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Abstract

Background: HIV/AIDS remains a leading cause of death worldwide. Recently, a model has been developed in
Wenzhou, China, to predict the survival of people living with HIV/AIDS (PLWHA) who underwent antiretroviral therapy
(ART). We aimed to evaluate the methodological quality and validate the model in an external population-based cohort.

Methods: Prediction Model Risk of Bias Assessment Tool (PROBAST) was used to assess the risk of bias of the Wenzhou
model. Data were from the National Free Antiretroviral Treatment Program database. We included PLWHA treated between
February 2004 and December 2019 in a tertiary hospital in Guangzhou city, China. The endpoint was all-cause deaths and
assessed until January 2020. We assessed the discrimination performance of the model by Harrell’s overall C-statistics and
time-dependent C-statistics and calibration by comparing observed survival probabilities estimated with the Kaplan–Meier
method versus predicted survival probabilities. To assess the potential prediction value of age and gender which were
precluded in developing the Wenzhou model, we compared the discriminative ability of the original model with an
extended model added with age and gender.
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Results: Based on PROBAST, the Wenzhou model was rated as high risk of bias in three out of the four domains (selection
of participants, definition of outcome, and methods for statistical analysis) mainly because of the misuse of nested case–
control design and propensity score matching. In the external validation analysis, 16758 patients were included, among
whom 743 patients died (mortality rate 11.41 per 1000 person-years) during follow-up (median 3.41 years, interquartile range
1.64–5.62). The predictor of HIV viral load was missing in 14361 patients (85.7%). The discriminative ability of the Wenzhou
model decreased in the external dataset, with the Harrell’s overall C-statistics being 0.76, and time-dependent C-statistics
dropping from 0.81 at 6 months to 0.48 at 10 years after ART initiation. The model consistently underestimated the survival,
and the level was 6.23%, 10.02%, and 14.82% at 1, 2, and 3 years after ART initiation, respectively. The overall and time-
dependent discriminative ability of the model improved after adding age and gender to the original model.

Conclusion: The Wenzhou prognostic model is at high risk of bias in model development, with inadequate model
performance in external validation. Thereby, we could not confirm the validity and extended utility of the Wenzhou model.
Future prediction model development and validation studies need to comply with the methodological standards and
guidelines specifically developed for prediction models.
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Introduction
Despite substantial progress made in expanding anti-
retroviral therapy (ART) coverage and reducing overall
HIV-related mortality over the past decade, HIV/AIDS
remains a huge health burden worldwide [1]. Globally,
the number of people living with HIV/AIDS (PLWHA)
has increased from 8.74 million in 1990 to 36.8 million
in 2017 [1], and HIV/AIDS remains the leading cause of
death for nearly 1 million people every year [1–3]. This
calls for continuous efforts and health resources for
HIV/AIDS treatment and disease management.
An ideal prognostic model for PLWHA would be crucial

in optimizing HIV care and treatment tailored to each pa-
tient, which could improve treatment outcomes and help
the rational allocation of limited health resources [4].
Thus, several prognostic models and risk scoring systems
based on datasets from Europe and North America have
been developed to predict treatment outcomes (e.g., mor-
tality, HIV virological failure) of PLWHA who underwent
ART [5–9], and a few of them have been updated [10] and
externally validated [11, 12].
Recently, a nested case–control study including 750

PLWHA from Wenzhou, China, developed and compre-
hensively validated a prognostic model for predicting the
HIV-related death of PLWHA receiving ART (herein
after uniformly referred to as the Wenzhou model) and
first developed a simple and intuitive nomogram to help
its application among healthcare providers [13]. This is
the first prognostic model for PLWHA developed in the
Western Pacific region. This model incorporates three
baseline parameters: hemoglobin, HIV viral load, and
CD4+ cell counts, which could stratify patients into three
risk groups depending on the overall prognostic scores
calculated by the nomogram [13]. In the random split
internal validation, the model showed exceptionally

excellent discriminative power, predictive accuracy, and
clinical utility [13].
However, the methodology used to develop and valid-

ate the prognostic model in the Wenzhou study needs
to be critically assessed, and the promising performance
of the model ought to be validated in an independent
sample of patients for its generalization and clinical ap-
plication. External validation is indispensable to establish
the transportability and general applicability of a model
[14, 15]. Various clinical practice guidelines recommend
only those prognostic models that have repeatedly dem-
onstrated good predictive accuracy in multiple validation
studies could be incorporated in clinical practice [14,
16]. The inadequacy of external validation could largely
explain why so far none of these existing prognostic
models for PLWHA has been widely implemented or
used in clinical practice [15].
Guangdong is the most populous province in China,

with a population of nearly 113.46 million in 2018 [17].
A total of 81641 cumulated HIV cases had been re-
ported in Guangdong by 2017, of whom 2100 had died
[18]. In this study, our first aim was to use Prediction
model Risk Of Bias Assessment Tool (PROBAST) [19,
20] to formally assess the methodological quality of the
Wenzhou model and, next to it, externally validate the
Wenzhou model in a large population-based cohort of
PLWHA from Guangzhou, the capital city of Guang-
dong province, China.

