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Abstract

Background: Adequate field triage of trauma patients is crucial to transport patients to the right hospital. Mistriage
and subsequent interhospital transfers should be minimized to reduce avoidable mortality, life-long disabilities, and
costs. Availability of a prehospital triage tool may help to identify patients in need of specialized trauma care and to
determine the optimal transportation destination.

Methods: The GOAT (Gradient Boosted Trauma Triage) study is a prospective, multi-site, cross-sectional diagnostic
study. Patients transported by at least five ground Emergency Medical Services to any receiving hospital within the
Netherlands are eligible for inclusion. The reference standards for the need of specialized trauma care are an Injury
Severity Score ≥ 16 and early critical resource use, which will both be assessed by trauma registrars after the final
diagnosis is made. Variable selection will be based on ease of use in practice and clinical expertise. A gradient
boosting decision tree algorithm will be used to develop the prediction model. Model accuracy will be assessed in
terms of discrimination (c-statistic) and calibration (intercept, slope, and plot) on individual participant’s data from
each participating cluster (i.e., Emergency Medical Service) through internal-external cross-validation. A reference
model will be externally validated on each cluster as well. The resulting model statistics will be investigated,
compared, and summarized through an individual participant’s data meta-analysis.

Discussion: The GOAT study protocol describes the development of a new prediction model for identifying
patients in need of specialized trauma care. The aim is to attain acceptable undertriage rates and to minimize
mortality rates and life-long disabilities.

Keywords: Triage, Trauma Triage App, Prediction model, Emergency Medical Services, Study protocol, Machine
learning, Gradient boosting, Meta-analysis, Diagnosis, External validation
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Introduction
Prehospital trauma triage is essential to get the right patient
to the right hospital [1]. Erroneously transporting a patient
requiring specialized trauma care to a lower-level trauma
center is associated with higher mortality rates [2, 3]. Con-
versely, transporting a patient not in need of specialized
trauma care to a higher-level trauma center results in extra
costs and overutilization of resources. These key metrics
for triage quality are termed undertriage and overtriage,
respectively. The American College of Surgeons Committee
on Trauma guidelines state that trauma systems must aim
to attain a maximum of 5% undertriage [1].
One key component in the diagnostic strategy that deter-

mines the initial transportation destination is the use of a
prehospital triage tool. These tools often involve the use of
a prediction model or a flowchart where fulfillment of one
of multiple criteria indicates the need for specialized
trauma care. Unfortunately, a recent systematic review
identified that the discriminative ability of many existing
tools is quite poor [4]. One of the reasons is that simplifica-
tion is key to facilitate their usefulness in clinical practice,
thereby degrading predictive accuracy. There is limited
time to collect patient data on-scene, and diagnostic modal-
ities are very limited compared to hospitals.
The Trauma Triage App (TTApp) was recently devel-

oped to overcome the typical trade-off between simplicity
and predictive accuracy. This mobile application imple-
ments a logistic regression model to estimate the need of
specialized trauma care and provides an easy to use inter-
face. This (reference) model was developed using individual
participant’s data (IPD) from a single Emergency Medical
Service (EMS) in the Netherlands. When the model was
externally validated in a different EMS in the Netherlands,
we found an undertriage rate of approximately 11%, at cost
of < 50% overtriage [5].
Although the reference model outperformed other

tools, its discriminative value and generalizability could
potentially be improved using a machine learning algo-
rithm, a greater amount of IPD, participating EMSs and
hospitals, and a more robust development strategy [5].
In particular, the relatively small sample size (4950

patients, with 435 patients in need of specialized trauma
care) limited the use of interaction terms and non-linear
effects for modeling the included predictors and prevented
any insight into the model’s generalizability across different
EMSs in the Netherlands. Therefore, the aims of the
GOAT (Gradient Boosted Trauma Triage) study are (1) to
develop a new prediction model on nationwide IPD that
accurately identifies patients in need of specialized trauma
care in a prehospital setting, (2) to validate this prediction
model on IPD from multiple EMSs during development,
(3) to investigate sources of heterogeneity in model
performance, and (4) to compare it to the reference model
used in the initial version of the TTApp.

Methods/design
Study design
This is a prospective, multi-site, cross-sectional diagnostic
study that is conducted to predict the need of specialized
trauma care during field triage. We will adhere to existing
recommendations on diagnostic model development, IPD
meta-analysis (IPD-MA), and report the resulting model in
accordance with the Transparent Reporting of a multivari-
able model for Individual Prognosis or Diagnosis (TRI-
POD) guidelines [6–9]. Data collection started at January 1,
2015, and ended at December 31, 2018.

