the Lunn-McNeil model, were similar to con-
ventional estimates of cause-specific hazard ratios
from the Cox model. Competing risks adjusted esti-
mates of subdistribution hazard ratios, from the
Fine-Gray model, were numerically smaller than esti-
mates of cause-specific hazard ratios, reflecting the
different interpretation. In all methods, the associa-
tions between albuminuria and outcomes were posi-
tive and statistically significant.

Strengths and limitations
All primary analyses carried out within this study were
the result of protocol-driven research, approved by ISAC

(protocol 15_011A). Strengths of the CPRD dataset in-
clude its size and its representativeness of the UK [18].
Limitations of the data source include missing data in
the electronic health record, particularly for covariates
such as body mass index which are not universally
measured. The Office for National Statistics records of
death certification provides a highly complete record of
mortality. Mortality cannot always be unambiguously
attributed to a single cause, but in a sensitivity analysis
(not shown, see Feakins, DPhil thesis [33]), we found
that our numerical comparisons and overall conclusions
were little altered by different approaches to death certif-
icates with both cardiovascular and cancer codes.

This is a single case study of competing risk method-
ology, limited to methods identified as being commonly
used in the literature and readily implementable in stat-
istical packages. Thus, the results described may not
mirror the findings in other clinical areas, or from differ-
ent models.

Relationship to the literature

Our findings for absolute risk estimates are consistent
with those from studies of cancer progression in patients
with head or neck cancer [4], cancer incidence in pa-
tients with chronic kidney disease [34], cardiovascular
mortality in patients who underwent renal replacement
therapy [3], renal transplantation in patients on dialysis
[30] and coronary artery bypass in patients who under-
went cardiac catheterisation [35]. It also corroborated
the results of the initial simulation work performed by
Gooley et al. [4] in the derivation of the CICR estimator
[4]. The results of this study further add to the evidence
of bias in the Kaplan-Meier estimator by demonstrating
its presence in the novel clinical areas of cardiovascular
and cancer mortality in patients with T2DM.

Table 3 Estimates for the effect of albuminuria status on cardiovascular and cancer mortality from univariable and multivariable
proportional hazards models. Adjusted for age, gender, BMI, smoking status, SBP, HbA,. and Total:HDL cholesterol ratio. Bapuminuria

refers to the model coefficient for the albuminuria variable

Model Cardiovascular mortality Bapuminuria (95%Cl)

Cancer mortality Bapuminuria (95%Cl)

Univariable Multivariable*

Univariable Multivariable*
Cox-PH 0.755 (0.700-0.811)
Lunn-McNeil 0.759 (0.703-0.814)
Fine-Gray 0.670 (0.615-0.725)

0.557 (0.491-0.623)
0.561 (0.494-0.628)
0456 (0.389-0.523)

0.349 (0.273-0.425)
0.351 (0.275-0.428)
0.223 (0.147-0.300)

0.237 (0.148-0.326)
0.244 (0.154-0.333)
0.102 (0.012-0.192)

*Adjusted for age, gender, BMI, smoking status, SBP, HbA,. and Total: HDL cholesterol ratio
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Several authors have previously compared Fine-Gray
to Cox models [7, 29, 30, 36-44]. However, only four
studies were identified in the literature in which the ef-
fect of risk factors were explicitly modelled on both the
primary outcome and competing outcomes using
cause-specific hazard and subdistribution hazard models
[29, 30, 42, 44]. Of these, only a single study was identi-
fied in which the model comparisons mirrored those of
this study [29]. Our findings confirm the observation of
Lau et al. [29] that the subdistribution hazard ratio is at-
tenuated compared to the Cox cause-specific hazard ra-
tio when the exposure acts in the same direction on
both the primary and competing outcomes (although
this was not guaranteed for our study as we analysed the
main competing outcome, as opposed to all competing
outcomes). One previous paper included all three of the
Cox, Lunn-McNeil and Fine-Gray models. This was a
study of risk factors for end-stage renal disease, with
death from all non-renal causes as the competing out-
come [44]. Differences between the three methods were
more pronounced than ours for the primary outcome,
with even the Lunn-McNeil estimates of association at-
tenuated compared to the Cox estimates. Some
Fine-Gray estimates not just attenuated but reversed in
direction compared to the Cox and Lunn-McNeil esti-
mates (Table 4). The latter effect illustrates how strongly
an association between the exposure and a prevalent
competing outcome can affect subdistribution hazard ra-
tios for the primary outcome: the effect of age on over-
all, non-renal mortality is so strong that (in the
Fine-Gray model of competing risks) it swamps the posi-
tive but weaker association of age with end-stage renal
disease. Compared to that paper, our case study has a
more balanced ratio of primary to competing outcomes,
which may explain the differences. However, it is not
clear how or whether the previous paper verified the
proportionality assumption, which we assessed for both
cause-specific hazards and subdistribution hazards (Add-
itional files 3, 4, 5, 6 and 7).

