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Bayesian latent class analysis produced
diagnostic accuracy estimates that were
more interpretable than composite
reference standards for extrapulmonary
tuberculosis tests
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Abstract

Background: Evaluating the accuracy of extrapulmonary tuberculosis (TB) tests is challenging due to lack of a gold
standard. Latent class analysis (LCA), a statistical modeling approach, can adjust for reference tests’ imperfect
accuracies to produce less biased test accuracy estimates than those produced by commonly used methods like
composite reference standards (CRSs). Our objective is to illustrate how Bayesian LCA can address the problem of
an unavailable gold standard and demonstrate how it compares to using CRSs for extrapulmonary TB tests.

Methods: We re-analyzed a dataset of presumptive extrapulmonary TB cases in New Delhi, India, for three forms of
extrapulmonary TB. Results were available for culture, smear microscopy, Xpert MTB/RIF, and a non-microbiological
test, cytopathology/histopathology, or adenosine deaminase (ADA). A diagram was used to define assumed
relationships between observed tests and underlying latent variables in the Bayesian LCA with input from an inter-
disciplinary team. We compared the results to estimates obtained from a sequence of CRSs defined by increasing
numbers of positive reference tests necessary for positive disease status.

Results: Data were available from 298, 388, and 230 individuals with presumptive TB lymphadenitis, meningitis, and
pleuritis, respectively. Using Bayesian LCA, estimates were obtained for accuracy of all tests and for extrapulmonary
TB prevalence. Xpert sensitivity neared that of culture for TB lymphadenitis and meningitis but was lower for TB
pleuritis, and specificities of all microbiological tests approached 100%. Non-microbiological tests’ sensitivities were
high, but specificities were only moderate, preventing disease rule-in. CRSs’ only provided estimates of Xpert and
these varied widely per CRS definition. Accuracy of the CRSs also varied by definition, and no CRS was 100%
accurate.

Conclusion: Unlike CRSs, Bayesian LCA takes into account known information about test performance resulting in
accuracy estimates that are easier to interpret. LCA should receive greater consideration for evaluating
extrapulmonary TB diagnostic tests.

Keywords: Tuberculosis meningitis, Tuberculosis lymphadenitis, Tuberculosis pleuritis, Bayes theorem, Sensitivity
and specificity
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Background
Extrapulmonary tuberculosis (TB) comprised approxi-
mately 16% of the global TB burden in 2019, or 1.6 mil-
lion cases [1]. This estimate is highly uncertain as a
reliable “gold standard” to diagnose extrapulmonary TB
cases is unavailable. The requisite non-respiratory sam-
ples are difficult to obtain, and existing diagnostic tests
are not optimized for these typically paucibacillary sam-
ples. Mycobacterial culture and sputum smear micros-
copy, the conventional microbiological tests for TB,
cannot detect bacteria at low counts, although cultures
are substantially more sensitive than smears. Similarly,
the limit of detection of Xpert MTB/RIF (Xpert) (Ce-
pheid, USA), the World Health Organization-endorsed
molecular test, is too high to detect TB in samples with
low numbers of bacteria [2]. Consequently, multiple
microbiological and clinical tests often requiring invasive
techniques are relied on to make a diagnosis, with each
test’s accuracy varying by extrapulmonary specimen type
[3]. Therefore, when evaluating the performance of a
new extrapulmonary TB test, the conventional tests can-
not be treated as perfect reference standards as this will
lead to bias [4].
In response, a composite reference standard (CRS) that

combines results from multiple tests and clinical assess-
ments in some pre-defined way is often employed to clas-
sify individuals as extrapulmonary TB-positive or –
negative [5–8]. Though CRSs are designed with the goal
of improving upon the accuracy of the individual compo-
nent tests, it is recognized that they are imperfect them-
selves and, moreover, they have been criticized for making
sub-optimal use of gathered data [9, 10]. Specifically, the
most commonly used CRSs ignore the sensitivity and spe-
cificity of individual assessment components (i.e., tests
and clinical symptoms) and treat them all as having simi-
lar accuracy. CRSs also assume that the component tests
are independent of each other. However, it is possible that
different imperfect tests are conditionally dependent,
meaning that multiple tests may be more likely to be sim-
ultaneously falsely negative or falsely positive than if they
were independent. For example, given all microbiological
tests for extrapulmonary TB rely on bacterial load, they
may all produce false negative results for a paucibacillary
extrapulmonary TB-positive individual [10].
Latent class analysis (LCA) is a statistical modeling so-

lution to address these issues [11]. LCA can model the
accuracy of each imperfect diagnostic test, as well as de-
pendence between tests, to simultaneously estimate dis-
ease prevalence and the sensitivity and specificity of all
tests at hand [10, 12]. Bayesian LCA can further include
reliable prior information on disease prevalence or test
accuracy parameters, when available, e.g., high specificity
values for microbiological tests. It has been applied to
estimate diagnostic test accuracy for latent TB infection

