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Abstract

sliding window length.

Background: Prediction models inform many medical decisions, but their performance often deteriorates over
time. Several discrete-time update strategies have been proposed in the literature, including model recalibration
and revision. However, these strategies have not been compared in the dynamic updating setting.

Methods: We used post-lung transplant survival data during 2010-2015 and compared the Brier Score (BS),
discrimination, and calibration of the following update strategies: (1) never update, (2) update using the closed
testing procedure proposed in the literature, (3) always recalibrate the intercept, (4) always recalibrate the intercept
and slope, and (5) always refit/revise the model. In each case, we explored update intervals of every 1, 2, 4, and 8
quarters. We also examined how the performance of the update strategies changed as the amount of old data
included in the update (i.e, sliding window length) increased.

Results: All methods of updating the model led to meaningful improvement in BS relative to never updating. More
frequent updating yielded better BS, discrimination, and calibration, regardless of update strategy. Recalibration
strategies led to more consistent improvements and less variability over time compared to the other updating
strategies. Using longer sliding windows did not substantially impact the recalibration strategies, but did improve
the discrimination and calibration of the closed testing procedure and model revision strategies.

Conclusions: Model updating leads to improved BS, with more frequent updating performing better than less
frequent updating. Model recalibration strategies appeared to be the least sensitive to the update interval and

Keywords: Prediction model updating, Recalibration, Model revision, Closed testing procedure

Background

Prediction models inform many medical decisions, but
their performance often deteriorates over time due to
changes in underlying clinical populations or evolving
medical practices. Unfortunately, many prediction
models are static; that is, they are developed once (i.e., at
a single time point) within a fixed derivation cohort and
then tested on new (future) members of this cohort,
who may differ in clinical characteristics or disease risk.
In contrast, dynamic prediction modeling involves
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updating models at multiple time points as new data are
accrued [1, 2]. Several discrete-time update strategies
have been proposed in the literature, including recalibra-
tion of the intercept, recalibration of the intercept and
slope, and model revision [1-8].

Some of these strategies have been evaluated as
methods for updating a model at a single time point [3—
5, 9]. However, they have not been rigorously tested or
compared when applied to dynamic changes in models
over time [2]. For example, while Hickey et al. [10] ex-
amined the change in model coefficients when models
were refitted in dynamic settings, how actual model pre-
dictive performance changes over time remains un-
known, both for refitting strategies and when comparing
alternative updating strategies (e.g., recalibration).
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Similarly, Van Calster et al. developed methods to valid-
ate and update multinomial logistic regression prediction
models, and presented an empiric example in which they
compared the predictive performance of a model which
was updated at a single timepoint using more recent
data from the same setting (i.e., temporal updating) and
using data from a different setting (i.e., geographic up-
dating) [9]. How their methods might perform in dy-
namic updating settings is still unclear [9]. Minne et al.
examined repeated recalibration of decision-trees and lo-
gistic regression models, but did not compare these
methods to other model updating strategies [11]. Finally,
the data-driven testing approach to model updating over
time proposed by Davis et al. [12] indicates that different
update methods require different frequencies of updat-
ing (i.e., update interval) [12], but more research is
needed to understand how the size of this update inter-
val and the amount of old versus new data used for each
update (i.e., the sliding window) might influence model
performance.

In this paper, we compare several previously proposed
update strategiesbroadly classified as never update, up-
date based on a series of statistical tests comparing can-
didate update models to the current model at each
update interval (see Additional file), or update following
a pre-specified schedule—in a time-dependent manner,
using the empiric example of predicting 1-year post-lung
transplant survival. Consistent with Hickey et al. [10]
and Jenkins et al. [2], we refer to these strategies as “dy-
namic updating strategies” to reflect the fact that they
are applied in a time-dependent manner. In the USA, 1-
year post-lung transplant survival is used both to assist
in allocating donor organs to lung transplant candidates
(through the Lung Allocation Score, LAS) and to evalu-
ate the performance of transplant programs [13]. How-
ever, the model is not updated frequently. Since its
adoption in May 2005, the LAS has only been updated
two times—in 2010 and 2015 [14]—despite a growing
body of research suggesting that the clinical characteris-
tics of transplant patients have evolved over time toward
older and sicker patients [15] and the changing surgical
methods and care of patients undergoing transplant-
ation. Here, we examine what would have happened had
the 1-year post-lung transplant survival model been up-
dated more frequently between 2010 and 2015 under
various update strategies, update intervals, and length of
sliding windows.