Participants
All patients, suspected of injury, transported by a ground
EMS from the scene of injury to any emergency depart-
ment in the Netherlands will be potentially eligible. The
Netherlands is divided into 25 different EMS regions and
11 inclusive trauma systems. At least five different EMS
regions will be included. These EMS regions have to be
representative for urban, suburban, and rural areas. All hos-
pitals, and consequently all trauma systems, with receiving
emergency departments in the Netherlands collect the
required patient outcomes and participate in this study.

Data collection
Two distinct data sources will be merged to create a final
dataset. These data sources consist of prehospital run re-
ports, collected in a standardized manner by multiple
EMSs, and the Dutch National Trauma Registry (in Dutch,
Landelijke Trauma Registratie [LTR]). Run reports used by
included EMSs are based on the template of the Basic Set
of Ambulance Care (in Dutch, Basisset Ambulancezorg
[BSA]) and include demographics, physiological character-
istics, mechanism of injury, injuries, patient status,
on-scene treatments, initial transportation destination, and
more. The LTR is a nationwide registry that collects patient
data in accordance with an extended version of the Utstein
registry template for uniform reporting of data following
major trauma [10]. This registry covers all trauma-related
hospital admissions of trauma-receiving emergency depart-
ments in the Netherlands since 2015 [11–13]. Relevant pa-
tient outcomes included in this registry are, among others,
Injury Severity Scores (ISS), early critical resource use, in-
tensive care unit admission, and death. Patient identifica-
tion numbers used by EMSs are collected when available.
A combined deterministic and probabilistic linkage

scheme will be used to match prehospital run reports and
data from the LTR. Records are deterministically linked
when prehospital patient identification numbers are avail-
able in both datasets. A probabilistic approach will be used
to match patient records when unique identifiers are lack-
ing. This approach utilizes machine learning methods and
distance functions to identify matching records. Patients
discharged directly from the emergency department are
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presumed not to have any of the investigated patient out-
comes. This assumption combined with linking hospital
and prehospital records had a sensitivity of 99.7% (95% CI,
99.0–99.9) and specificity of 100.0% (95% CI, 99.7–100.0)
in previous studies [14]. The full data collection and
record linkage strategy are depicted in Fig. 1.

Outcome
The primary outcome is an ISS ≥ 16 coded by trained
trauma registrars within 30 days after the emergency
department admission. This reference standard is based on
the Abbreviated Injury Scale version 2005, update 2008,
and is recommended by the American College of Surgeons
Committee on Trauma to evaluate triage quality [1]. Treat-
ing patients with ISS ≥ 16 in higher-level trauma centers is
associated with lower mortality rates [2, 15, 16]. The ISS is
an anatomical score that is calculated after the final diagno-
sis is made. Since it is based on anatomic criteria, it is
assumed to be identical to the patient status on-scene and
is thus used as a diagnostic reference standard.
Because ISS is not perfectly correlated with resource

utilization, we included a secondary, resource-based out-
come measure to define the need for specialized trauma
care [17, 18]. The secondary outcome is early critical
resource use, which is a composite endpoint consisting of
intubation in the prehospital setting, major surgical inter-
vention, radiological intervention, or death within 24 h, as

well as discharge to the intensive care unit from the emer-
gency department. A similar endpoint is used in prior stud-
ies on prehospital trauma triage [19].

Predictor selection
Time is critical during field triage. Therefore, the number
and complexity of hand-collected variables must be limited.
To prevent the delay of definitive treatment, variables
should be easily accessible during routine care, clearly de-
fined, and measured in a standardized and reproducible
way to improve transferability and predictive stability [8].
The candidate variables for model development were pre-
defined based on prior evidence and clinical reasoning
(Table 1). For instance, many candidate variables are cri-
teria from the Field Triage Decision Scheme, which is the
primary triage tool used by EMSs in the US [1]. The final
set of variables will be selected prior to model development.
The selection of variables is therefore independent of their
performance in the training data. Additional predictors (i.e.,
features), which are not predefined, will be engineered from
these variables (e.g., the date of injury might be converted
to three predictors indicating the day of the week, the
current month, and the current season of the year).
The TTApp allows prediction models to use additional

variables collected by the device on which the algorithm is
embedded. These variables do not delay treatment since
collection is computerized. Traveling times, global posi-
tioning systems locations, date, and time are variables that
might provide extra predictive power to the hand-collected
variables. Many predictors can be engineered from these
variables, such as the season of the year, day of the week,
regions, daytime or night, and more. No constraints are
posed on the number and type of predictors that can be de-
rived from these variables during the development phase.