[13], childhood pulmonary TB [14], chlamydia [15], and
Helicobacter pylori infection [16], among other diseases.
Extrapulmonary TB has traditionally received less at-

tention than pulmonary TB owing to its less infectious
nature. Nonetheless, it presents a significant burden to
healthcare systems and patients, particularly due to the
difficulty in diagnosis, and the risk of severe outcomes
with certain extrapulmonary TB forms is high (e.g., TB
meningitis and miliary TB). LCA may overcome limita-
tions of naïve methods to produce better prevalence and
test accuracy estimates, better approximating the true
burden. However, it must be acknowledged that LCA
methods are considered methodologically complex and
difficult to validate [11].
Therefore, to illustrate the steps involved in conduct-

ing an LCA and compare with CRS, we re-analyzed an
existing dataset of extrapulmonary samples from adults
with presumptive extrapulmonary TB [17]. The original
study evaluated Xpert accuracy using a series of CRSs
for TB meningitis, TB lymphadenitis, and TB pleuritis.
Resultant estimates of Xpert sensitivity, specificity, and
disease prevalence varied widely depending on the CRS
used [17], making them difficult to interpret. Our object-
ive was to use Bayesian LCA to estimate the diagnostic
accuracy of all the available tests and to discuss the ad-
vantages and challenges of this approach.

Methods
Primary dataset details
The primary dataset comprised all extrapulmonary sam-
ples from adults with presumptive extrapulmonary TB
received by the All-India Institute of Medical Sciences
(AIIMS), a tertiary hospital in New Delhi, India in 2012
[17]. No participants had taken anti-TB therapy (ATT)
for longer than 2 weeks. All samples underwent testing
with Xpert, an automated PCR-based assay that detects
mycobacterial-specific DNA; BACTEC Mycobacteria
Growth Indicator Tube (Becton Dickinson, USA) liquid
culture or Lowenstein-Jensen solid culture; and Ziehl-
Neelsen (acid-fast bacilli) sputum smear microscopy. As
conventional pulmonary TB tests perform sub-optimally
for extrapulmonary TB, non-specific assays are also de-
ployed in conjunction with TB testing [18]. Regarding
non-microbiological tests, for presumptive TB lymph-
adenitis, results were available from cytopathology/histo-
pathology, wherein local cells or tissues are examined
for pathological patterns such as caseating necrosis [19],
while for presumptive TB meningitis and pleuritis (solid
tissue or fluid), levels of deaminase (ADA), an enzyme
expressed in leukocytes associated with granulatomous
reactions [20], were available. Additionally, for each par-
ticipant, type of extrapulmonary sample tested (indicat-
ing extrapulmonary TB form), resistance to rifampicin,
initiation of ATT, and treatment response were
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available. Each participant had one result per test.
Demographic covariates and clinical symptoms were un-
available. As this was a secondary analysis of previously
collected data which had received ethical approvals and
informed consent from all participants, ethical approval
was not necessary.
In the original publication [17], the authors focused on

the then-novel Xpert test, reporting its sensitivity and
specificity against culture. Recognizing culture’s imper-
fect performance, they subsequently compared Xpert to
a series of CRSs, resulting in multiple estimates of Xpert
sensitivity and specificity.

Latent class model specification
Diagrammatic representation
We first created heuristic diagrams for each extrapul-
monary TB form (meningitis, lymphadenitis, pleuritis) to
illustrate our assumptions about the relationships be-
tween observed test results and unobservable (latent)
extrapulmonary TB status [14] (Fig. 1). These diagrams
identify the measurand of each test, i.e., the quantity it
measures. Culture, smear, and Xpert use different tech-
niques to measure the presence of Mycobacterium tuber-
culosis in the extrapulmonary sample. We assumed that
this was equivalent to their measurand being extrapul-
monary TB itself. In the case of TB meningitis and
pleuritis, the ADA test was also deployed. The ADA test
result is determined by the latent variable “ADA level”
and not by extrapulmonary TB. Similarly, in the situ-
ation of TB lymphadenitis, the result on cytopathology/
histopathology is determined by “change in cell morph-
ology” rather than extrapulmonary TB. The nonspecific