Methods
Study design and participants
This retrospective observational cohort study used data
retrieved from the National Free Antiretroviral Treat-
ment Program database. This database, which is man-
aged by the National Center for AIDS/STD Control and

Wang et al. Diagnostic and Prognostic Research            (2020) 4:19 Page 2 of 14



Prevention, China Center for Disease Control and Pre-
vention (China CDC), has been described elsewhere
[21]. Each hospital has access to data for its jurisdiction.
We included PLWHA treated in the Guangzhou Eighth
People’s Hospital, a well-established tertiary infectious
diseases hospital, between 10 February 2004 and 5 De-
cember 2019, and data were collected from 10 February
2004 up to 1 January 2020. According to the inclusion
criteria used in the Wenzhou study [13], we included pa-
tients who initiated a combination ART regimen con-
tained at least three drugs in the center, above 15 years
of age, and had at least one follow-up record.
Baseline and follow-up information was all assessed

based on standardized case report forms that were com-
pleted by local healthcare providers and then uploaded
to the central database. Details on data collection could
be found elsewhere [21]. Information on the three pre-
dictors of the Wenzhou model (i.e., hemoglobin, HIV
viral load, and CD4+ cell counts) was assessed in the
central laboratory of the center by trained technicians
within 1 week before ART initiation in the center. Other
baseline information included clinical data (age, gender,
marital status, residence, route of HIV acquisition,
WHO clinical staging of HIV disease, tuberculosis infec-
tion status, body weight, height), laboratory parameters
(CD8 cell counts, HBsAg status, white blood cell count,
platelet, creatinine, triglyceride, total cholesterol, plasma
glucose, plasma glucose, aspartate transaminase, alanine
aminotransferase, total bilirubin), and initial ART regi-
men. Information on clinical and laboratory characteris-
tics, last follow-up date, or the date of clinical outcomes
was collected at scheduled follow-up visits (0.5, 1, 2, and
3 months after ART initiation and every 3 months there-
after). Information on death was determined via stan-
dardized follow-up case report forms.

Methodology quality assessment
We assessed the risk of bias of the Wenzhou prognostic
model based on PROBAST [19, 20]. PROBAST was ori-
ginally designed for systematic reviews, but it can also be
used in critical appraisal of the methodological quality of
prediction models [19, 20]. This instrument assesses the
risk of bias of prediction model studies in four broad do-
mains: participants (2 signaling questions [SQ]), predic-
tors (3 SQ), outcome (6 SQ), and analysis (9 SQ). Each
domain is rated as high (the answer to any of the SQ in
that domain is “No” or “Probably no”), low (the answer
to all SQ is “Yes” or “Probably yes”), or unclear (relevant
information is missing for some of the signaling ques-
tions, and the answer to all remaining questions is “Yes”
or “Probably yes”) risk of bias [19, 20]. The rationale for
rating each criterion was recorded. Two authors (JW
and TY) independently assessed the risk of bias of the
Wenzhou study, and the agreement of two raters was

measured by the percentage of agreement and Cohen’s
kappa. Any disagreement was resolved through discus-
sion. Whenever necessary, a senior author (HZ) made
the final decision.

External validation
Statistical analysis
All statistical analyses were performed using R version
3.5.1, and R code used for the external validation can be
found in the supplement. We conducted and reported
this study according to recommendations in the Trans-
parent Reporting of a multivariable prediction model for
Individual Prognosis or Diagnosis statement (TRIPOD)
[4, 15], and the completed checklist could be found in
supplement table 1.
The sample size of the study was determined by all

available data on the database of the center during the
study period. The endpoint was all-cause deaths, and
survival time was measured as the date of ART initiation
in the center to date of death, date of the last follow-up
visit, or 1 January 2020, whichever came first. Median
follow-up time was computed using a reverse Kaplan–
Meier method [4]. Baseline characteristics of patients
were presented as count (percentage) for categorical var-
iables and median (interquartile range) for continuous
variables. Study information, baseline characteristics, and
outcomes of this study were compared with that of the
Wenzhou study.
We assessed the predictive performance of the Wen-

zhou model by examining the measures of discrimin-
ation and calibration [22]. Discrimination was assessed
by Harrell’s overall C-statistics [23] with R package
“compareC” [24] as well as time-dependent C-statistics
[25, 26] with R package “riskRegression” [27]. A C-
statistics of 0.5 represents no predictive discrimination
and 1 represents perfect discrimination. Calibration was
assessed with the calibration curve plot by comparing
the observed survival probability estimated with the
Kaplan–Meier method versus the predicted survival
probability.
In addition, age and gender were precluded as candi-

date predictors for developing the Wenzhou model as
the model development study used a nested case–con-
trol design with age and gender being used for matching.
To assess the potential prediction value of age and gen-
der, we extended the model by adding these two vari-
ables to the original Wenzhou model. In order to avoid
the overestimation of the added prediction value, we did
not re-fit the extended model in our external validation
data, and the coefficients of the two variables were ob-
tained from the literature review. The reported effect
size (i.e., hazard ratio) of age and gender was log-
transformed to obtain the regression coefficients for the
extended model. The predictive ability of age and gender
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was investigated by comparing the C-statistics of the ex-
tended model with the Wenzhou model.
We used multiple imputation to impute (50 times)

