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Abstract

Background: There is substantial interest in the adaptation and application of so-called machine learning
approaches to prognostic modelling of censored time-to-event data. These methods must be compared and
evaluated against existing methods in a variety of scenarios to determine their predictive performance. A scoping
review of how machine learning methods have been compared to traditional survival models is important to
identify the comparisons that have been made and issues where they are lacking, biased towards one approach or
misleading.

Methods: We conducted a scoping review of research articles published between 1 January 2000 and 2 December
2020 using PubMed. Eligible articles were those that used simulation studies to compare statistical and machine
learning methods for risk prediction with a time-to-event outcome in a medical/healthcare setting. We focus on
data-generating mechanisms (DGMs), the methods that have been compared, the estimands of the simulation
studies, and the performance measures used to evaluate them.

Results: A total of ten articles were identified as eligible for the review. Six of the articles evaluated a method that
was developed by the authors, four of which were machine learning methods, and the results almost always stated
that this developed method’s performance was equivalent to or better than the other methods compared.
Comparisons were often biased towards the novel approach, with the majority only comparing against a basic Cox
proportional hazards model, and in scenarios where it is clear it would not perform well. In many of the articles
reviewed, key information was unclear, such as the number of simulation repetitions and how performance
measures were calculated.

Conclusion: [t is vital that method comparisons are unbiased and comprehensive, and this should be the goal
even if realising it is difficult. Fully assessing how newly developed methods perform and how they compare to a
variety of traditional statistical methods for prognostic modelling is imperative as these methods are already being
applied in clinical contexts. Evaluations of the performance and usefulness of recently developed methods for risk
prediction should be continued and reporting standards improved as these methods become increasingly popular.
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Background

In a medical setting, we are often interested in the prob-
ability some health event occurs within a given time
frame, for example, the probability of death within 5
years. We are sometimes interested in predicting, not
only the probability that this event happens within a spe-
cified time frame, but also the rate of this event within
given populations and how prognostic factors influence
both the rate and probability of events. Prognostic
models are designed to predict a clinical outcome, which
can help make informed clinical decisions and treatment
strategies and allow patients and families to put a clinical
diagnosis into context [1]. Examples include estimating
the probability that an individual will develop cardiovas-
cular disease (CVD) over a given period to decide on
statin prescription, or the probability of a patient with a
new diagnosis of cancer will survive a given time.

The most commonly used method for the analysis of
censored time-to-event data is the Cox proportional haz-
ards model [2], which has been widely applied for prog-
nostic modelling in healthcare [3, 4]. Even though it
relies on the proportional hazards (PH) assumption,
which assumes that the hazard rates for two individuals
remain proportional over time, it is possible to relax this
to allow for non-proportional hazards [5]. Methods have
been developed to allow regression coefficients to de-
pend on a function of time using, for example, restricted
cubic splines [6] and fractional polynomial regression
[7]. Incorporating interactions between covariates, vari-
able selection techniques, and considering non-linear
and/or time-dependent covariate effects is common
practice when fitting a prognostic model [8]. These addi-
tions are all standard model building tools that can be
incorporated into many statistical methods for risk pre-
diction modelling. However, it may be easy to classify lo-
gistic regression as statistics and a random forest as
machine learning but some would also describe lasso
with a fixed penalty as statistics and lasso with a tuned
penalty as machine learning. The latter methods are
more similar to each other than to either of the former.
Categorising methods as either machine learning or sta-
tistics is a complicated task yet these labels come with a
certain research culture, in terms of terminology and ap-
proach to prediction tasks. Hence, we use these labels in
order to focus the review and provide a distinction be-
tween the two approaches, which is discussed further in
the “Methods” section of this review.

Machine learning methods are becoming increasingly
popular within the medical field, in areas such as diag-
nostics, prognostics and drug discovery [9]. The typical
description of these methods is that they exploit the
amount of data available within electronic health records
to identify complex relationships and patterns [10], due
to their ability to model non-linear relationships and
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high-level interactions [11]. Machine learning methods
have also been adapted to accommodate censored time-
to-event data to offer flexible modelling of covariate ef-
fects [12] and handle high-dimensional survival data effi-
ciently [10]. However, the potential benefits of machine
learning over more traditional statistical methods for
prognostic modelling are less clear in areas where the
number of observations largely exceeds the number of
variables [9]. A review conducted by Christodoulou et al.
[13] found a lack of evidence to support the claim that
machine learning methods perform better than logistic
regression for clinical prediction modelling and that
reporting standards of validation procedures were poor.
Kantidakis et al. [14], however, concluded that both stat-
istical and machine learning approaches can be useful
when applied to survival data, though the advantages
and disadvantages of any method should be presented.
In addition, the interpretability of machine learning
models varies depending on how complex the model is,
with results from procedures such as neural networks
being particularly difficult to interpret. Producing unin-
terpretable models could be considered a drawback of a
particular method as it prevents understanding the
underlying relationships within the data [15], which
would be highly desirable, and arguably critical, in a
medical setting. There has been increasing interest in
researching explainable machine learning methods that
can provide some interpretation of machine learning
models [16], yet these model interpretations rely on hu-
man input to decipher what the explanation means often
by assuming that the model ‘thinks’ in the same way we
do [17]. When the goal of a model is to predict as accur-
ately as possible and not parameter estimation, caution
should be taken when explaining relationships between
outcome and covariates. A standard mistake is to assign
causal interpretations to parameters with no identifica-
tion strategy, sometimes termed the ‘table 2 fallacy’ [18].
Because the conditioning required to identify an effect of
one variable is different to another, aiming to make a
single prognostic model ‘explainable’ is a fool’s errand.
Various new statistical and machine learning ap-
proaches are being developed and applied to health data-
sets to create prognostic models, with the separation
between these two labels becoming more unclear [19]. It
is vital that methods are evaluated and compared in
multiple scenarios to highlight their advantages and dis-
advantages. Simulation studies are often used to com-
pare existing and new methods in pre-specified
scenarios [20]. An advantage of a simulation study is
that the conditions under which the data are generated
can be known, which allows us to evaluate a method’s
performance in estimating the ‘truth’; this is not possible
with a real-world clinical dataset, where performance is
often assessed on a single held-back validation dataset.
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Simulation also enables methods to be compared and
evaluated in multiple different settings, such as varying
sample sizes or complexity of covariate relationships, to
mimic aspects of real datasets of interest. By using simu-
lation studies to assess the performance of prognostic
modelling methods, further information can be gained
about how these methods perform in different situations
and how useful they may be in clinical settings. How-
ever, these comparisons must be fair and comprehensive;
the DGMs need to be realistic [21], and the methods be-
ing compared should be applicable in real-world
analyses.