tests, ADA test and cytopathology/histopathology, do
not measure the target condition extrapulmonary TB
per se; instead, their measurands are signals (e.g., inflam-
mation) caused by extrapulmonary TB or other diseases.
Therefore, for each of the LCA models, we assume that
there are four possible latent classes resulting from com-
binations of the latent measurands: (1) Extrapulmonary
TB-positive, non-specific measurand-positive; (2) extra-
pulmonary TB-positive, non-specific measurand-
negative; (3) extrapulmonary TB-negative, non-specific
measurand-positive; and (4) extrapulmonary TB-
negative, non-specific measurand-negative. This ap-
proach differs from the widely used two-class LCA
model which assumes all observed tests measure the tar-
get condition, i.e., extrapulmonary TB in our applica-
tions. We preferred the four-class LCA as it leads to
greater interpretability of the latent classes. The parame-
ters resulting from a two-class LCA (prevalence of extra-
pulmonary TB and accuracy of tests with respect to
extrapulmonary TB) may be obtained easily as a subset
of the four-class LCA.
Observation with smear microscopy or cytopathology/

histopathology, bacterial growth on culture, and detec-
tion of mycobacterial DNA using Xpert are all increas-
ingly likely as bacterial burden increases. Contrastingly,
in people with paucibacillary extrapulmonary TB, these
tests will tend to show negative results. We thus hypoth-
esized that the underlying bacterial burden may create
conditional dependence between test results, i.e., de-
pendence between tests in the first two latent classes of
extrapulmonary TB positive subjects [21], even though
tests are based on different mechanisms (Fig. 1).

Fig. 1 Heuristic model. The model shows the assumed relationships between latent classes (ovals), diagnostic test results (rectangles), and
random effect representing sample bacterial burden (circle). ADA adenosine deaminase, CSF cerebral spin fluid, TB tuberculosis
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Statistical model
The observed diagnostic test results were assumed to be
a mixture of results from the four underlying latent clas-
ses. The unknown parameters of the model were the
prevalence of the four latent classes and each test’s sen-
sitivity and specificity with respect to its measurand.
Using these parameters, we can further determine the
prevalence of each measurand, the accuracy of the non-
specific measurand, and the accuracy of the non-specific
test for extrapulmonary TB. For example, the prevalence
of extrapulmonary TB can be obtained by adding the
prevalence of the two classes with extrapulmonary TB,
with or without the non-specific condition. We intro-
duced a random effect, corresponding to sample bacter-
ial burden, to account for the conditional dependence
among microbiological tests and cytopathology/histo-
pathology in the group of people with extrapulmonary
TB. In people without extrapulmonary TB, all test out-
comes were considered conditionally independent. Indi-
viduals with invalid or missing test results were assumed
to be missing at random and retained in the analysis,
with missing test results imputed by Bayesian
imputation.

Bayesian model estimation
Using a four-class rather than a two-class approach in-
creases the number of unknown parameters in the
model and increases concerns for non-identifiability, i.e.,
the lack of a unique solution to the model. By constrain-
ing each test’s accuracy parameters to be determined
only by its measurand, we limited the number of param-
eters added, resulting in fewer parameters to be esti-
mated than available degrees of freedom for all three
forms of extrapulmonary TB (see Supplemental methods
for details on identifiability).
We used a Bayesian approach to fit the latent class

models (see Supplement for model likelihoods and
prior distributions). As the posterior distributions of
the parameters of interest (sensitivity, specificity,
prevalence) could not be computed analytically, we
sampled from the posterior distributions using a
Markov Chain Monte Carlo (MCMC) approach with
the rjags package (Version 4-8) through Rstudio
(Version 3.5.2). Non-informative priors were used for
all models with truncated prior distributions for the
non-specific tests’ sensitivities and specificities to
contain them above 50% and avoid label switching
(mirror solutions) (see Supplement). The Supplement
contains details of model specifications and sam-
pling, and further programs for data preparation and
model checking are available in a repository: https://
osf.io/9wdb3/?view_only=730fb3e7d9114405bb51075
748703054.