missing predictor values with R package “MICE” [28].
Variables used in the imputation model included all the
predictors, age, gender, marital status, residence, route
of HIV acquisition, WHO clinical staging of HIV dis-
ease, tuberculosis infection status, body weight, height,
CD8 cell counts, HBsAg status, white blood cell count,
platelet, creatinine, triglyceride, total cholesterol, plasma
glucose, plasma glucose, aspartate transaminase, alanine
aminotransferase, total bilirubin, initial ART regimen,
and the outcome (i.e., the Nelson–Aalen estimator of
the cumulative baseline hazard, and the outcome indica-
tor) [29, 30]. Given that laboratory measurements (e.g.,
white blood cell count) can only have positive values
and were possibly skewed, we applied a logarithmic
transformation to all measured laboratory indexes to
achieve normalization before they were included in the
imputation model. The multiple imputation generated
50 plausible imputed datasets to account for the uncer-
tainty associated with missing values. All the 50 imputed
datasets were analyzed in parallel as if complete cases
without missing predictor values, and at last, results ob-
tained from each dataset were combined with Rubin’s
rule [31, 32]. We did a descriptive analysis for predictor
values before and after multiple imputation. The analysis
of the imputation datasets was our main analysis with
results being reported in this report, and complete case
analysis was performed as sensitivity analysis with results
being included in the supplement. Given that the per-
centage of missing values for HIV viral load in our data-
set was high (86%) and 96% of the non-missing values
were above 1000 copies/mL, we did two additional sensi-
tivity analyses (1) assuming all the missing values for
HIV viral load were < 200 copies/mL and (2) assuming
missing values for HIV viral load had the same distribu-
tion as reported in the Wenzhou study. The category of
imputed HIV viral load was determined by the quantile
of the imputed value according to the distribution of
HIV viral load reported in the Wenzhou study.

Prediction calculation
To calculate the predicted probability with the Wenzhou
model in the external validation dataset, we extracted
the model parameters (i.e., coefficients and baseline sur-
vival) from the nomogram of the Wenzhou model with
GetData Graph Digitzer version 2.26. The corresponding
author of the Wenzhou study was contacted by email if
additional information was needed.
We first calculated the prognostic index (PI, i.e., the

linear predictor of the model) for each patient (i) using
the following formula:

PIi ¼ Coefficienthemoglobin �Hemoglobini
þ CoefficientCD4 cell count � CD4 cell counti
þ CoefficientHIV viral load �HIV viral loadi

Based on the coefficients extracted from the
nomogram:

PIi ¼ − 0:005580907
� CD4 cell counti − 0:005368102
� hemoglobini þ

1:019669556 ½i f HIV viral loadi is within 200 − 1000�
þ 2:608969326 ½i f HIV viral loadi≥1000�

We then calculated the predicted survival probability
at t year (t = 1, 2, and 3) after ART initiation for each
patient (i) using the following formula:

bSi tð Þ ¼ bS0 tð Þ exp PIið Þ

where bS0ðtÞ is the baseline survival at t year, PIi is the
prognostic index of patient i, and exp stands for expo-
nential function.
Based on the extracted baseline survival probabilities,

the 1-year, 2-year, and 3-year survival probabilities for
patient (i) can be calculated as:

bSi 1ð Þ ¼ 0:980222074 exp PIið Þ

bSi 2ð Þ ¼ 0:972736744 exp PIið Þ

bSi 3ð Þ ¼ 0:964896148 exp PIið Þ

To create risk groups, we also extracted the linear rela-
tion between PI and risk score from the nomogram, and
the risk score for each patient (i) was calculated by:

Risk scorei ¼ 108:3333333þ 19:90914787� PIi

To assess the added prediction value of age and gen-
der, an extended formula which added age and gender
was used, where the coefficients of these two variables
were based on evidence from literatures [33–35].

PIextendedi ¼ PIi þ 0:2382292 ½i f agei is within 40 − 60�
þ 0:5866749 ½i f agei≥ 60� − 0:3566749 ½i f genderi ¼ female�

Results
Characteristics of patients
Data were obtained from 18479 patients with HIV, of
whom 16758 met the inclusion criteria and were in-
cluded in our main analysis after multiple imputation of
missing predictors (Fig. 1). Additionally, we also did a
sensitivity analysis for the 2374 complete cases after ex-
cluding 14384 patients with missing predictors. The cu-
mulative incidence curve of complete cases and that of
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cases with missing predictors were comparable (supple-
ment figure 1). Descriptive analysis of the three predic-
tors before and after multiple imputation can be found
in supplement table 2. The median follow-up for the
16758 participants was 3.41 years (IQR [interquartile
range] 1.64–5.62). A total of 743 (4.43%) participants
died from any cause during 65037 person-years of
follow-up (mortality per 1000 person-years, 95% CI
[confidence interval] 11.42, 10.62–12.28). Cumulative
mortality rates of all-cause death at 3, 5, 10, and 15 years
after ART initiation in the center were 3.72%, 5.11%,
8.96%, and 11.35%, respectively.
Table 1 compares the characteristics and outcomes of

the participants in the cohort to develop the Wenzhou
model and that in this external validation study.
Compared to the patients in the derivation cohort of the