Methods

This study used post-lung transplant data from the
United Network for Organ Sharing (UNOS) transplant
registry during 2007-2015. Patients were included in our
study if they were 18 years or older and received a single
or bi-lateral lung transplant in the USA during this time.
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Patients were excluded if they were registered for
multiple-organ transplant (e.g., heart-lung). These data
were partitioned into baseline and post-baseline periods,
with the baseline period including data between 2007
and 2009, and the post-baseline period including data
between 2010 and 2015. The baseline prediction model
was set by fitting a logistic regression model for 1-year
post-lung transplant mortality using the baseline period
data and the same covariates as the 2010 post-transplant
LAS model (i.e., age, cardiac index, continuous mechan-
ical ventilation, serum creatinine, diagnosis group, func-
tional status, oxygen need at rest, and 6-min walk
distance) [13].

Subsequently, five different update strategies were ex-
amined: (1) never update, (2) update using the closed
testing procedure proposed by Vergouwe et al. [5], (3)
always recalibrate the intercept [1-8], (4) always recali-
brate the intercept and slope [1-8], and (5) always refit
the model (model revision [5, 6]). Methodologic details
of each of these strategies appear in the Additional file.

These five strategies were initially implemented every
quarter, using just the most recent quarter of data.
Quarters were defined based on the date each patient re-
ceived transplant, and all follow-up data for each patient
were included in the quarter associated with that pa-
tient’s transplant date (i.e., each quarter is actually an
“incident-cohort” [16] of patients who received trans-
plant in that quarter; see Fig. 1A). Outcomes were
assessed at 1-year post-transplant for all patients in each
quarter-cohort.

Model updating proceeded as shown in Fig. 1B. First,
the baseline model (which was developed using quarter-
cohorts between 2007 and 2009) was tested on the 2010
Q1 cohort; second, the baseline model was updated
using the 2010 Q1 cohort data according to each of the
five different update strategies (model U1); third, model
Ul then was tested on the 2010 Q2 cohort; fourth,
model Ul was updated using the 2010 Q2 cohort data
according to each of the five different update strategies
(model U2); and fifth, model U2 was tested on the 2010
Q3 cohort. Subsequent updates occurred on top of pre-
vious update(s), and proceeded in the same fashion (i.e.,
models were updated using data from the current
quarter-cohort and tested on data from the next
quarter-cohort).

The primary measure was the overall performance of
each update strategy, evaluated by computing the Brier
score (BS) both for each quarter separately and across all
quarters in the post-baseline data. Since we did not use
the same data to develop and test our models (ie.,
models were fit in one quarter-cohort and then tested
on the next cohort of new patients), over-optimism was
not a concern. Improvement in BS was calculated at
each quarter as the difference in BS between each
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Fig. 1 lllustration of how quarter-cohorts were defined and used to construct baseline and updated prediction models. A Individuals were assigned to
a particular quarter-cohort based on their date of transplant and followed for 1 year, similar to an “incident-user cohort” design [16]. B (1) The baseline
model was developed using data from individuals who were transplanted between 2007 and 2009 (ie, the quarter-cohorts between 2007 and 2009)
and tested on the 2010 quarter 1 (Q1) cohort; (2) the baseline model then was updated using the 2010 Q1 cohort data according to each of the five
different update strategies (model U1); (3) model U1 then was tested on the 2010 Q2 cohort; (4) model U1 was updated using the 2010 Q2 cohort
data according to each of the five different update strategies (model U2); (5) model U2 was tested on the 2010 Q3 cohort; (6) and (7) subsequent
updates occur in the same fashion. A similar procedure was used when the update interval was increased to 2, 4, and 8 quarter-cohorts

update strategy and never update. Discrimination was
assessed across all quarters via C-statistics (i.e., the area
under the receiver operating characteristic curve, AUC)
and calibration was assessed via Hosmer-Lemeshow (H-
L) statistics, calibration intercepts, and calibration slopes.
We also computed the difference in BS between pairs of
strategies at each individual quarter in the post-baseline
data and performed Wilcoxon signed rank tests to deter-
mine which update strategy performed best.