This article aims to review simulation studies that
compare statistical and machine learning methods for
prognostic modelling. We qualitatively review which
methods have been compared, the DGMs that have been
used to evaluate them, and the methodology used to
compare them in order to highlight issues and aspects
that could be improved.

Methods

Statistical and machine learning methods

We begin by defining how statistical and machine learn-
ing methods for risk prediction have been classified in
this review. It is becoming increasingly difficult to delin-
eate statistical and machine learning approaches. Brei-
man described two cultures of modelling: one which
focuses on modelling the underlying data-generating
processes and one which focuses on using algorithms to
provide the most accurate predictions possible [19].
Similarly, Austin et al. [21] define ‘statistical learning’ as
the use of parametric models for prediction and define
‘machine learning’ as the use of algorithms for prediction
in their article. Parallel definitions are adopted for this
review as many articles make a distinction between these
two approaches; however, labelling methods as one ap-
proach or the other is not always helpful. In this review,
statistical approaches are defined as those that focus on
describing the underlying models through which the sur-
vival data are generated, for example, the Cox propor-
tional hazards model. Machine learning approaches are
defined as those that use algorithms to make predictions,
without making any assumptions about the data, for ex-
ample, neural networks. We also define in this review
‘hybrid methods’ referring to those that include elements
of both machine learning and statistical approaches. For
example, likelihood-based boosting and model-based
boosting with the Cox model [22] combines the Cox
model with boosting, a method commonly referred to as
a machine learning approach. Wang et al. [11] described
a taxonomy of statistical and machine learning methods,
which we have adapted and present in Fig. 1 to detail
how methods have been roughly categorised and labelled
for the purpose of the review.
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Search strategy

A literature search was conducted to identify simulation
studies that compare statistical methods to machine
learning methods in a risk prediction setting for med-
ical/healthcare data. Plasmode studies, a type of simula-
tion study in which the covariate matrix is fixed and
outcomes are simulated, were included in this literature
search. Specific search criteria were used to search
PubMed (date of search: 2 December 2020). PubMed
was chosen as it largely hosts biomedical literature and
so simulation studies comparing methods in non-
medical settings should mostly be avoided. Articles were
restricted to those that had been published between 1
January 2000 and 2 December 2020 with the full text
available in English. The search string is available in the
Appendix.

Inclusion and exclusion criteria

The inclusion criteria for this review are stated in
Table 1. An article must have satisfied all of the inclu-
sion criteria to be included in the review. The articles
were first screened by title, then by abstract and finally
by full-text. If it was unclear whether an article satisfied
the inclusion criteria, it was automatically taken to the
next stage of screening. A total of 1190 articles were
identified from the search. The titles were screened
resulting in 102 articles. These were then further
screened by abstract to obtain a total of 39 articles. Full-
text articles were obtained and reviewed in full, and an
additional two articles were identified from the refer-
ences of the eligible articles. These were not returned by
the search as they were not available on PubMed. This
resulted in a total of ten articles included in the review.
The study identification journey and reasons for exclu-
sion are shown in Fig. 2.

Data extraction

The intent of this scoping review was to collect meth-
odological information qualitatively. Multiple aspects of
the reviewed articles were of interest: the aims, DGMs,
estimands/targets of analysis, methods used and per-
formance measures. In this context, the estimands/tar-
gets are typically measures of prognostic performance.
The main focus of this review was the DGMs used to
simulate data and how complex this data was. Specific-
ally, the distributions used to simulate survival times, the
sample sizes, the number and type of covariates, rela-
tionships between covariates, such as correlations or in-
teractions, and how censoring was simulated were all of
interest. Information was also collected regarding the
number of repetitions conducted and the justification
for this number, what factors were varied between
DGMs (e.g. comparing method performance across vari-
ous sample size), how the simulated data was partitioned
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Fig. 1 Taxonomy of methods for prognostic modelling as defined in this review, adapted from the taxonomy in Wang et al. [11]. Methods were
categorised as statistical (a), machine learning (b), or hybrid methods (c) and highlighted in bold if included in articles in this review

Table 1 Inclusion criteria used for the title, abstract and full-text screening

Inclusion criteria
An article must satisfy all of the following criteria to be included in the review.

Compare at least one machine learning method and at least one statistical method (according to our definitions).
Any number of hybrid methods can be compared but a machine learning method and a statistical method must be included.

Methods included should be prognostic (risk prediction) models for one, specific outcome in a medical/healthcare context.
Methods included must be used to predict survival outcomes.
The simulation study must have been used to compare the methods with a time-to-event outcome with censoring.