Wenzhou model, patients in our study were younger (me-
dian 34.3 vs 49.7) and were more clinically advanced when
they initiated ART in the center (WHO stage III/IV 95.2%
vs 39.4%), and a higher proportion of them had HIV viral
load equal to or more than 1000 copies/mL (96.0% vs
18.3%). Missing values of most variables in our study were
higher than those in the Wenzhou study, especially HIV
viral load (85.7% vs 0.0%), though the sample size of our
study was larger (16758 vs 525). Regarding outcomes, the
assessed endpoint in our study was all-cause mortality, no-
ticeably lower than the endpoint of HIV-related mortality
in the Wenzhou study (11.4 vs 73.1 per 1000 person-
years). Additionally, although the starting point of survival
time defined in the Wenzhou study (i.e., receiving the first
ART) differs from that in our study (i.e., starting ART in

the center), up to 99.2% (16631/16758) of patients in-
cluded in this study initiated their ART in the Guangzhou
Eighth People’s Hospital.

Methodology quality assessment
The degree of agreement between the two authors who
independently assessed the risk of bias was moderate be-
fore discussion (agreement in 70% of all items, Cohen’s
kappa = 0.476, supplement table 2), and all the disagree-
ments were settled after discussion. Overall, according
to the PROBAST, the Wenzhou model was rated as high
risk of bias in three domains: participants, outcome, and
analysis (Table 2). The answer to more than half (11/20,
55%) of the total SQ was “No” or “Probably no.” The
high risk of bias was judged according to some specific
issues in the study design and statistical analysis (see the
rationale of rating in Table 1). We elaborated on the
main issues as below.
In the Wenzhou model development study, the nested

case–control design was applied at a 1:4 ratio to deter-
mine the study population, in which one case (dead
PLWHA) was matched with four controls by age and
gender [13]. The inappropriate use of the nested case–
control design and misuse of propensity score matching
in prediction model development study lead to unfavor-
able answers to SQ1.1, SQ4.3, and SQ4.6 in PROBAST.
Specifically, with the nested case–control design, the au-
thors artificially fixed the event rate (HIV-related mor-
tality) at 20% (150/750) by selecting 600 controls out of
3583 living PLWHA, which would lead to a much higher
event rate than in real-world PLWHA population. In

Fig. 1 Flow chart of the selection of patients. PLWHA people living with HIV/AIDS; ART antiretroviral therapy
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Table 1 Comparison of participants characteristics and outcomes in derivation and external validation cohorts*

Characteristics Derivation cohort of the Wenzhou model [13] External validation cohort

Total (N = 525) Missing
values (n
(%))

Total (N = 16758) Missing
values (n
(%))

Study information

Geographic location East China .. South China ..

Data source AIDS Prevention and Control
Information System in Wenzhou city

.. National Free Antiretroviral Treatment Program
database in a tertiary hospital in Guangzhou city

..

Follow-up duration January 2006 to December 2018 .. February 2004 to 1 January 2020 ..

Variables in the prognostic model of the Wenzhou study

Viral load, copies/mL 0 (0.0) 14361 (85.7)

< 200 413 (78.7) .. 39 (1.6) ..

200–1000 16 (3.0) .. 57 (2.4) ..

≥ 1000 96 (18.3) .. 2301 (96.0) ..

CD4+ cell count,
cells/μL

208.3 (86.0, 328.0) .. 209.00 (72.0, 319.0) 173 (1.1)

Hemoglobin, g/L 136.7 (118.0, 149.0) .. 137.00 (116.0, 150.0) 237 (1.4)

Variables used for matching by the Wenzhou study

Age, year 49.7 (37.3, 63.5) 0 (0.0) 34.3 (27.2, 44.0) 0 (0.0)

Gender 0 (0.0) 0 (0.0)

Men 436 (83.0) .. 13662 (81.5) ..

Women 89 (17.0) .. 3096 (18.5) ..

Other variables in the Wenzhou study†

Hepatitis B virus 0 (0.0) 3152 (18.8)

Positive 68 (13.0) .. 1799 (13.2) ..

Negative 457 (87.0) .. 11807 (86.8) ..

Tuberculosis 13 (2.5) 17 (0.1)

Yes 24 (4.6) .. 1097 (6.6) ..

No 488 (93.0) .. 15644 (93.5) ..

WHO stage 0 (0.0) 17 (0.1)

I 265 (50.5) .. 417 (2.5) ..

II 53 (10.1) .. 392 (2.3) ..

III 157 (29.9) .. 15535 (92.8) ..

IV 50 (9.5) 397 (2.4) ..

Infection pathway 0 (0.0) 692 (4.1)

NMHR 304 (57.9) .. 7473 (46.5) ..