We examined how the performance of these update
strategies changed when the size of the update interval
and length of the sliding window increased. Specifically,
we investigated update intervals of every 1, 2, 4, and 8
quarters. Under each update interval, updates were per-
formed by using all data accrued since the most recent up-
date (i.e., all new data). Thus, when the update interval

equaled 1, 2, 4, and 8 quarters, we used 1 quarter new, 2
quarters new, 4 quarters new, and 8 quarters new data to
perform each update, respectively. In the sliding window
analysis, the update interval was fixed at 1 quarter, and
the following sliding windows were considered: 1 quarter
new (100% new), 1 quarter new + 1 quarter old (50% new,
50% old), 1 quarter new + 3 quarters old (25% new, 75%
old), and 1 quarter new + 7 quarters old (12.5% new,
87.5% old). All analyses were conducted using R (R Foun-
dation for Statistical Computing, Vienna, Austria).

Results

Sample size and mortality risk

The baseline-period contained 2853 patients and 508
events (deaths), translating to an overall mortality risk of
0.178. The post-baseline period contained 10,948
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patients and 1449 events, translating to an overall mor-
tality risk of 0.132. When examined per quarter, the
mean (standard deviation) sample size in the post-
baseline period was 456.2 (32.6) patients per quarter,
and on average, 60.4 (8.8) events occurred per quarter
(Additional file 1: Table 1). Thus, the observed mean
mortality risk per quarter in the post-baseline period
was 0.133 (0.021). The mortality risk tended to decrease
over time (Additional file 1: Fig. 1).

Examination of updating strategies in reference case

At an update interval of one quarter with 100% new data
(reference case), all methods of updating improved the
BS of the model relative to never updating (Fig. 2). The
extent of improvement in BS was largest for the recali-
bration strategies (Fig. 2). The always recalibrate inter-
cept and always recalibrate intercept and slope strategies
also exhibited larger (better) AUC (0.605 and 0.601, re-
spectively), smaller (better) H-L (29.33 and 18.53, re-
spectively), calibration intercepts closer to zero (-0.472
and -0.451, respectively) and calibration slopes closer to
one (0.758 and 0.771, respectively) than the closed test-
ing procedure and always refit strategies (AUC 0.575
and 0.570, H-L 118.4 and 357.8, calibration intercept
-1.658 and -1.835, and calibration slope 0.118 and
0.021, respectively; Tables 1 and 2, Additional file 1: Fig.
2). The always refit/revision strategy exhibited the worst
performance in the reference case, regardless of which
metric was used. The BS, AUC, H-L, calibration inter-
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procedure fell in between those of the recalibration
strategies and always refit/revision in the reference case,
suggesting intermediate performance. That said, the
closed testing procedure was able to attain this perform-
ance with half the number of updates (12 updates) com-
pared with the always recalibrate and always refit/
revision strategies (24 updates for each).

Varying the update interval

Increasing the length of the update interval did not
meaningfully improve the performance of the recalibra-
tion strategies and, in fact, tended to lead to worse BS,
H-L, and calibration intercepts and slopes (Fig. 2A and
Table 1). In contrast, the closed testing procedure and
always refit/revision strategies were more sensitive to the
update interval length. Specifically, BS and AUC tended
to improve under the closed testing procedure and al-
ways refit/revision strategies as the update interval in-
creased (i.e, more new data accumulated). Among all
strategies, the H-L, calibration intercept, and calibration
slope improved at the longest (8 quarter) update interval
(Table 1).