LCA model validation
There is no ideal way to validate the results of an LCA
due to the lack of a perfect reference test. As in previous
work [14, 15], we used an indirect approach. For each
test pattern, we compared the observed frequency of re-
ceiving ATT with the LCA-derived probability of dis-
ease. If the LCA was valid, we expected to observe that
as the LCA-derived probability of TB increased, the
probability of ATT would also increase.

Composite reference standards
We used the same definitions for the series of CRSs as
the original publication [17]. “CRS 1+” was defined as
any one component test of the CRS being positive versus
all four tests being negative; “CRS2+” was defined as any
two component tests of the CRS being positive versus all
four tests being negative; and so on to CRS 4+. For each
extrapulmonary TB form, the latent class model was
used to estimate the sensitivity and specificity of each
CRS. Each individual’s probability of disease, as com-
puted by LCA, was used as the reference standard. The
Supplement contains the expressions and code used for
these computations.

Results
Dataset description
The original study had 1376 samples. After excluding
specimens for five forms of extrapulmonary TB not con-
sidered in the current analyses, there remained 299
lymph node samples for TB lymphadenitis, 388 pleural
fluid samples for TB pleuritis, and 230 cerebral spinal
fluid (CSF) samples for TB meningitis.

Bayesian latent class analysis: estimated prevalence and
diagnostic accuracies
Estimates from the latent class analysis (median values
and 95% credible intervals (CrI)) of sensitivity and speci-
ficity for each diagnostic test are shown in Table 1, orga-
nized by form of extrapulmonary TB. Prevalence of TB
lymphadenitis, TB meningitis, and TB pleuritis were es-
timated as 60.5% (95%CrI: 54.1–67.9), 15.9% (95%CrI:
9.70–24.3), and 35.3% (95%CrI: 26.7–48.8), respectively.
Note that these are not population-level estimates, but
rather prevalence estimates among recruited participants
at a tertiary care facility. Supplementary Table S1 shows
the probabilities of each of the four latent classes.
Test performance varied by specimen type, as previously

observed [3, 22–24]. Culture and Xpert sensitivities were
highest for TB lymphadenitis, and lower for TB meningitis
and TB pleuritis. Sensitivity of ADA and cytopathology/
histopathology with respect to extrapulmonary TB were
high, but imperfect specificities prevented disease rule-in.
As expected, sensitivity and specificity point estimates of
these tests were higher with respect to their measurands
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than with respect to the target condition, extrapulmonary
TB (Table 2). Specificities for culture, Xpert, and smear
were universally almost perfect.

Composite reference standard analysis
As in the earlier publication [17], we confirmed that the
four composite reference standards provided four esti-
mates of Xpert accuracy for each form extrapulmonary
TB. Regardless of the extrapulmonary TB form, when
disease-positivity was defined by the presence of any one
positive test result, CRS 1+ classified most individuals as
disease positive and therefore had the highest sensitivity
and lowest specificity (Table 3). This was observed
across extrapulmonary TB forms. Correspondingly, with
increasingly stringent CRS definition of disease-

positivity, the sensitivities declined across all disease
forms, while specificities increased, as the number of
false positives decreased.

Model fit
As shown in Tables 4, 5, and 6, model-derived counts
for all observed test result patterns generally resem-
bled observed frequencies, indicating that the data did
not deviate from the proposed model. There was no
evidence that correlation residuals deviated signifi-
cantly from 0, implying there was no evidence of un-
accounted conditional dependence; see Supplemental
results, Fig. S1, and Fig. S2 for further details on
model fit.

Table 1 Bayesian latent class analysis-derived diagnostic accuracies of tests for each form of extrapulmonary TB

Culture Xpert Smear microscopy Cytopathology/Histopathology ADA

TB lymphadenitis

Sensitivity (%) (95% CrI) 90.1 (80.3, 95.4) 86.6 (77.2, 92.2) 26.8 (20.6, 33.7) 98.7 (96.1, 99.7) NA

Specificity (%) (95% CrI) 99.3 (96.2,100) 98.5 (94.4, 100) 99.4 (97.0, 100) 83.5 (74.6, 93.2) NA

TB meningitis

Sensitivity (%) (95% CrI) 60.5 (43.2, 82.7) 52.6 (36.2, 73.3) 27.5 (14.9, 42.6) NA 83.1 (64.8, 94.5)

Specificity (%) (95% CrI) 99.2 (96.8, 100) 99.5 (97.6, 100) 98.6 (96.3, 99.7) NA 90.7 (83.8, 98.1)