MSM 158 (30.1) .. 7271 (45.3) ..

Others 63 (12.0) .. 1322 (8.2) ..

Participant category 0 (0.0) 5 (0.03)

Fixed population 407 (77.5) 10966 (65.4) ..

Floating
population

118 (22.5) 5787 (34.5) ..

Marital status 0 (0.0) 105 (0.6)

Married 277 (52.8) .. 7973 (47.9) ..

Unmarried 248 (47.2) .. 8680 (52.1) ..

Body mass index, kg/
m2‡

21.3 (19.3, 23.7) 0 (0.0) 20.76 (19.0, 22.9) 2667 (15.9)
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fact, in another study of 13812 PLWHA in Zhejiang, the
province where Wenzhou is part of, the HIV-related mor-
tality was merely around 5.4% [36]. As a result, the prog-
nostic model developed based on this selective cohort
without proper adjustment is highly likely to overestimate
the probability of death (i.e., underestimate the survival
probability).
Additionally, propensity score matching is not a reason-

able approach for selecting controls for prediction model

development studies. When developing a new model, the
ultimate goal is to include all predictors that could con-
tribute to predicting the outcome. This is contradictory
with propensity score matching, as the variables used for
matching would be balanced in case and control groups,
thus can no longer serve as predictors. The empirical im-
pact of using age and gender as matching variables rather
than (potential) predictors in developing the Wenzhou
model is shown in the external validation section.

Table 1 Comparison of participants characteristics and outcomes in derivation and external validation cohorts* (Continued)

Characteristics Derivation cohort of the Wenzhou model [13] External validation cohort

Total (N = 525) Missing
values (n
(%))

Total (N = 16758) Missing
values (n
(%))

CD8 cell count, cells/
μL

861.0 (535.0, 1272.0) 0 (0.0) 786.00 (521.0, 1121.0) 416 (2.5)

White blood cell, 109/
L

5.3 (4.2, 6.8) 0 (0.0) 5.1 (4.1, 6.4) 220 (1.3)

Platelet, 109/L 186.0 (144.0, 224.0) 0 (0.0) 200.0 (160.0, 242.0) 230 (1.4)

Creatinine, μmol/L 70.0 (58.6, 81.0) 0 (0.0) 74.0 (63.8, 84.0) 516 (3.1)

Triglyceride, mmol/L 1.5 (1.0, 2.4) 0 (0.0) 1.3 (0.9, 1.8) 2555 (15.3)

Total cholesterol,
mmol/L

4.1 ± 0.9 0 (0.0) 4.0 (3.4, 4.6) 2559 (15.3)

Plasma glucose,
mmol/L

5.3 (4.7, 6.6) 0 (0.0) 5.2 (4.7, 5.7) 1449 (8.7)

Aspartate
transaminase, U/L

25.0 (19.0, 34.0) 0 (0.0) 23.00 (19.00, 32.00) 249 (1.5)

Alanine
aminotransferase, U/L

21.6 (15.0, 34.0) 0 (0.0) 23.00 (16.0, 36.0) 232 (1.4)

Total bilirubin, μmol/L 10.8 (7.7, 15.4) 0 (0.0) 9.73 (7.2, 13.0) 361 (2.2)

Other variables in the validation cohort

ART initiation year§ 0 (0.0)

2004-2007 .. .. 575 (3.4) ..

2008-2011 .. .. 2227 (13.3) ..

2012-2015 .. .. 5810 (34.7) ..

2016-2019 .. .. 8146 (48.6) ..

Baseline ART regimen 0 (0.0)

First-line¶ .. .. 13286 (79.3) ..

Others .. .. 3472 (20.7) ..

Outcomes

Endpoint HIV-related mortality .. All-cause mortality ..

Number of events 105 .. 743 ..

Mortality per 1000
person-years

73.1 .. 11.4 ..

NMHR non-marital heterosexual transmission, MSM men who have sex with men, WHO World Health Organization, ART antiretroviral therapy
*Categorical variables are presented as n (%), and continuous variables are presented as median (interquartile range)
†Occupation, history of sexually transmitted diseases other than HIV/AIDS, education level, disease stage, and origin of identification were also included in the
Wenzhou study but were not included in this study because these data were unavailable in our database
‡Body mass index = body weight/height2
§Cut-off values of years were determined by changes in Chinese national guidelines for the treatment of HIV/AIDS regarding the threshold of CD4+ cell counts for
initiating ART. Prior to 2007, HIV-infected patients with a CD4+ count ≤ 200 cells per μL or those who had been diagnosed with an AIDS-defining illness were
eligible for ART initiation. The treatment initiation threshold was raised to 350 cells per μL in 2008 and then to 500 cells per μL in 2012. Since 2016, all PLWHA
have been eligible for ART regardless of CD4+ count
¶First-line ART regimens consist of zidovudine/stavudine/tenofovir + lamivudine + nevirapine/efavirenz
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Table 2 Quality assessment by prediction model risk of bias assessment tool

Question Answer Rationale

Domain 1: Participants

1.1 Were appropriate data sources used, e.g., cohort, RCT
or nested case–control study data?

No Nested case–control without proper adjustment of the baseline hazard.