Formal pairwise comparisons of the difference in BS
between update strategies demonstrate that all updating
strategies performed better than never updating under
all updating intervals (Additional file 1: Table 2), al-
though the closed testing procedure and always refit/re-
vision were not statistically significantly different from
never updating when the update interval equaled one

cept, and calibration slope of the closed testing quarter. As the wupdate interval increased, the
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Table 1 Brier score (BS), AUC, Hosmer-Lemeshow statistic, calibration intercept and slope (from logistic calibration), and number of
updates performed under each update strategy when the update interval equals 1, 2, 4, and 8 quarters and 100% new data are

used
Update interval Metric 1 quarter 2 quarters 4 quarters 8 quarters
Never update BS 0.118 0.118 0.118 0.118
AUC 0.603 0.603 0.603 0.603
H-L 290.5 290.5 290.5 290.5
Calibration intercept —-0.754 —0.754 —0.754 —0.754
Calibration slope 0.791 0.791 0.791 0.791
# Updates 0 0 0 0
Closed testing procedure BS 0.116 0.114 0.114 0.114
AUC 0.575 0.602 0.598 0.602
H-L 1184 54.64 37.80 82.15
Calibration intercept —1.658 —0.561 —-0.570 —0.887
Calibration slope 0.118 0.754 0.724 0.577
# Updates 12 5 4 2
Always recalibrate intercept BS 0113 0.113 0.114 0.114
AUC 0.605 0.605 0.603 0.605
H-L 29.33 28.92 39.21 69.76
Calibration intercept —0472 —-0453 —-0.525 —0.595
Calibration slope 0.758 0.781 0.760 0.755
# Updates 24 12 6 3
Always recalibrate intercept and slope BS 0.113 0.113 0.114 0.114
AUC 0.601 0.602 0.602 0.605
H-L 1853 2791 3541 59.22
Calibration intercept —0451 —0.353 —0443 -0517
Calibration slope 0.771 0.839 0.809 0.802
# Updates 24 12 6 3
Always refit (revision) BS 0.118 0114 0.114 0.114
AUC 0.570 0.582 0.592 0.601
H-L 3578 106.6 56.25 77.01
Calibration intercept —-1.835 —1534 -0.972 -0.897
Calibration slope 0.021 0.180 0499 0.570
# Updates 24 12 6 3

performance of the closed testing procedure and always
refit/revision aligned more closely with that of the recali-
bration strategies (Fig. 2A and Table 1), such that by the
longest update interval, the differences in BS between
the former two strategies and the latter were not statisti-
cally significant. When examined by quarter, all per-
formance metrics exhibited more variability over time
under the closed testing procedure and always refit/revi-
sion strategies than under the recalibration strategies
(Additional file 1: Figs. 3-6).

Varying the sliding window
Increasing the length of the sliding window had little im-
pact on the performance of the recalibration strategies

(Fig. 2B and Table 2). That is, the recalibration strategies
maintain consistent performance as more old data accu-
mulate. In contrast, the BS, AUC, H-L, calibration inter-
cept, and calibration slope of the closed testing
procedure and always refit/revision strategies were more
sensitive to the sliding window length, with most metrics
continuing to improve as the length of sliding window
increased (i.e., as more old data were included).

Formal pairwise comparisons of the difference in BS
between update strategies demonstrate that all updating
strategies perform better than never updating under all
sliding windows (Additional file 1: Table 3), although
the closed testing procedure and always refit/revision
were not statistically significantly different from never
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Table 2 Brier score (BS), AUC, Hosmer-Lemeshow statistic, calibration intercept and slope (from logistic calibration), and number of
updates performed under each update strategy when the sliding window equals 1, 2, 4, or 8 quarters and the update interval