Methods must be evaluated and compared in terms of prognostic ability.

(o) WU, B S A )

Methods must not be for modelling treatment effects, feature selection or genetic variant identification.
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Records excluded
(n=1088)
Reasons: not medical/healthcare context;

review or meta-analysis papers;
classification; genetic variant identification.

Records excluded
(n=63)
»| Reasons:no simulation; no inclusion of both

machine learning and statistical methods;
classification; genetic variant identification.

Full-text articles excluded
(n=31)

Reasons: classification; not available in
English; comparing hyper-parameters of
methods; competing risks, multi-state models
or treatment effect models; no censoring.
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Fig. 2 PRISMA flow diagram to illustrate the screening process

Additional articles
identified in references of
eligible articles (n = 2)

into training and testing sets, and how the methods were
evaluated for performance. The results of the simulation
studies were reviewed along with any other additional
information, for example, if the article further evaluated
the methods using a real dataset.

Results

A total of ten articles were included in the review, pub-
lished between 2000 and 2020. The authors and titles of
these articles can be found in Table 2.

Data-generating mechanisms and repetitions
Data-generating mechanisms

The number of DGMs used in each article ranged from 2
to 57 (median = 10.5). Two articles [25, 27] included
DGMs where the simulated data was based on clinical
data. All of the articles included at least one DGM where
the PH assumption was true and five articles also included
DGMs where the PH assumption was not true [23, 25, 26,
28, 32]. Four articles included high-dimensional data with
large numbers of covariates [27, 30-32].

Repetitions

The number of repetitions per DGM in the simulation
studies ranged from 1 to 1000 (median = 100 repeti-
tions), whilst it was unclear in one study how many rep-
etitions were used [30]. Two articles [29, 31] only
simulated one dataset for each data-generating mechan-
ism considered. Table 3 details the number of repeti-
tions, the number of DGMs and what factors were
changed for each of the DGMs (e.g. changing sample
sizes or number of covariates included) for each article.

Covariates

The number of covariates included in the simulated data
ranged from two to 5000 (median = 40 covariates). Five
articles [23, 27, 30-32] varied covariate numbers to
evaluate the impact of additional and noise covariates.
Covariates were simulated from Binomial, Bernoulli,
Normal and Uniform distributions across the articles.
Relationships between covariates included independent
covariates (N = 5 studies) and correlated covariates (N =
4 studies). Five studies included DGMs that incorpo-
rated interactions between two or more covariates, i.e.
X1*X,. Lowsky et al. [25] used 13 covariate values from a
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Table 2 Authors and titles of the articles included in this review
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Author/s Publication Title Journal
date

Xiang et al. [23] 2000 Comparison of the performance of neural network methods Computational Statistics and
and Cox regression for censored survival data Data Analysis

Omurlu et al. [24] 2009 The comparisons of random survival forests and Cox regression Expert Systems with Applications
analysis with simulation and an application related to breast cancer

Lowsky et al. [25] 2012 A K-nearest neighbors survival probability prediction method Statistics in Medicine

Geng et al. [26] 2014 A Model-Free Machine Learning Method for Risk Classification Stat
and Survival Probability Prediction

Gong et al. [27] 2018 Big Data Toolsets to Pharmacometrics: Application of Clinical and Translational Science
Machine Learning for Time-to-Event Analysis

Hu and Steingrimsson 2018 Personalized Risk Prediction in Clinical Oncology Research: Journal of Biopharmaceutical

[28] Applications and Practical Issues Using Survival Trees and Statistics
Random Forests

Katzman et al. [29] 2018 DeepSurv: personalized treatment recommender system BMC Medical Research Methodology
using a Cox proportional hazards deep neural network

Wang and Li [30] 2019 Extreme learning machine Cox model for Statistics in Medicine
high-dimensional survival analysis

Golmakani and 2020 Super Learner for Survival Data Prediction International Journal of Biostatistics

Polley [31]

Steingrimsson and 2020 Deep learning for survival outcomes Statistics in Medicine

Morrison [32]

kidney transplant dataset. Table 4 provides a summary
of the number and distribution of covariates and rela-
tionships between covariates included in each article.

Failure time simulation

Failure times were simulated from exponential, Weibull
and Gamma distributions. The exponential model was
the most common, with seven articles simulating failure
times from this distribution for at least one DGM [23—

25, 28, 29, 31, 32]. The DGM for simulating survival
times in Geng et al. [26] was unclear. Covariate effects
modelled on the log-hazard scale included null effects,
linear effects, non-linear effects and time-dependent ef-
fects. Additionally, two articles [27, 30] transformed the
covariates in some way, for example, applying a kernel.
Table 5 provides a summary of the failure time distribu-
tions, assumptions and covariate effects for the DGM for
each article.

Table 3 The number of repetitions, number of data-generating mechanisms and factors varied in each article

Repetitions Factors varied in the data-generating mechanisms

Number of Sample Failure time Number of Covariate Covariate  Censoring
DGMs size distribution covariates relationships effects
Geng et al. (2014) [26] 100 20 v v v v v N
Golmakani et al. (2020) [31] 1 6 v v v v
Gong et al. (2018)* [27] 500 57 v v v v 4
Hu and Steingrimsson 1000 4 v v v
(2018) [28]
Katzman et al. (2018) [29] 1 2 v
Lowsky et al. (2012)** [25] 20 12 v
Omurlu et al. (2009) [24] 1000 4 v
Steingrimsson and 1000 16 v v v v v
Morrison (2020) [32]
Wang and Li (2019) [30] Hxx 24 v v
Xiang et al. (2000) [23] 50 9 v v v v v