1.2 Were all inclusions and exclusions of participants
appropriate?

Probably
no

Having complete laboratory blood tests before receiving ART may lead to
biased selection.

Overall risk of bias of Domain 1 High risk
of bias

Domain 2: Predictors

2.1 Were predictors defined and assessed in a similar way
for all participants?

Probably
yes

Laboratory outcomes were obtained in a standardized manner, whereas
self-reported data such as mode of HIV transmission might be subjected
to bias from self-interpretation. Nevertheless, only laboratory outcomes
were included in the final prognostic model.

2.2 Were predictor assessments made without
knowledge of outcome data?

Yes The outcome was death, and predictor data were collected at patients'
enrollment.

2.3 Are all predictors available at the time the model is
intended to be used?

Yes All predictors (i.e., hemoglobin, CD4+ cell count, and HIV viral load) are
routine laboratory assessment and easy to access.

Overall risk of bias of Domain 2 Low risk
of bias

Domain 3: Outcome

3.1 Was the outcome determined appropriately? Probably
no

1. Determination of AIDS-related death was unclear, so misclassification of
outcomes might be possible.
2. Given that loss to follow-up was not mentioned in the paper, partici-
pants who were lost to follow-up might be misclassified as being alive.

3.2 Was a pre-specified or standard outcome definition
used?

No
information

Definition of AIDS-related death was not provided.

3.3 Were predictors excluded from the outcome
definition?

Yes The outcome was death, which is objective.

3.4 Was the outcome defined and determined in a
similar way for all participants?

No
information

The authors did not provide any information regarding how AIDS-related
death was determined and whether it varied from patients to patients.

3.5 Was the outcome determined without knowledge of
predictor information?

Yes The outcome was death, which is objective.

3.6 Was the time interval between predictor assessment
and outcome determination appropriate?

Yes The time interval, from ART initiation till the end of follow-up (12 years in
total) was long enough to observe the death outcome.

Overall risk of bias of Domain 3 High risk
of bias

Domain 4: Analysis

4.1 Were there a reasonable number of participants with
the outcome?

No The number of events per variable = 105 death/35 = 3, which is too
small.

4.2 Were continuous and categorical predictors handled
appropriately?

Probably
no

Continuous predictors (CD4+ and hemoglobin) were not examined for
nonlinearity, but generally, these two variables are right skewed and
should be log-transformed before entering the model.

4.3 Were all enrolled participants included in the
analysis?

No Among the 3584 patients in the control group, only 600 could be
matched and included in analyses, whereas the remaining could not be
successfully matched were excluded.

4.4 Were participants with missing data handled
appropriately?

Probably
no

Although multiple imputation was used, there was no explicit mention of
the specific method used to analyze imputed data.

4.5 Was selection of predictors based on univariable
analysis avoided?

No Selection was entirely based on p values in univariate Cox analyses and
ROC analyses.

4.6 Were complexities in the data (e.g., censoring,
competing risks, sampling of controls) accounted for
appropriately?

No 1. Censored data were not mentioned and might not be handled
properly.
2. Non-AIDS-related death was not accounted as a competing risk of
AIDS-related death.
3. Propensity-score matching approach was misused.

4.7 Were relevant model performance measures
evaluated appropriately?

Probably
yes

Discrimination was assessed by the concordance index, and calibration
curve was used to assess calibration.
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There are also some issues in defining the outcome to
be predicted, which leads to high risk of bias in SQ3.1
and SQ4.6 in PROBAST. The authors chose HIV-related
death as the endpoint, but did not explicitly mention
how death from other causes (the competing risk event)
was dealt with in the analysis [13]. Since the model was
developed with a Cox model, it is most likely that the
standard Cox model was used by censoring the death
from other causes. However, this approach would sub-
stantially overestimate the probability (absolute risk) of
the event, leading to poor calibration accuracy and
wrong prediction in clinical practice [37, 38]. Because
clinical prediction models are used for decision-making
in the real world, but not a virtual world where the com-
peting risk is absent [37], the model developed with sim-
ply censoring death from other causes would provide a
prediction of HIV/AIDS-specific survival probability,
which is misleading, irrelevant, and of course biased. In
this case, the Fine and Gray model accounting for com-
peting risks would be more suitable [37].
In the model development, authors randomly split the

cohort into a training set and a validation set at a ratio
of 7:3 [13]. This approach cannot be seen as an inde-
pendent external validation. In fact, this was only a weak
and inefficient form of internal validation [4], as 70% of
all available data was used for model development. This
approach reduced the sample size, which was already
small, from 750 to 525 to develop the model, resulting
in a very low (105 death/35 variables = 3) event-per-
variable (SQ3.1), and optimism cannot be adjusted ap-
propriately either [4]. A low event-per-variable would
lead to model overfitting and overestimating the model
performance and cannot ensure the desirable model per-
formance in an external validation [4].