equals 1 quarter

Sliding window Metric 1 quarter 2 quarters (1 gnew + 1 4 quarters (1 q new + 3 8 quarters (1 q new + 7
new q old) q old) q old)
Never update BS 0.118 0.118 0.118 0118
AUC 0.603 0.603 0.603 0.603
H-L 290.5 290.5 290.5 290.5
Calibration -0.754 -0.754 -0.754 -0.754
intercept
Calibration 0.791 0.791 0.791 0.791
slope
# Updates 0 0 0 0
Closed testing procedure BS 0.116 0.114 0.114 0114
AUC 0.575 0.601 0.593 0.600
H-L 1184 36.95 34.75 4247
Calibration —1.658 -0.503 -0.829 —0.755
intercept
Calibration 0.118 0.766 0572 0.635
slope
# Updates 12 8 8 6
Always recalibrate intercept BS 0.113 0.113 0.113 0.113
AUC 0.605 0.605 0.607 0.608
H-L 2933 33.04 25.56 31.61
Calibration -0472 -0454 -0414 —0437
intercept
Calibration 0.758 0.773 0.802 0.803
slope
# Updates 24 24 24 24
Always recalibrate intercept BS 0.113 0.113 0.113 0.113
and slope AUC 0601 0602 0606 0607
H-L 18.53 20.89 18.73 2215
Calibration -0451 -0317 -0.218 —0.240
intercept
Calibration 0.771 0.852 0914 0917
slope
# Updates 24 24 24 24
Always refit (revision) BS 0118 0.115 0114 0.113
AUC 0570 0.588 0.594 0.602
H-L 357.8 81.77 4342 25.26
Calibration -1.835 -1.191 -0.889 —0.504
intercept
Calibration 0.021 0.362 0532 0.761
slope
# Updates 24 24 24 24

updating when only new data were used. Moreover, the
always recalibrate intercept strategy exhibited compar-
able or better performance than both the closed testing
procedure and the always recalibrate intercept and slope
strategy, regardless of the sliding window length (Table

2 and Additional file 1: Table 3). As the sliding window
increased, the performance of the closed testing proced-
ure and always refit/revision strategies became more
similar to—but never surpassed—that of the recalibra-
tion strategies (Table 2 and Additional file 1: Table 3).
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Number of updates
By design, the number of updates performed under the
always recalibrate and always refit/revision strategies
were fully determined by the length of the update inter-
val (i.e., update intervals of 1, 2, 4, and 8 quarters corre-
sponded to 24, 12, 6, and 3 updates, respectively).
Conversely, the number of updates performed under the
closed testing procedure depends on whether this ap-
proach favors updating the model over retaining the
current model, with the length of the update interval de-
fining the maximum number of updates allowed under
this strategy. Tables 1 and 2 demonstrate that the closed
testing procedure resulted in fewer updates relative to all
other update strategies, regardless of the length of the
update interval or sliding window. As the update interval
and sliding windows increased, the number of updates
performed under the closed testing procedure decreased.
Similarly, the number of parameters re-estimated at
each update depends on the update strategy chosen,
with always recalibrate intercept and always recalibrate
intercept and slope re-estimating the fewest number of
parameters (i.e., 1 and 2, respectively) and always refit
re-estimating the most number of parameters (ie., 15)
(Table 3). The number of parameters re-estimated under
the closed testing procedure falls between those two ex-
tremes (Table 3), although the actual quantity depends
on the number of times the closed testing procedure se-
lects each candidate update model (i.e., no update, re-
calibrate intercept, recalibrate intercept and slope, or
refit). For the quarterly updates and the shortest sliding
window, the closed testing procedure tended to favor no
updating followed by refitting and then recalibration
(Tables 4 and 5). With longer updating intervals and
sliding windows, the closed testing procedure still
favored no updating over the others.

Discussion

This study has three important findings. First, we have
shown that dynamic updating of a clinical prediction
model leads to improvement in overall model
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performance relative to not updating the model (as is
done in typical practice), regardless of which update
strategy is used. Second, recalibration approaches exhib-
ited better model performance than the other methods
at the most frequent updating intervals when using the
most recent data, and demonstrated little change in per-
formance across different updating intervals or sliding
windows. Third, the closed testing procedure and always
refit/revision strategies never performed better than the
recalibration strategies and were sensitive to the amount
of data used, often requiring substantially more data to
yield discrimination and calibration metrics similar to
those of the recalibration strategies. This last finding is
likely due to the fact that the closed testing procedure
and always refit/revision strategies require the re-
estimation of more parameters, thus necessitating a lar-
ger sample size.

In the dynamic updating setting, the recalibration
strategies had better performance characteristics than
the other update strategies. This result is consistent with
several other studies which compared the recalibrate
intercept, recalibrate intercept and slope, and refit/revi-
sion strategies (among others) in a variety of clinical set-
tings (e.g., acute myocardial infarction [3]; prostate
cancer, traumatic brain injury, and fever [5]; and cardiac
surgery [6]). However, the former two studies [3, 5] only
evaluated these strategies in the single-time updating
setting, and the latter [6] only compared strategies after
model updating stopped. In contrast, our study reveals
that model recalibration can maintain good performance
in the dynamic updating setting.