*Gong et al. (2018) [27] also included three data-generating mechanisms where data was based on clinical data
**All simulated datasets in Lowsky et al. (2012) [25] were based on a real kidney transplant dataset

***Numbers of repetitions were unclear in Wang and Li (2019) [30]
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Table 4 Number of covariates, distribution type and relationships between covariates in each article’s simulations

Covariates
Number of  Distribution Relationships
covariates Binomial Normal Uniform Real Independent Correlation Interaction, e.g. Correlation and
Data X3 = X1X3 interaction
Geng et al. (2014) [26] 2 v v v
Golmakani et al. 50, 1000 v v v
(2020) [31]
Gong et al. (2018)* [27] 2, 3,250 v v v v v
Hu and Steingrimsson 50 v v 4
(2018) [28]
Katzman et al. 10 v v
(2018) [29]
Lowsky et al. 13 v
(2012)** [25]
Omurlu et al. (2009) [24] 5 v v v
Steingrimsson and 30, 100 v v
Morrison (2020) [32]
Wang and Li (2019) [30] ~ 500, 1000, v v
2000, 5000
Xiang et al. (2000) [23] 2,4 v v v v

*Gong et al. (2018) [27] used distributions and parameter values to model clinical data in their clinically relevant datasets and included three data-generating
mechanisms where the covariate relationships were modelled to be clinically relevant
**Lowsky et al. (2012) [25] used real clinical data for their covariates and so exact relationships are unknown

Table 5 Failure time distributions, assumptions and covariate effects included in the data-generating mechanisms for each article

Failure Times

Distribution Assumptions  Covariate effects
Exponential Weibull Gamma PH PO Non- Null Linear Quadratic Non- Time-
PH effects covariates linear dependent

Geng et al. (2014) [26] v v v v v v
Golmakani et al. (2020) [31] v v v v v
Gong et al. (2018) [27] v v v v v ¥
Hu and Steingrimsson (2018) v v v v v v 4
[28]
Katzman et al. (2018) [29] v v v R
Lowsky et al. (2012)**** [25] v v v v v
Omurlu et al. (2009) [24] v v v
Steingrimsson and Morrison v v v v v v v
(2020) [32]
Wang and Li (2019) [30] v v v S RRERER
Xiang et al. (2000) [23] v v v v v

*Geng et al. (2014) [26] included a specific crossing hazards data-generating mechanism

**Gong et al. (2018) [27] take the exponential of the first covariate squared and cos transform second covariate; covariate coefficients were also obtained for the
clinically relevant data-generating mechanisms by fitting each of the predefined models to clinical data

*#*Katzman et al. (2018) [29] use a Gaussian distribution for the linear predictor and include quadratic effects for both covariates

***% owsky et al. (2012) [25] fit an exponential model to the clinical data to obtain estimates for the covariate coefficients to use in simulating the failure times
*****Wang and Li (2019) [30] transform the covariates by a radial basis kernel
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Censoring

The level of censoring in each of the simulated datasets
ranged from 0 to 75% (median = 27.5% censoring). De-
tails of the censoring simulation were unclear in three
articles [24, 25, 29]. A summary of how censoring was
simulated in each of the articles can be found in
Table 6.

Training and testing datasets

Training dataset sample size ranged from just 50 to
7500 observations (median = 500 observations) and
testing dataset sample size ranged from 50 to 13,525
observations (median = 600 observations) (Table 7).
Training to test set ratios varied across the articles.
Three articles, Geng et al. [26], Katzman et al. [29]
and Lowsky et al. [25], also used validation datasets
to select optimal hyperparameter values for the
models. Nine articles obtained testing datasets (and
validation datasets if used) by sampling from the
same DGM as the training dataset; the models in
these simulation studies were only internally validated.
It was unclear how training and testing datasets were
obtained in Omurlu et al. [24]. Sample sizes in some
of the articles were very low. Small training sample
sizes can highlight issues that may occur in clinical
settings where rare outcomes are being studied or
only small samples are available. However, for testing
data, larger sample sizes or using cross-validation will
produce more accurate estimations of performance
measures within each repetition. Further discussion
on the impact of data splitting techniques and train-
ing and testing sample sizes are beyond the scope of
this review; however, this is discussed in the following
papers [33-35].
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Methods compared in the articles

Across the 10 articles reviewed, a total of 29 distinct
methods were compared: four statistical methods, 22
machine learning methods and three hybrid methods.
Six of the studies were evaluating a method that was de-
veloped by the authors: IPCW-wSVM [26], Super
Learner algorithms [31], DeepSurv [29], Mahalanobis K-
nearest neighbour Kaplan-Meier (MKNN-KM) [25],
CUDLs [32] and ELMCoxBAR [30]. The results of these
articles almost always stated that the developed method
performed equivalently or better than the other methods
compared. A summary of the methods included in each
article can be found in Table 8, with further details in
Supplementary Table 1.

Statistical methods

In the ten articles reviewed, there were four statistical
methods in total that were compared, all of which used
the Cox model or penalised versions of the Cox model.
Six articles [23-27, 29] only included a ‘standard’ Cox
model, i.e. with no penalisation. Four articles [23, 28, 31,
32] included the true main effects, interactions and/or
quadratic variables in the Cox model; three articles [26,
27, 30] did not include true main effects, interactions
and/or quadratic variables; and three articles [24, 25, 29]
were unclear regarding how the Cox model was fit to
the data. None of the articles that evaluated non-
proportional hazards [23, 25, 26, 28, 32] or non-linear
covariate effects [27, 29, 30] included those time-
dependent or non-linear effects in the Cox model.