TB pleuritis

Sensitivity (%) (95% CrI) 75.4 (56.1, 94.5) 37.7 (27.2, 49.8) 15.4 (9.4, 23.4) NA 94.6 (88.8, 98.1)

Specificity (%) (95% CrI) 99.4 (97.3, 100) 96.9 (93.8, 99.0) 99.3 (97.7, 99.9) NA 74.7 (65.1, 90.3)

Lymph node samples were used for TB lymphadenitis; CSF samples were used for TB meningitis; pleural fluid samples were used for TB pleuritis. The performance
of all tests in this table is the estimates with respect to the target condition, extrapulmonary TB
ADA adenosine deaminase, CrI credible interval, CSF cerebral spinal fluid, NA not applicable, TB tuberculosis

Table 2 Cytopathology/histopathology and ADA test performance with respect to each extrapulmonary TB form and measurands

Cytopathology/histopathology with
respect to EPTB form

ADA test with respect
to EPTB form

Cytopathology/histopathology with
respect to measurand

ADA test with respect
to measurand

TB lymphadenitis

Sensitivity (%)
(95% CrI)

98.7 (96.1, 99.7) NA 99.8 (98.2, 100) NA

Specificity (%)
(95% CrI)

83.5 (74.6, 93.2) NA 91.7 (79.6, 99.5) NA

TB meningitis

Sensitivity (%)
(95% CrI)

NA 83.1 (64.8, 94.5) NA 91.9 (73.3, 99.6)

Specificity (%)
(95% CrI)

NA 90.7 (83.8, 98.1) NA 95.0 (86.5, 99.8)

TB pleuritis

Sensitivity (%)
(95% CrI)

NA 94.6 (88.8, 98.1) NA 97.5 (91.9, 98.1)

Specificity (%)
(95% CrI)

NA 74.7 (65.1, 90.3) NA 86.8 (70.1, 99.4)

The performance of each test with respect to type of EPTB, otherwise referred to as the target condition, and with respect to the measurand is provided.
Regarding non-specific tests ADA and cytopathology/histopathology, we have discerned between their performance at measuring their measurands versus the
target condition, EPTB. This parametrization more accurately captures the nuance of the testing scenario, as ‘target condition’ and ‘measurand’ are not
interchangeable entities [25]. Reassuringly, they both performed better at measuring their measurand (ADA level or change in cell morphology) than
measuring EPTB
ADA adenosine deaminase, CrI credible interval, EPTB extrapulmonary TB, NA not applicable, TB tuberculosis
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Probability of extrapulmonary TB and association with
probability of receiving ATT
Tables 4, 5 and 6 also display the LCA-derived probabil-
ity of each extrapulmonary TB form for an individual
with a particular test result pattern. In all three exam-
ples, many patterns were associated with high probability
of extrapulmonary TB (close to 1) or a low probability
(close to 0). The most difficult subjects to classify were
those with a positive result only on the non-specific test.
Contrastingly, using the CRSs, all subjects would be clas-
sified as diseased or non-diseased with 100% probability,

regardless of the CRSs’ performance. Consider that for
TB pleuritis (Table 6), individuals with positive results
for Xpert and ADA but negative results for culture and
smear would be classified as disease-positive by CRS1+
and CRS2+ but disease-negative by CRS3+ and CRS4+.
Using LCA, their probability of having TB pleuritis was
estimated as 0.54, reflecting the lack of certainty in their
true classification based on the available evidence.
The observed probability of ATT was usually 100%

whenever at least one test produced a positive result.
This was true even when the calculated probability of

Table 3 Diagnostic accuracy of a series of composite reference standards for each form of extrapulmonary TB

CRS 1+ CRS 2+ CRS 3+ CRS4+

TB lymphadenitis

Sensitivity (%) (95% CI) 99.8 (97.0, 100) 97.1 (89.1, 99.5) 81.8 (74.8, 84.2) 26.4 (24.2, 27.2)

Specificity (%) (95% CI) 83.9 (80.9, 92.3) 99.6 (98.4, 100) 100 (100, 100) 100 (100, 100)

TB meningitis

Sensitivity (%) (95% CI) 95.0 (84.6, 99.6) 64.4 (46.3, 87.1) 44.4 (31.3, 61.9) 17.8 (12.5, 24.8)

Specificity (%) (95% CI) 88.3 (84.8, 94.1) 98.8 (97.8, 99.9) 100 (100, 100) 100 (100, 100)

TB pleuritis

Sensitivity (%) (95% CI) 98.9 (96.0, 99.9) 75.5 (56.3, 94.8) 31.1 (23.1, 39.2) 9.00 (6.70, 11.4)