An additional benefit of recalibration strategies is that
only predicted and observed outcome data are needed to
re-calibrate to the model. The other updating strategies
explored here require individual (patient-level) data for
all variables in the model, which can raise privacy and
logistical concerns when sharing data across multiple in-
stitutions. However, the number of updates performed
under the recalibration and refit strategies is fully deter-
mined by the length of the update interval, and was

Table 3 Number of parameters re-estimated for each update under each update strategy. For the closed testing procedure, the
total number of parameters re-estimated equals the sum of the number of parameters re-estimated for each candidate update
model; the actual number of parameters that change depend on which particular candidate update model is selected

Update strategy

Number of parameters re-estimated

Never update

Closed testing procedure

Always recalibrate intercept

Always recalibrate intercept and slope

Always refit (revision)

0
7.2%
1

2

15

*7.2 represents the weighted average of the number of parameters re-estimated under the closed testing pProcedure when the update interval equals 1 quarter.
More specifically, the number of parameters re-estimated under recalibrate intercept, recalibrate slope, and refit are 1, 2, and 15, respectively. Multiplying these
numbers by the total number of times the closed testing procedure selected each candidate update model (i.e, 3, 4, and 5, respectively; see Tables 4 and 5) and

dividing by the total number of updates performed (i.e., 12) yields: (

1%3)4(2%4)+(15%5) __
(3 HA55) — 7.5
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Table 4 Number of times each candidate update model was selected by the closed testing procedure when the update interval

equals 1, 2, 4, and 8 quarters and 100% new data are used

Candidate update model in Update interval

closed testing procedure

1 quarter 2 quarters 4 quarters 8 quarters
No update 12 7 2 1
Recalibrate intercept 3 3 3 1
Recalibrate intercept and slope 4 2 0 0
Refit 5 0 1 1

always higher than the number of updates performed
under the closed testing procedure. This result is worth
considering in scenarios where too many updates might
be deemed undesirable (e.g., in clinical applications
where the model must be approved by regulatory bodies
and rolled-out to clinics in a manner which ensures that
it is applied to patients in a fair and equitable manner)
or infeasible (e.g., data are not processed quickly enough
for analyses).

Our results suggest that there may be a tradeoff be-
tween the amount of available data and the frequency of
updating. Recalibration methods may be less sensitive to
smaller amounts of data but more sensitive to the use of
older data. In contrast, when the amount of available
data is small (e.g., quarterly update), the closed testing
procedure may lack sufficient power to detect a signifi-
cant difference between any of the candidate update
models and the original (baseline) model. Consequently,
we fail to reject the baseline model and incorrectly de-
clare that no model updating is necessary. Even if the
closed testing procedure correctly rejects the baseline
model in favor of one of the other candidate update
models, having limited data available can impact the ac-
curacy of the updated model, with the refit/revised
model being especially susceptible to instability and/or
overfitting (see further discussion below). This last result
is concerning, because in several of the situations exam-
ined here—though not all—the closed testing procedure
favored the refit/revised model, consistent with Van Cal-
ster et al. [9] and Davis et al. [17]. To ameliorate such

concerns, current literature recommends using

“sufficiently large data sets” [4] or applying “shrinkage”
to model coefficients [18].

In the case of the always refit/revision strategy, when
the amount of available data is too small, there may be
insufficient information to estimate certain coefficients,
due to predictors with no variability between samples
(e.g., in seven of the 24 post-baseline quarters, no pa-
tients had creatinine increase > 150%). Thus, models fit-
ted under the always refit/revision strategy may be more
unstable (i.e., have higher variability) and have worse
prediction performance over time compared to the re-
calibration strategies. Our finding that the recalibration
strategies consistently yielded better performance in the
dynamic updating setting agrees with Van Calster et al’s
recommendations to target the development of parsimo-
nious models with “moderate calibration” rather than
overly complex models with “strong calibration,” as mod-
erate calibration is sufficient for decision-making pur-
poses, while strong calibration can lead to overfitting [4].