Machine learning methods

The 22 machine learning methods could be cate-
gorised into four groups: Random Survival Forests
(RSF), Neural Networks, Boosting and Support Vector

Table 6 Level of censoring simulated and distribution of censoring times used in each article

Censoring

Level of Distribution

censoring (%) Uniform Exponential Other
Geng et al. (2014) [26] 15, 40 v
Golmakani et al. (2020) [31] 18 v
Gong et al. (2018) [27] 0, 25,50, 75 v
Hu and Steingrimsson (2018) [28] 37 v
Katzman et al. (2018) [29] Unclear Vi
Lowsky et al. (2012) [25] Unclear R
Omurlu et al. (2009) [24] Unclear
Steingrimsson and Morrison (2020) [32] 18, 47 v v
Wang and Li (2019) [30] 25 v
Xiang et al. (2000) [23] 0, 20, 30, 50, 70 v

*Gong et al. (2018) [27] randomly chose if the time was a censoring time or event time

**Katzman et al. (2018) [29] included administrative censoring only
*** owsky et al. (2012) [25] — censoring distribution was unclear
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Table 7 Training and testing data size and method used to split training and testing data
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Training and testing datasets

Training data size Testing data size Method

Geng et al. (2014)* [26]

Golmakani et al. (2020) [31]

Gong et al. (2018) [27]

Hu and Steingrimsson (2018) [28]

Katzman et al. (2018)* [29]
Lowsky et al. (2012)* [25]

Omurlu et al. (2009) [24]

Steingrimsson and Morrison (2020) [32]

Wang and Li (2019) [30]
Xiang et al. (2000) [23]

100 1000
200 1000
450 50
720 80
200 200
400 400
500 500
600 600
800 800
1000 1000
200 1000
500 1000
4000 1000
500 13525
1000 13525
3000 13525
7500 13525
50 50
100 100
250 250
500 500
250 250
500 500
1000 1000
1500 1500
3000 3000
150 150
100 100
200 200

Independent samples from DGM

10-fold cross-validation

Independent samples from DGM

Independent samples from DGM

Independent samples from DGM

Independent samples from DGM

Unclear

Independent samples from DGM

Two-fold cross-validation

Randomly split whole sample into equal training and testing sets

*These articles also included validation datasets

Table 8 Statistical, hybrid and machine learning methods included in each of the articles

Statistical methods

Hybrid methods

Machine learning methods

Cox PH Penalised Penalised Elastic Cox  Super Mahalanobis RSF Neural Boosting SVM
L1 Cox L2 Cox Net Boost Learners K-nearest Network
(Lasso) (Ridge) Cox neighbour
Kaplan-Meier

Geng et al. 2014) [26] v e
Golmakani et al. (2020) [31] v v v v v v v
Gong et al. (2018) [27] v v v
Hu and Steingrimsson (2018) [28] v v v
Katzman et al. (2018) [29] v v /7
Lowsky et al. (2012) [25] v vr v
Omurlu et al. (2009) [24] v v
Steingrimsson and Morrison v v v /"
(2020) [32]
Wang and Li (2019) [30] v v v vt
Xiang et al. (2000) [23] v v

*Methods that were developed by the authors of the papers
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Machines (SVM). The most common machine learn-
ing method was the Random Survival Forest, included
in eight articles. Five articles compared some form of
neural network [23, 27, 29, 30, 32]. The only example
of support vector machines/regression was the inverse
probability of censoring weighting procedure based on
weighted support vector machines (IPCW-wSVM) de-
veloped and compared by Geng et al. [26]. Two
boosting algorithms were compared in Golmakani
et al. [31]: model-based boosting and gradient boost-
ing machine [36].

Hybrid methods

There were three hybrid methods in total included
across the articles: boosting with the Cox model [22],
two Super Learner algorithms [31] and Mahalanobis K-
nearest neighbour Kaplan-Meier [25]. The two Super
Learner algorithms derived by Golmakani and Polley
[31] were categorised as hybrid methods due to Super
Learners being defined as a flexible approach to statis-
tical learning [37]. Mahalanobis K-nearest neighbour
Kaplan-Meier method [25] incorporates the k-nearest
neighbour algorithm to make predictions for new, un-
seen observations using the Kaplan-Meier curve [38].
Boosting with the Cox model, included in two of the ar-
ticles [30, 31], uses the boosting approach to estimate
the Cox proportional hazards model.
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Estimands and performance measures
The estimands and performance measures for each of
the articles can be found in Table 9.

Estimands

Seven articles estimated the survival probability [23, 25—
28, 30, 32]. However, three of these [23, 27, 30] were un-
clear in what the specified value of time was when esti-
mating the survival probability. Katzman et al. [29] and
Golmakani and Polley [31] estimated the linear predictor
in the proportional hazards model and Katzman et al.
[29] further estimated the restricted mean survival time
(RMST), though the value of time selected for this meas-
ure was not clear. The ELMCoxBAR method [30] esti-
mated the hazard function for individual observations
given their covariate values. The linear predictor and
hazard function can be useful for discriminating between
high- and low-risk individuals but less useful in terms of
calibration and individual clinical decision-making un-
less transformed to a more tangible scale.

Prognostic performance measures

The prognostic performance measures can be separated
into two categories: those that compare the model to the
true underlying model and those that compare the
model to the simulated data. No articles provided cali-
bration plots, intercept or slope values.