Missing data
Most prediction modeling methods, such as logistic re-
gression, are not able to deal with missing values and
therefore require special care during development, valid-
ation, and implementation. For trauma triage, missing
values are a particular concern because there may not al-
ways be time to measure critical variables. For this rea-
son, we here adopt gradient boosting decision trees for
prediction model development, as resulting prediction
models can deal with missing values upon implementa-
tion. Briefly, decision tree algorithms implement surro-
gate splits for predictors with missing values and loosely
operate under a missing-at-random assumption (as splits
are conditional on some of the observed data). This
yields an advantage in real-life situations, where prehos-
pital data are often not fully available and surrogate
splits can therefore be used to obtain an individual pre-
diction nevertheless.

Fig. 1 Data collection and record linkage
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Multiple imputation will be used to address missing
variables in the dataset in order to validate the reference
model (which cannot accommodate for missing values).
We will adopt multiple imputation methods that ac-
count for clustering across sites. Fifty different imputed
datasets will be generated using chained equations by
the R package MICEMD [20, 21]. Analyses will be ap-
plied to each individual dataset. Results will be averaged

to provide point estimates. Confidence intervals will be
calculated according to Rubin’s rules [22].

Statistical analysis methods
In this study, we will develop a gradient boosting deci-
sion tree with the LightGBM Python library, and we will
compare it to the reference model by the means of
internal-external cross-validation [23–25].

Table 1 Candidate variables for predictor engineering

Variable Reason for inclusion

Demographics

Age Included in the FTDS

Gender Associated with the reference standard in previous research and
interacts with other candidate variables

Vital signs

Glascow Coma Scale, eyes component Included in the FTDS

Glascow Coma Scale, motor component Included in the FTDS

Glascow Coma Scale, verbal component Included in the FTDS

Systolic blood pressure Included in the FTDS

Diastolic blood pressure Expected interactions with other candidate variables (e.g., systolic
blood pressure)

Heart rate Expected interactions with other candidate variables (e.g., systolic
blood pressure)

Respiratory rate Included in the FTDS

Intubation Direct indication of resource use

Oxygen saturation Associated with the reference standard in previous research and
expected interactions with other candidate variables

Mechanism of injury

MVA (excl. motorcycles, mopeds, scooters) Included in the FTDS

Motorcycle accident Included in the FTDS

Moped, scooter accident

MVA, pedestrian Included in the FTDS

MVA, different Included in the FTDS

Gunshot Expected association with the reference standard and other candidate
variables (e.g., penetrating injury)

Stab wound Expected association with the reference standard and other candidate
variables (e.g., penetrating injury).

Struck with blunt object Expected association with the reference standard

Fall, same level Included in the FTDS

Fall, higher level Included in the FTDS

Asphyxia Associated with the reference standard in previous research

Burns, % of body surface Associated with the reference standard in previous research

Injury type

Penetrating injury to head, neck, torso, and
extremities proximal to elbow and knee

Included in the FTDS

Flail chest Included in the FTDS

Paralysis Included in the FTDS

Open or depressed skull fracture Included in the FTDS

Abbreviations: MVA motor vehicle accident, FTDS Field Triage Decision Scheme
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Boosting is an ensemble technique that involves the esti-
mation of multiple, related, prediction models [26]. The
core concept of boosting is to add new models to the en-
semble sequentially, in contrast to other ensemble strat-
egies. Each model added to the ensemble is trained with
respect to the error of the previously estimated models.
Boosting can be applied to various families of prediction
models and is often used in conjecture with decision trees
[27]. The LightGBM Python library extends the boosting
principle with various tunable hyperparameters (e.g.,
maximum tree depth, number of boosting iterations,
custom objective functions) and regularization methods
(e.g., subsampling a ratio of columns when constructing a
new tree). Furthermore, it deals with missing data by
sparsity-aware split finding. The default direction of a node
is learned in the tree construction process, so that it mini-
mizes the error in the training data.
A robust model development strategy will be imple-

mented to avoid model optimism. First, internal-external
cross-validation (IECV) will be used generate N pairs of
development and (non-random) validation samples, where
N is the number of participating clusters (EMSs). This
technique iteratively uses IPD from N–1 clusters to
develop a prediction model and the remaining cluster’s
IPD for its external validation. This yields N scenarios in
which model performance can be investigated in an inde-
pendent sample and compared to the reference model. A
major difference with traditional cross-validation is that
hold-out samples in IECV are non-random if the available
clusters differ from one another, which allows to assess
model generalizability (rather than reproducibility).
In each of the N training datasets, we will develop a pre-

diction model using LightGBM. The set of predefined
hyperparameters will be optimized for each model using
ten iterations of stratified tenfold cross-validation with a
shuffle prior to each iteration (see Table 2). Hereto, we will
adopt a Tree-structured Parzen Estimator algorithm to
minimize the mean squared error within a restricted search
space in 500 iterations [28]. We limited the amount of
hyperparameters to be optimized to avoid overfitting and
to enable more extensive modeling of individual predictors.
Second, in each IECV round, we will externally valid-

ate the developed model in the test sample and assess its
discrimination (c-statistic) and calibration (intercept,
slope, and plot) performance. Two scenarios will be ex-
plored, one including class weights that are inversely
proportional to the outcome occurrence in the develop-
ment data and one without class rebalancing. We will
also assess its comparative performance with the refer-
ence model, by quantifying the difference in c-statistic
and performing decision curve analysis [29].
The third and final step will be to construct one model

based on the complete dataset. The full model develop-
ment strategy is illustrated in Fig. 2.