Although increasing the length of the update interval
and/or sliding window generally led to improved per-
formance metrics for all update strategies, H-L actually
became worse under the longest update interval (i.e., 8
quarters) and the longest sliding window (i.e., 1 quarter
new + 7 quarters old data). Thus, postponing updates
for too long or relying on too much old data yields in-
accurate model calibration, consistent with “calibration
drift” [19]. Davis et al. propose “dynamic calibration
curves” to detect the extent of calibration drift and in-
form stakeholders when models should be updated; their
method also provides a “candidate update sample” which

Table 5 Number of times each candidate update model was selected by the closed testing procedure when the sliding window

equals 1, 2, 4, or 8 quarters and the update interval equals 1 quarter

Candidate update model in  Sliding window

closed testing procedure

1 quarter 2 quarters (1gnew +1q 4 quarters (1 gnew + 3 q 8 quarters (1 gnew +7 q
new old) old) old)

No update 12 16 16 16

Recalibrate intercept 3 6 2 1

Recalibrate intercept and 4 2 1 1

slope

Refit 5 0 5 4
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can be used to update the model [19]. Such an approach
could potentially serve to identify an upper limit to the
length of the update interval and/or sliding window.

Our results can have substantial implications for
implementing these strategies in practice. For example,
the choice of update interval and sliding window will de-
pend on the amount of data available and how fast they
accrue. If the event rate is low or data accrue slowly, one
may not be able to update frequently or use only more
recent data to update, particularly for the closed testing
and always refit strategies because larger sample sizes
would be required to identify changes and ensure the
stability of model performance. Choosing a reasonable
update interval and sliding window should also incorp-
orate substantive knowledge of the clinical application.
Shorter update intervals and sliding windows may be
more responsive to sudden (acute) changes in the under-
lying clinical population, whereas longer update intervals
and sliding windows may be better equipped to handle
gradual changes.

Strengths of this empiric analysis include the compari-
son of several different types of updating strategies in
the dynamic updating setting. We also examined the
sensitivity of these update strategies to different update
intervals and sliding windows. Our analysis focused on
the prediction of 1-year post-lung transplant survival,
which is used to allocate donor organs to lung transplant
candidates [13], but is not updated frequently in practice
[14].

Limitations of this study include the following: First,
while we considered a broad range of update intervals, it
may make sense to consider different update intervals in
different clinical contexts, depending on the sample size,
event rate, and timeframe of analysis. Second, we did
not have enough data to examine longer sliding windows
at longer update intervals. However, we did explore
using 50% new + 50% old data when the update interval
equaled 4 quarters, and obtained comparable results as
those shown in the main text (Additional file 1: Tables
4-6 and Figs. 7-12). Third, while the always recalibrate
intercept strategy performed best in this study, this re-
sult may not apply in other clinical settings where, for
example, there are larger changes in model covariates to-
gether with a change in incidence (model intercept) over
time. Future work should explore how these update
strategies perform when covariates change over time.
Fourth, when dynamic updating of models is performed
across multiple sites, one must consider whether to
apply the update strategies to each site individually (i.e.,
perform site-specific updates) or to combine the data
and apply the update strategies across all sites. Fifth,
while we examined the performance of several different
updating strategies discussed in the literature, we did
not evaluate the performance of Bayesian dynamic
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models. Sixth, while we compared updating strategies in
new cohorts of patients over time, such an approach is
inherently retrospective. Research is now needed to
evaluate how these updating strategies perform pro-
spectively, particularly for varying time frames between
prediction and outcome ascertainment.

Conclusion

Overall, our study illustrates the benefit of dynamic
model updating in clinical contexts. Our study was
unique in that we evaluated how model predictive per-
formance changes over time under a variety of updating
strategies applied at different update intervals and based
on different sliding window lengths. Recalibration strat-
egies with more frequent updating were superior to
other strategies and least sensitive to the update interval
and sliding window. However, when choosing an update
strategy, one should consider how much data are avail-
able (both in terms of sample size and event rate), as
well as the amount of resources (e.g., computational or
financial) required to perform the update and dissemin-
ate it to stakeholders.
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