Specificity (%) (95% CI) 73.7 (67.2, 88.0) 99.3 (97.9, 100) 100 (99.8, 100) 100 (100, 100)

CRS 1+ indicates any one positive test in CRS versus all four parameters being negative. CRS 2+: any two tests positive in CRS versus all four parameters being
negative. CRS 3+: any three tests positive in CRS versus all four parameters being negative. CRS 4+: all four tests positive in CRS versus all four parameters being
negative [17]. Lymph node samples were used for TB lymphadenitis; CSF samples were used for TB meningitis; pleural fluid samples were used for TB pleuritis
CI confidence interval, CRS composite reference standard, CSF cerebral spinal fluid, TB tuberculosis

Table 4 Observed counts, expected counts, and TB lymphadenitis probability by test result pattern

Culture Xpert Smear Cytopathology/
histopathology

No.
observed

No.
expected
by LCA
(95% CrI)

Probability of
TB
lymphadenitis
by LCA (95%
CrI)

Probability of TB lymphadenitis by CRS

CRS1+ CRS2+ CRS3+ CRS4+

− − − − 96 92 (85, 98) 0.003 (0, 0.08) 0 0 0 0

− − − + 21 22 (15, 29) 0.18 (0.04, 0.73) 1 0 0 0

− + − − 1 2 (0, 6) 0.18 (0.01, 0.89) 1 0 0 0

− + − + 10 9 (5, 15) 0.98 (0.85, 0.99) 1 1 0 0

+ − − + 15 14 (8, 20) 0.99 (0.94, 0.99) 1 1 0 0

+ − + + 2 2 (1, 5) 1.00 (0.99, 1) 1 1 1 0

+ + − + 85 86 (75, 98) 1.00 (0.99, 1) 1 1 1 0

+ + + − 1 0 (0, 1) 1.00 (0.99, 1) 1 1 1 0

+ + + + 42 40 (31, 49) 1.00 (0.99, 1) 1 1 1 1

NA − − − 1 NE 0.002 (0, 0.01) NE 0 0 0

NA − − + 1 NE 0.47 (0.28, 0.85) 1 NE 0 0

NA + − + 13 NE 1 (0.99, 1) 1 1 NE 0

NA + + + 4 NE 1 (0.99, 1) 1 1 1 NE

NA NA − NA 7 NE 0.53 (0.45, 0.61) NE NE NE 0

Tests were all performed in lymph node samples (n = 299). A “+” indicates positive test result and “−” indicates negative test result. CRS 1+ indicates any one
positive test in CRS versus all four parameters being negative. CRS 2+: any two tests positive in CRS versus all four parameters being negative. CRS 3+: any three
tests positive in CRS versus all four parameters being negative. CRS 4+: all four tests positive in CRS versus all four parameters being negative
CrI credible interval, LCA latent class analysis, NA value not available, NE result not estimable, No. number of, Smear smear microscopy, TB tuberculosis
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Table 5 Observed counts, expected counts, and TB meningitis probability by test result pattern

Culture Xpert Smear ADA No.
observed

No.
expected
by LCA
(95% CrI)

Probability of
TB meningitis
by LCA (95%
CrI)

Probability of TB meningitis by CRS

CRS1+ CRS2+ CRS3+ CRS4+

− − − − 170 166 (158,173) 0.01 (0, 0.04) 0 0 0 0

− − − + 27 29 (22,37) 0.33 (0.08, 0.76) 1 0 0 0

− − + − 2 2 (1,6) 0.004 (0, 0.07) 1 0 0 0

− + − + 3 2 (1,4) 0.96 (0.06, 0.99) 1 1 0 0

+ − − − 1 2 (1,6) 0.30 (0.03, 0.93) 1 0 0 0

+ − − + 6 4 (2,7) 0.97 (0.08, 1) 1 1 0 0

+ + − + 7 6 (4,10) 1.0 (0.99, 1) 1 1 1 0

+ + + − 2 1 (0,3) 1.0 (0.99, 1) 1 1 1 0

+ + + + 6 6 (4,9) 1.0 (0.99, 1) 1 1 1 1

− − − NA 6 NE 0.03 (0, 0.08) NE 0 0 0

Tests were all performed in CSF samples (n = 230). A “+” indicates positive test result and “−” indicates negative test result. CRS 1+ indicates any one positive test
in CRS versus all four parameters being negative. CRS 2+: any two tests positive in CRS versus all four parameters being negative. CRS 3+: any three tests positive
in CRS versus all four parameters being negative. CRS 4+: all four tests positive in CRS versus all four parameters being negative
ADA adenosine deaminase, CrI credible interval, CSF cerebral spinal fluid, LCA latent class analysis, NA value not available, NE result not estimable, No. number of,
Smear smear microscopy, TB tuberculosis