Model performance
Distribution of prognostic index
Figure 2 shows the distribution of PI in the validation
cohort. Based on the risk groups proposed in the Wen-
zhou study, 5518 (32.93%) patients were in the low-risk
group, 11240 (60.07%) patients were in the intermediate
group, and no patient was classified as high risk.

Discrimination performance
Harrell’s overall C-statistics is 0.76 (95% CI 0.74–0.77)
in the validation cohort, which is much lower than the
apparent C-statistics (0.93) and in random split valid-
ation (0.95) reported in the Wenzhou model develop-
ment study [13]. The time-dependent C-statistics
decreased from 0.81 to 0.74 from 6 months to 3 years
after ART initiation and continued decreasing to 0.48 at
10 years (Fig. 3).

Calibration accuracy
Figure 4 shows the calibration curves at 1, 2, and 3 years
after ART initiation. At all three time points, the Wen-
zhou model consistently underestimated the survival
probability (i.e., overestimated the mortality rate) in the
validation cohort. On average, the Wenzhou model
underestimated the survival probability by 3.13%, 4.34%,
and 5.82% at 1, 2, and 3 years after ART initiation, re-
spectively, and the lower the predicted survival the
higher level of underestimation, which can be up to
6.23%, 10.02%, and 14.82% at 1, 2, and 3 years after ART
initiation, respectively. This confirmed our concern of
overestimation of the event rate in the “Methodology
quality assessment” section.

Incremental prediction value of age and gender
After adding age and gender to the original model, Har-
rell’s overall C-statistics increased from 0.76 to 0.78
(95% CI 0.76–0.79), and the time-dependent C-statistics
also increased for all time points (Fig. 3).
The same results were also observed in the sensitivity

analysis of complete cases (supplement figure 2). In the
two sensitivity analyses that respectively assume all the
missing values for HIV viral load were < 200 copies/mL
(supplement figure 3) and that had the same distribution
as reported in the Wenzhou study (supplement figure 4),
the predicted probability of death was lower and the
calibration became even worse. The discrimination per-
formance was consistent with that in the main analysis.

Discussion
In this critical appraisal and external validation, we eval-
uated the Wenzhou model from both its risk of bias and

Table 2 Quality assessment by prediction model risk of bias assessment tool (Continued)

Question Answer Rationale

4.8 Were model overfitting and optimism in model
performance accounted for?

No Internal validation consists only of a single random split sample of
participant data and did not include all model development procedures
including any variable selection.

4.9 Do predictors and their assigned weights in the final
model correspond to the results from multivariable
analysis?

No The final model was based only on a selection of predictors from the
reported multivariable regression analysis without refitting the smaller
model.

Overall risk of bias of Domain 4 High risk
of bias
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model performance. Based on the framework of PRO-
BAST, in which the highest methodology standard was
applied for critical appraisal, the model was rated as high
risk of bias in three out of the four domains. In the ex-
ternal validation in a large population-based cohort, the
model performance was poor in both discrimination and
calibration.
According to the PROBAST, the Wenzhou model was

prone to high risk of bias in the selection of study

participants, definition of outcome, and methods for
statistical analysis [19]. This largely contributes to the
poor model performance in the external validation. Age
and gender are two important risk factors for the sur-
vival of PLWHA, which has been consistently identified
in previous prospective studies [33–35] as well as prog-
nostic model development studies [6, 8, 9, 39]. However,
age and gender were used as matching variables and
therefore precluded as candidate predictors in

Fig. 2 Distribution of the linear predictor

Fig. 3 Time-dependent C-statistics comparing the Wenzhou model and the extended model
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developing the Wenzhou model [13], which undoubtedly
crippled the discriminative ability of the model. This
could be confirmed by our results that both the overall
and time-dependent discriminative ability (C-statistics)
increased after adding age and gender to the original
Wenzhou model. Obviously, the approach of matching
variables is at odds with the principle of prediction
model studies.
The Wenzhou model was developed with a nested

case–control study design, however, adjustment of the
baseline risk or recalibration of the probability predic-
tion had not been performed to obtain the correct prob-
ability estimate, so the mortality risk was overestimated.
This could be supported by our results of assessing the
calibration accuracy of the Wenzhou model which reveal
a severe and consistent overestimation of risk. The in-
appropriate use of propensity score matching and ran-
dom split validation substantially reduced the sample
size for model development, which further lead to de-
creased model performance in the external validation.
A reliable and validated prognostic model would be a

powerful tool for assisting physicians in the decision-
making process. However, in spite of seemingly rigorous
methodology and excellent model performance in the
development and internal validation of the Wenzhou
model, findings from our external validation study show
that directly applying this model to clinical practice
would engender negative consequences. We found that
the Wenzhou model tends to overestimate the mortality
risk of PLWHA up to 15%. For those patients with ad-
vanced HIV diseases who already have unfavorable prog-
nosis, if the Wenzhou model was used to counsel
patients about prognosis, for example, the estimated
prognosis would be even worse and thereby cause pes-
simism and deflated confidence in treatment among
those patients, and some of them might even give up
treatment altogether. On the other hand, intensive care
and management would be disproportionately given to