We have not addressed here the stratified Lunn-McNeil
model, because it is known to give near-identical results
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to the Cox model [44]. A previous study compared
stratified Lunn-McNeil to both Cox and Fine-Gray
models; results from all three were similar [37]. Nor
have we considered the less widely used models for
competing risks such as the pseudovalues approach
[45], direct binomial regression [46], mixture models
[29, 47], or Bayesian methods [48]; however, an excel-
lent comparison of the various methods available can
be found in Haller et al. [41].

Conclusions

Studies of absolute risk should use methods that adjust
for competing risks to avoid over-stating risk, such as
the CICR estimator. Studies of relative risk should con-
sider carefully which measure of association is most ap-
propriate for the research question. Cause-specific
hazard ratios will be appropriate when the aim of the
study is to establish a potentially causal relationship be-
tween an exposure and an outcome. Clinical trials, for
example, are primarily interested in the relationship be-
tween allocated treatment group and the primary out-
come. In these cases where cause-specific hazard ratios
are appropriate, we find, in common with previous au-
thors, little difference between estimates from the Cox
model and from the Lunn-McNeil competing risk model.
Subdistribution hazard ratios will be appropriate when the
aim of the study is to quantify burden of disease, for ex-
ample, in combination with a CICR estimate to produce a
prognostic model. As noted above, subdistribution hazard
ratios have the property that a beneficial effect of the ex-
posure on a competing outcome may appear as a harmful
effect on the outcome of interest, or vice versa.

Our findings, the previous literature and common sense
confirm that researchers should consider competing risks
when selecting statistical analysis methods. The widely
used Kaplan-Meier method arguably over-estimates abso-
lute risk, sometimes substantially, and though the widely
used Cox proportional hazards method for relative risk
will often be a reasonable approximation, users should at
least be making an informed choice to use cause-specific
rather than subdistribution hazard methods.

Table 4 Comparison between the results of this study and the study by Lim et al.

Study Outcome Risk factor Cox In(HR) and 95% CI  Lunn-McNeil In(HR) and 95% CI  Fine-Gray In(SHR) and 95% Cl
This paper Cardiovascular mortality ~ Albuminuria 0557 (0.491, 0.623) 0.561 (0.494, 0.628) 0456 (0.389, 0.523)

This paper Cancer mortality Albuminuria 0.237 (0.148, 0.326) 0.244 (0.154, 0.333) 0.102 (0.012,0.192)

Lim et al. 2010 ESRD Male 0414 (0.136, 0.692) 0.333 (0.055, 0.610) 0.280 (0.006, 0.555)

Lim et al. 2010 ESRD 40<age<60 0.139 (- 0.164, 0.441) 0.075 (= 0.227, 0.376) —-0.080 (-0378,0.218)

Lim et al. 2010 ESRD Age 2 60 0.339 (- 0.115, 0.795) 0.004 (- 0445, 0.454) —0.635 (- 1.094, —0.177)

Lim et al. 2010  Death without ESRD Male 0.320 (0.218, 0.422) 0.336 (0.234, 0.438) 0.307 (0.204, 0.404)

Lim et al. 2010 Death without ESRD 40<age<60 0.986 (0818, 1.150) 0.996 (0.829, 1.164) 0.975 (0.810, 1.140)

Lim et al. 2010  Death without ESRD Age 2 60 2325 (2.158, 2.492) 2373 (2.206, 2.562) 2.299 (2.135, 2.463)
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