Table 6 Observed counts, expected counts, and TB pleuritis probability by test result pattern

Culture Xpert Smear ADA No.
observed

No.
expected by
LCA (95%
CrI)

Probability of
TB pleuritis
by LCA (95%
CrI)

Probability of TB pleuritis by CRS

CRS1+ CRS2+ CRS3+ CRS4+

− − − − 180 175 (162, 185) 0.008 (0, 0.03) 0 0 0 0

− − − + 84 86 (75, 98) 0.33 (0.06, 0.78) 1 0 0 0

− − + − 1 1 (0, 4) 0.005 (0, 0.07) 1 0 0 0

− + − − 4 6 (2, 11) 0.016 (0, 0.10) 1 0 0 0

− + − + 4 4 (2, 7) 0.54 (0.05, 0.92) 1 1 0 0

+ − − − 1 4 (1, 7) 0.70 (0.2, 0.99) 1 0 0 0

+ − − + 50 45 (36, 53) 0.99 (0.96, 1) 1 1 0 0

+ − + + 3 3 (1, 6) 1.0 (0.99, 1) 1 1 1 0

+ + − − 2 1 (0, 3) 0.98 (0.81, 0.99) 1 1 0 0

+ + − + 24 26 (20, 33) 1.0 (0.99, 1) 1 1 1 0

+ + + + 11 12 (8, 16) 1.0 (0.99, 1) 1 1 1 1

NA − − − 3 NE 0.02 (0.01, 0.05) NE 0 1 0

NA − − + 7 NE 0.53 (0.33, 0.84) 1 NE 0 0

NA + − − 1 NE 0.29 (0.10, 0.62) 1 NE 0 0

NA + − + 6 NE 0.98 (0.96, 1) 1 1 NE 0

NA + + − 1 NE 0.59 (0.28, 0.93) 1 1 NE 0

NA + + + 4 NE 0.99 (0.98, 1) 1 1 1 NE

NA + + NA 1 NE 0.99 (0.96, 1) 1 1 NE NE

NA NA − NA 1 NE 0.32 (0.23, 0.45) NE NE NE 0

Tests were all performed in pleural fluid samples (n = 388). A “+” indicates positive test result and “−” indicates negative test result. CRS 1+ indicates any one
positive test in CRS versus all four parameters being negative. CRS 2+: any two tests positive in CRS versus all four parameters being negative. CRS 3+: any three
tests positive in CRS versus all four parameters being negative. CRS 4+: all four tests positive in CRS versus all four parameters being negative
ADA adenosine deaminase, CrI credible interval, LCA latent class analysis, NA value not available, NE result not estimable. No. number of, Smear smear microscopy,
TB tuberculosis
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extrapulmonary TB is low, an observation that was con-
sistent across disease forms. For example, in CSF, with
three microbiological tests negative but ADA positive,
the probability of TB meningitis was only 33%, but the
probability of ATT was 96% (26/27 patients). In pleural
fluid, with all tests negative except Xpert, the probability
of TB pleuritis was 1.6%, but all four patients with this
test pattern received ATT. Thus, we did not find the
probability of receiving ATT to be informative about the
validity of the LCA models.

Discussion
Producing correct estimates of diagnostic test accuracy
is challenging without a perfect reference standard. We
used Bayesian LCA to estimate multiple tests’ accuracies
for three forms of extrapulmonary TB, along with dis-
ease prevalence. We also estimated the accuracy of a
series of CRSs for these same conditions. By employing
these two methods, we hope to demonstrate the utility
of Bayesian LCA for evaluating diagnostic test accuracy.
We observed that each test’s sensitivity varied by extra-
pulmonary TB form, and none was perfect. Specificities
were generally very high with respect to extrapulmonary
TB, except for ADA and cytopathology/histopathology.
Culture sensitivity, often treated as 100%, was imperfect
and only slightly higher than Xpert’s for TB lymphaden-
itis and meningitis; indeed, India’s Index-TB Guidelines
recommend Xpert for these two disease forms [18].
Though there is no way to validate these models, the re-
sults were in-keeping with our expectations. For ex-
ample, for all forms of extrapulmonary TB, we found
that the sensitivity of culture was greater than the sensi-
tivity of Xpert which, in turn, was greater than the sensi-
tivity of smear, as would be expected based on the
knowledge of the mechanisms behind these tests, while
all of them had near perfect specificity. The non-specific
tests always had higher accuracy with respect to the
measurand they were designed to measure than with re-
spect to extrapulmonary TB.
We calculated that no CRS was 100% accurate; rather,