those with mild diseases due to the overestimated risk,
bringing about tremendous waste in healthcare
resources.
Prediction model study has different methodological

considerations compared with other types of clinical or
epidemiological studies. Indiscriminately applying expe-
riences gained from other fields in the study design and
statistical analysis to the development of clinical predic-
tion models is not only likely to generate biased and
misleading models of no clinical usefulness, but also
might set a fallacious example for other researchers new
to developing prediction model to imitate. Instead, re-
searchers should carefully refer to guidelines specifically
developed for clinical prediction models, including the
reporting standard TRIPOD [4, 15] and the methodo-
logical standard PROBAST [19, 20]. Given that the ana-
lysis in model development is relatively more
complicated compared with that in other clinical and
epidemiological studies, the involvement of statisticians
and methodologists in prediction model studies are
necessary.
Additionally, a downward trend in time-dependent C-

statistics over follow-up time was observed in the exter-
nal validation. This indicates that a prediction model
based on only baseline information may lose its predic-
tion ability for long-term outcome. Incorporating pre-
dictor values collected during follow-up in the
prediction model may improve the model performance,
and such model can be developed using dynamic predic-
tion approaches including joint modeling and landmark-
ing analysis [40].
Our study has several limitations. First, our dataset has

high percentage of missing values for HIV viral load
(85.7%). The presence of missing values is inevitable for
clinical data, especially for our dataset with large sample
size (16758). The reasons for missing values for HIV
viral load are largely due to limited medical resources in
the hospital as well as limited financial means of

Fig. 4 Calibration curves at 1 year (a), 2 years (b), and 3 years (c)
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patients, especially for data collected in earlier years. To
fulfill the requirement of missing at random, we in-
cluded a total of 26 auxiliary variables into the imput-
ation model, to make sure missingness is conditional on
the observed data. We are confident about our findings
because we handled missing values properly by multiple
imputation for 50 times, and results were consistent in
our complete analysis excluding all missing values and
two additional sensitivity analyses with different assump-
tions in missing values. In comparison, the Wenzhou
study did not report any missing value for HIV viral
load. This is perhaps because of the small selected sam-
ple (525), or the authors simply deleted eligible patients
with missing values, an approach that would incur ser-
ious bias [15]. Second, because of the limited informa-
tion on causes of death, we could not reliably distinguish
HIV-related and non-HIV-related deaths, so the end-
point of the external validation study was all-cause mor-
tality, which should be higher than HIV-related
mortality as being predicted by the Wenzhou model.
Nevertheless, the model predicted event probability was
still noticeably higher than that observed in our external
population-based cohort, even if patients in the external
validation data were more clinically advanced and had
higher HIV viral load at ART initiation compared with
patients in the Wenzhou study. If we would use HIV-
related death as the outcome, the overestimation of
HIV-related mortality would be more pronounced than
that of all-cause mortality presented in this paper. Third,
data used for external validation in this study were de-
rived from one hospital, though the Guangzhou Eighth
People’s Hospital is one of the largest designated hospi-
tals for HIV/AIDS treatment in China and has been
treating around one third of PLHIV in the Guangdong
province. Lastly, both the Wenzhou study and this study
were based on PLHIV in China, with limited
generalizability. But our study has a broader implication
in terms of providing a comprehensive overview of how
model development studies in general could be im-
proved. The combined qualitative and quantitative ap-
proach used in this study could also be applied in other
external validation studies in the future.
Since the publication of PROBAST in early 2019, it

has been widely used in many systematic reviews of clin-
ical prediction models [41–43], but it may take a long
time for a prediction model to be included and assessed
in a systematic review. Externally validating a newly de-
veloped model in a separate dataset could be a practical
alternative. However, most external validation studies
merely focus on model performance while ignoring the
inherent methodological quality of the studies develop-
ing that model. This could be misleading in some in-
stances. It is entirely possible that, for example, a
prediction model with desirable performance in external

validation was developed in a study of poor methodo-
logical quality. In order to have a comprehensive ap-
praisal of a prediction model, combining the assessment
of methodological quality and risk of bias with external
validation is necessary. To the best of our knowledge,
this study is the first attempt to incorporate critical ap-
praisal as part of external validation, and it can serve as
an example of the new standard of external validation
which contains both qualitative and quantitative ana-
lyses. Although PROBAST was originally designed as a
risk of bias assessment tool, we found it also provided a
structured way in evaluating the methodological quality
of a prediction model. The applicability of PROBAST in
evaluating methodological quality of prediction models
will be assessed when such evaluation is performed more
frequently. However, the assessment largely depends on
the reported information from the original study,
whereas incomplete reporting and unclear description
may mislead the evaluators. Hence, the compliance with
TRIPOD reporting guideline [15] is highly desired for
model developers.

Conclusion
In summary, the Wenzhou model is rated as high risk of
bias in model development, with sub-optimal model per-
formance in our external validation. The validity and ex-
tended utility of the Wenzhou model are also hard to
confirm. Future prediction model development and val-
idation studies should carefully refer to and follow well-
established methodological standards and guidelines spe-
cifically developed for the prediction model.
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