Table 9 Estimands and performance measures for each of the article’s simulation studies

Estimands

Performance measures

Selection for time t

S(tjx) h(t]x) Linear

Restricted Mean MSPE C-Index* Integrated

predictor: Survival Time Brier Score
n(x) (RMST)

Geng et al. (2014) [26]  1/5th,...,5/6th quantiles of v v

training survival times

Golmakani et al. N/A v v

(2020) [31]

Gong et al. (2018) [27]  Unclear v v

Hu and Steingrimsson  25th, 50th and 70th quantile of v v

(2018) [28] training marginal survival times

Katzman et al. N/A for linear predictor; Unclear for v v v v

(2018) [29] restricted mean survival and C-index

Lowsky et al. (2012) [25] T =5 with step size of 0.25 v Ve

Omurlu et al. v

(2009)*** [24]

Steingrimsson and S(t): t = median marginal failure time; RMST: v v v

Morrison (2020) [32] 7 = 85th quantile of marginal observed times

Wang and Li (2019) [30] Unclear v v v v

Xiang et al. (2000) [23]  Unclear v v

*A specified value for t for the C-index is not always required — if the model assumes proportional hazards then the C-index should remain the same regardless

of time point

**Lowsky et al. (2012) [25] used the Integrated Brier Score with added inverse probability of censoring weights. This is referred to as the IPEC in the paper
***Omurlu et al. (2009) [24] were unclear in what the estimands were for their simulation study
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Comparisons with the true model Mean squared
prognostic error (MSPE) is a measure of predictive
accuracy, calculating the mean squared difference be-
tween the predicted values of an estimand and the
true values calculated from the DGM. The MSPE in-
tegrates both bias and variance but their relative in-
fluence on the MSPE is dependent on sample size in
the presence of bias [20]. Four articles evaluated
MSPE across a range of survival times, aggregating or
averaging the results [26, 28, 29, 32] and three of
these articles evaluated this measure under various
sample sizes [26, 28, 32].

Comparisons with the data The Concordance Index
(C-index) [39] is a measure of prognostic performance
that compares the predictions made by the model to
the observed data. It calculates the number of pairs
of individuals in the testing dataset that are concord-
ant over all possible pairs. A concordant pair is one
in which the individual with the larger predicted sur-
vival probability also has the larger observed event/
censoring time of the pair. It is commonly used as a
measure of discrimination, for example, how well the
model can distinguish between high-risk and low-risk
individuals. Six articles used the C-index as a per-
formance measure, calculating the average value over
the simulation repetitions [23, 24, 27, 29, 31]; four of
these included it as their only performance measure
[23, 24, 27, 31]. Katzman et al. [29] provided confi-
dence intervals for the average C-index obtained
using bootstrapping and two articles [23, 30] included
standard deviations for the average C-index. However,
when a model does not assume proportional hazards,
the value of the C-index will vary depending on the
time point selected at which the estimand is evaluated
[40]. All six articles that used the C-index [23, 24, 27,
29, 31] included methods in their comparisons that
do not assume proportional hazards and so the C-
index will vary dependent on the time point selected.
These articles were also unclear in what time was
chosen for these evaluations.

The Brier Score is the squared difference between
the estimated survival probability of an individual and
an indicator function of whether that individual is ob-
served to have survived up to that time in the testing
dataset, averaged over all individuals. The Integrated
Brier Score (IBS) is then an overall measure of pre-
diction at all times. Two articles, Wang and Li [30]
and Lowsky et al. [25], used the IBS to measure
model performance, providing box plots of the IBS
over the simulation repetitions, with Lowsky et al.
[25] accounting for censoring in the score by using
the inverse probability of censoring weighting.
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Simulation performance measures

Simulation performance measures quantify how model
performance varies between simulated datasets. Three
articles provided standard errors [26] or the standard de-
viation [23, 27] of their performance measures. Four ar-
ticles [25, 28, 30, 32] included box plots of the IBS, the
C-index and/or the MSPE to highlight the variation in
these measures across datasets for each of the methods.
None of the articles reported bias, coverage, or Monte
Carlo standard errors for between-study simulation
measures.

Results of the articles

Proportional hazards assumption

The results of all nine of the articles that included the
Cox model (with no penalisation) [23-29, 31, 32]
showed that the Cox model outperformed or performed
equally to all other methods when the proportional haz-
ards assumption holds. In the five articles that evaluated
DGMs where the hazards are non-proportional [23, 25,
26, 28, 32], the other methods compared outperformed
the Cox model in at least one performance measure.

Varying sample sizes

Seven of the articles that varied training sample sizes
[23-28, 31, 32] reported that sample size did not impact
the relative performance of methods but did improve
the performance of all methods. Lowsky et al. [25] re-
ported that the MKNN-KM method only outperformed
the Cox model when the sample size was small (n <
1000). The impact of varying sample sizes on the per-
formance of prognostic models is highly important in
order to fully evaluate how these models perform. In a
simulation study by Wallisch et al. [41], it was concluded
that so long as the sample size is large, statistical and
machine learning models have similar predictive accur-
acy in predicting cardiovascular outcomes.

High-dimensional settings

Golmakani and Polley [31] reported that the Cox Ridge,
Gradient Boosting Machine and RSF methods did not
perform as well as the Cox model, CoxBoost and Super-
learner algorithms in high-dimensional settings. Con-
versely, Gong et al. [27] reported that the Cox model
‘failed to provide reasonable estimates’ due to the data-
sets having more covariates than observations but RSF
and neural network methods had similar performance to
low-dimensional settings. Steingrimsson and Morrison
[32] found that the Doubly-Robust and Buckley-James
RSFs had improved relative performance in settings with
larger number of covariates. Wang et al. [30] reported
that the trends of performance measures were similar in
both high- and low-dimensional settings.
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Conclusions of the articles

Geng et al. [26] concluded that though the Cox model
performs well when the true model does not deviate
from the PH assumption, their [IPCW-wSVM model is
more flexible. Similarly, both Steingrimsson and Morri-
son [32] and Lowsky et al. [25] concluded that CUDLs
and MKNN-KM, respectively, only outperform the Cox
model when the PH assumption is not true. Hu and
Steingrimsson [28] also concluded that RSFs could be
preferable to the Cox model as this method avoids de-
creased performance due to model misspecifications.
However, Gong et al. [27] concluded that though ma-
chine learning methods can be flexible and reliable, this
depends on model selection and hyperparameter tuning
and, equally, Xiang et al. [23] concluded that neural net-
works can be effective for survival but are highly variable
depending on the dataset.