Estimates of model discrimination (c-statistic) and cali-
bration (intercept and slope) from all hold-out samples (i.e.,
the different clusters) will be pooled separately by IPD-MA
for both the reference model and the newly developed
model. Random effects meta-analysis models, in which the
weights are based on the within- and between-cluster error
variance, will be used to account for heterogeneity between
the available clusters [30]. The between-study standard
deviation will be reported from the IPD-MA. Restricted
maximum likelihood estimation will be applied to estimate
variance components, and the Hartung-Knapp-Sidik-Jonk-
man method will be used to derive 95% confidence inter-
vals for the summary estimates of model performance [30].

Discussion
Trauma systems can only reach their full potential when
patients are transported to the right hospitals within the
right time. Mortality rates, morbidity rates, and costs
can be potentially reduced by mimizing undertriage,
overtriage, and interhospital transfer rates. A prehospital
triage tool is crucial to aid EMS professionals in order to
achieve this goal.
The TTApp provides a digital platform that is easy to

use, fast, and capable of incorporating complex predic-
tion models, and provides the possibility for iterative
improvements. The new prediction model proposed in
this study protocol aims to improve predictive accuracy

Table 2 Hyperparameters

Parameter Explanation

Free

Learning rate Shrinkage rate (how much will the
weights be adjusted every iteration).

Number of
leaves

Maximum number of leaves in one
tree.

Lambda L1 L1 regularization.

Lambda L2 L2 regularization.

Feature fraction Randomly select part of the predictors
on each iteration.

Fixed

Early stopping The cross-validation score needs to improve
at least every n round to continue with the
next boosting iteration.

Maximum depth Maximum tree depth (note that it is less
relevant here since the tree grows leaf-wise).

Minimum data Minimal number of records in one leaf. A
higher number prevents overfitting.

Bagging fraction Randomly select part of the data without
resampling.

Bagging
frequency

Per how many rounds should bagging be
applied.

Unbalanced
data

Does data need to be balanced or not.
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and generalizability through a robust model develop-
ment strategy.

Limitations
One key element of trauma systems is centralization,
which should enable the most efficient use of finite re-
sources. Centralization and its positive consequences (i.e.,
high-volume trauma centers) are known to lower mortal-
ity rates. One limitation of the primary outcome is the use

of an ISS ≥ 16 as the reference standard for the need of
specialized trauma care, since the ISS is a scale that does
not perfectly correlate with resource use [17, 18]. The sec-
ondary outcome eliminates this limitation, but is not offi-
cially used to evaluate triage accuracy [1].
A second limitation is that we focus on gradient boost-

ing decision tree and do not evaluate other prediction
modeling strategies. However, we do not aim to develop
a perfect prediction model (which is impossible anyhow)

Fig. 2 Model development methodology
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and believe that the size of our dataset, the restriction of
unknown hyperparameters, and the implementation of
regularization will prevent overfitting. Furthermore, by
avoiding additional comparisons with other modeling
strategies, we effectively minimize the danger of chance
findings and overoptimism. Finally, it is important to
realize that we chose to avoid regression analysis as the
current prediction model for trauma triage (which is
based on logistic regression) suffers from missing values
in clinical practice, a problem that is remedied by adopt-
ing gradient boosting models.
A third limitation of this study is the use of frequentist

meta-analysis methods to evaluate model performance in
new settings and populations. In this regard, the estimation
of between-cluster heterogeneity and prediction intervals
may benefit from adopting a Bayesian approach. [31]

Implications
The TTApp is currently implemented at multiple EMSs
in the Netherlands. This existing infrastructure allows us
to replace the reference model with the newly developed
model if it proves to be better. A software update will
then implement the new prediction model on the
currently used devices, so that the new model can be
used almost instantly. Higher predictive accuracy and
better generalizability of the TTApp will likely lead to
reduced mistriage rates and, as a consequence, lower
mortality rates and less life-long disabilities. The final
model will be made available as a Python object through
the supplementary content.

Conclusions
The TTApp is currently used by multiple EMSs in the
Netherlands to provide EMS professionals with decision
support during field triage. This study protocol outlines
the methodology that will be used to construct an im-
proved prediction model, with emphasis on high predict-
ive accuracy and broad generalizability.
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