Golmakani and Polley [31] concluded that their Super
Learner algorithms always perform as well or better in
all the scenarios evaluated, including low- and high-
dimensional datasets and Katzman et al. [29] concluded
that DeepSurv is superior to the Cox model at modelling
true covariate functions. Wang and Li [30] concluded
ELMCoxBAR performs well when the correct kernel is
used but is comparable to Penalized Cox models when
the incorrect kernel is specified. Omurlu et al. [24] con-
cluded RSF splitting rules all perform similarly and all
methods had similar C-indexes.

Additional information

Five articles [25, 26, 28, 29, 31, 32] went on to evaluate
the methods using clinical datasets, including oncology
datasets, genetic/gene expression datasets and transplant
datasets. Katzman et al. [29] further evaluated DeepSurv
as a treatment recommender using both simulated and
real data as well as additional evaluations of predictive
performance compared to Random Survival Forests and
the Cox model using three clinical datasets.

Discussion

This article has reviewed simulation studies that com-
pare statistical and machine learning methods for risk
prediction. In particular, which methods were compared
and the methodology used to compare them was of
interest in order to provide an overview of what research
has been done to date and areas that may require
improvement.

The key findings from this review were the limited
number of articles identified that have compared statis-
tical and machine learning methods using simulation
studies, the lack of statistical methods compared in these
articles and the poor reporting standards found. Only
ten articles were identified; we view this as limited due
to the abundance of articles that compare and evaluate
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methods which fall under one category only, for ex-
ample, comparing the prognostic performance of statis-
tical methods. There was a lack of statistical methods in
the articles as they tended to focus more on the machine
learning methods and statistical methods only included
the Cox model. Interaction terms and non-linear covari-
ate effects present in the DGM were often not included
in the Cox model, nor did any study relax the PH as-
sumption by modelling time-dependent effects. Incorp-
orating interactions, variable selection, non-linear and/or
time-dependent covariate effects are common extensions
to the standard Cox model [8] and, by excluding these,
the Cox model is expected to perform poorly in more
complex data scenarios. In addition, many model build-
ing strategies exist to systematically select predictors and
their effects for survival data [42] such as fractional poly-
nomials [43], restricted cubic splines [44] and flexible
backwards elimination approaches [5]. These are all
standard modelling approaches conducted by the applied
statistician which were not included in these articles
(though at the time of publication some of these ap-
proaches were admittedly less well understood).

The reporting standard of many of the articles was
poor. Key information, such as DGMs, estimands and
how methods were implemented, was often missing or
unclear making the studies difficult to reproduce. The
selection of time points to evaluate estimands and/or
performance measures was frequently not reported, for
example, the time at which the survival probability was
estimated. The C-index, for example, will vary depend-
ing on the time selected unless the PH assumption
holds, which was not the case for the majority of
methods included in these articles. In these situations,
the time-dependent C-index [40] or the time-dependent
AUC [45-47] should be used to ensure the measure cap-
tures the discriminative performance of the methods
over time. The reporting standards of studies both com-
paring methods and/or reporting prognostic models
have been questioned by multiple reviews, concluding
that standards need to be raised [13, 20, 48—52]. Guid-
ance regarding the best practices of reporting both simu-
lation studies [20, 49] and reporting developed models
for prognostic prediction for both statistical methods
[53] and machine learning methods [54] are available
and/or currently being developed. These guidance pa-
pers should be consulted to ensure high-quality design-
ing, reporting and reproducibility of comparison studies.

Four of the five articles that used the C-index included
it as their only performance measure. As the C-index is
concerned with the ranking of predictions, the order
could be correct but the predictions themselves could be
miscalibrated. Accurate predictions are essential when
applying these methods to medical contexts especially
where decisions are taken based on absolute values of a
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prediction (e.g. prescription of statins according to pre-
dicted 10-year CVD risk 27.5%, as recommended by
2013 ACC/AHA guidelines) [55]. Including performance
measures that evaluate both the discrimination and cali-
bration of the methods would provide more detailed in-
formation on overall performance and clinical
implications in medical settings.

This review highlights the difficulty of designing simula-
tion studies that allow a fair comparison of methods. A
data-generating mechanism that may be favourable for
one method, such as a high-dimensional (p > ) setting
where many machine learning methods are designed to
excel, may be less appropriate for other methods unless
statistical variable selection techniques are incorporated
[56]. This was an issue in many of the articles reviewed; it
was often reported that the Cox model failed to converge
due to the high number of covariates and limited sample
size. In these situations, traditional statistical methods are
expected to fail unless variable selection or penalisation
methods are considered which are, again, approaches that
would be commonly used by applied statisticians and data
scientists working with high-dimensional data. Similarly, a
DGM with few covariates and uncomplicated data struc-
ture (e.g. no interactions or non-linearities) may favour a
simpler statistical model. To avoid the issue of DGMs
favouring one approach in simulation studies, Austin et al.
[21] compared six estimation methods in a simulation
study with six DGMs; outcomes from each DGM being
simulated from one of the methods. In this case, every
method would be expected to be ‘optimal’ for at least one
of the DGMs in the simulation study, and both internal
and external validity can be assessed across a range of
methods. Researchers need to be mindful of not only
data-generating mechanisms that may make a simulation
study biased towards one approach, but also how their
knowledge of particular methods may affect their imple-
mentation. Gelman [57] described the ‘methodological at-
tribution problem’ which is highly relevant when
comparing multiple methods; it is important to recognise
how the researcher’s field of expertise will influence the
implementation of methods [58]. For example, an applied
statistician proficient in fitting the Cox model will have
the knowledge to incorporate complex covariate effects
but may not be as confident in tuning the hyperpara-
meters of a neural network. Methods may not be imple-
mented in a way that highlights true performance, which
is certainly the case with the Cox model, and all of the
methods compared where default hyperparameters were
chosen, in the articles reviewed. Collaboration between re-
searchers is key to ensuring methods are implemented to
their fullest potential and comparisons are neutral when
assessing performance [58].

It is important to note that statistical and machine
learning approaches are very difficult to separate into two
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distinct categories. A distinction was made in this article
in order to focus the scope of the review and as many arti-
cles do classify methods into these two approaches,
though the usefulness of continuing to separate methods
is debatable as these two cultures merge closer together. It
is really the elements that make up the approaches we are
interested in, for example, it may be the incorporation of
regularisation or non-PH assumptions that improve prog-
nostic performance and these are elements that could help
with a ‘statistical’ method as much as a ‘machine learning’
method. Labelling methods as one approach or the other
can lead to preconceptions about the performance and in-
terpretability of the resulting models; discontinuing to
classify methods may lead to more fair comparisons.

There are several limitations to this review. Firstly,
PubMed was the only database used for the search and so
articles could have been missed that would have fit the eli-
gibility criteria. PubMed was chosen as this review focused
on risk prediction in a medical context; however, a larger
review on multiple databases, for example Web of Science,
could be useful to review all simulation studies conducted
to compare machine learning methods to statistical
methods for prognostic modelling. Secondly, more com-
plex survival analysis scenarios, such as competing risks
and multi-state models, were excluded and we focused on
simulation studies only. Many more articles could have
been returned that have evaluated and compared methods
using clinical data. Further reviews on these articles would
be useful to analyse how machine learning methods and
statistical methods are being compared overall, not just in
a simulation setting.

The performance of machine learning methods com-
pared to traditional statistical methods for risk prediction
is still unclear. Kantidakis et al. [14] concluded that
though Random Survival Forests and neural networks per-
formed better than the Cox model in terms of the C-index
and Integrated Brier Score, respectively, both of the ma-
chine learning methods required a longer computation
time and the Cox model was easier to implement and in-
terpret. Similarly, Allan et al. [59] reviewed methods for
CVD prediction and concluded that although machine
learning methods were reported to perform better than
statistical methods, the quality of reporting was question-
able, and Christodoulou et al. [13] found no benefit of ma-
chine learning methods over logistic regression for
classification problems. It is important that better research
is conducted to compare newly developed methods to the
existing and commonly used statistical methods for risk
prediction and that these comparisons are fair, compre-
hensive and well-reported.

Conclusion
Assessing the accuracy of predictions for survival data
using newly developed and existing methods is important
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in both simple and complex scenarios. Comprehensive
and fair comparisons of methods’ performance, and use-
fulness in clinical settings, should be conducted using both
simulation studies under a wide variety of DGMs and with
clinical data. Including statistical methods that are com-
monly used by the applied statistician, reducing bias in
method evaluations and ensuring high reporting standards
would allow for more confident conclusions regarding
model performance. We recommend that future compari-
son simulation studies (1) are conducted independently of
developing a new method; (2) assess both discrimination
and calibration, and not discrimination alone; (3) report
variations in performance measures along with mean
values; and (4) consider the ‘fairness’ of the comparison
particularly with respect to the authors’ expertise in imple-
menting different methods.

Appendix
Search string used for PubMed search:

((“machine learning”[Title/Abstract] OR “ai”[Title/
Abstract] OR “ml”[Title/Abstract] OR “artificial intelli-
gence”[Title/Abstract] OR “neural network*”[Title/Ab-
stract] OR “ann*”[Title/ Abstract] OR “deep
learning”[Title /Abstract] OR “random forest*”[Title/ Ab-
stract] OR “random survival forest*”[Title/Abstract] OR
“bayesian learning”[Title/Abstract] OR “bayesian net-
work*”[Title/Abstract] OR “support vector*”[Title/Ab-
stract] OR “svm”[Title/Abstract] OR “svms”[Title/
Abstract])

AND (“survival”’[Title/Abstract] OR “hazard”[Title/Ab-
stract] OR “risk”[Title/Abstract] OR “prognos*”[Title/
Abstract] OR “time to event”’[Title/Abstract] OR “cen-
sor*”[Title/Abstract] OR  “cox”[Title/Abstract] OR
“kaplan*”[Title/Abstract] OR “spline*”[Title/ Abstract] ))

AND (“simulate”[Title/Abstract] OR “simulation”[Ti-
tle/Abstract] OR  “simulations”[Title/Abstract] OR
“simulated”[Title/ Abstract]))

Abbreviations

DGM: Data-generating mechanism; CVD: Cardiovascular disease;

PH: Proportional hazards; RSF: Random survival forest; SVM: Support vector
machine; MKNN-KM: Mahalanobis K-nearest neighbour Kaplan-Meier; IPCW-
wSVM: Inverse probability of censoring weighting weighted support vector
machine; RSMT: Restricted mean survival time; MSPE: Mean squared
prediction error; C-index: Concordance Index; IBS: Integrated Brier Score
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