accuracy varied depending on the rule by which the CRS
was defined. Further, there is no way of knowing which
rule provided the true measure of disease status. With
extrapulmonary TB, the diagnostic tests that comprise
the CRSs are themselves imperfect, so assuming 100%
sensitivity and specificity is unreasonable and ignores
relevant biological information. Such use would result in
biased index test accuracy estimates, with the true values
obscure [10]. When using LCA, there is no assumption
that reference tests perform perfectly. Instead, LCA in-
corporates all available tests results, concurrently adjust-
ing for their unique accuracies and between-test
dependence: this more comprehensive approach more
closely approximates the real-world setting where each

test brings a different quantum of information by the
target condition. In doing so, LCA produces one figure
that, based on stipulated assumptions, can be interpreted
as the best estimate; for example, the latent class model
estimated Xpert sensitivity for TB meningitis as 53%
(95% CrI: 36–73). Contrast this with the original study,
where the series of CRSs resulted in four different Xpert
sensitivity estimates for TB meningitis, 33%, 50%, 70%,
and 100% [17]. It is impossible for the reader to know
which was the true measure of test accuracy. In this way,
LCA-derived values are more clinically interpretable, as
the reader does not need to discern between a series of
values and select one as the best estimate.
In our study, we constructed a four-class latent class

model as we felt it was more likely to achieve the desired
separation into “extrapulmonary TB” and “not extrapul-
monary TB.” Depending on the combination of observed
test results, a two-class model may have resulted in the
combining of two classes where either extrapulmonary
TB or the non-specific measurand was present into one
class, potentially leading to biased estimates of test ac-
curacy [26]. We did fit the two-class latent model as
well, for comparison (Tables S2 and S3). For TB lymph-
adenitis and TB meningitis, results from the two-class
and four-class models were very similar because the two
discordant classes had relatively low prevalence (Table
S1). In the case of TB pleuritis, the two-class model gave
a prevalence estimate that appeared equivalent to the
probability of the latent classes where either extrapul-
monary TB or ADA was positive (Table S2 and S3),
resulting in slightly lower point estimates of the sensitiv-
ities of the microbiological tests and a slightly lower spe-
cificity of the ADA test.
We relied on a multi-disciplinary team of experts

when creating our model, as goodness-of-fit metrics may
fail to indicate model misspecification [27]. Consider
that pathological signs on cytopathology/histopathology
may be attributable to causes other than TB lymphaden-
itis. This means that individuals who had positive cyto-
pathology/histopathology signals would be a mix of
people with extrapulmonary TB and people with some
other disease. Choosing a 4-class model allowed us to
distinguish between conditions that could produce posi-
tive test results and prevented grouping a mix of extra-
pulmonary TB-positive and -negative people together in
our “diseased” condition.
We found that the LCA-derived probability of extra-

pulmonary TB was not a good predictor for receiving
ATT, as even in cases of low disease probability, patients
received treatment. Seemingly, one, and certainly two,
positive test results was sufficient to commence ATT.
This is perhaps not surprising given the high TB preva-
lence in the study setting and the very high mortality
risk of, for example, TB meningitis [28], so clinicians
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would rather “treat now and ask questions later.” When
diagnosing extrapulmonary TB, clinicians also consider
clinical variables that were unavailable in our dataset
[18]. It is worth emphasizing that obtaining diagnostic
test accuracy estimates is unlike making a clinical deci-
sion. Here, we have constructed a model to estimate test
performance and have attempted to be transparent in
unknowns, assumptions, and subjective choices, but
other parameterizations are certainly possible.

Strengths
We estimated the prevalence of three forms of extrapul-
monary TB; understanding prevalence in a particular
healthcare setting is critical to planning and policy mak-
ing. Using LCA, we have made the best possible use of
data by incorporating results from all available tests to
determine sensitivities and specificities, while adjusting
for the possibility of between-test dependence. Unlike
with CRSs, we did not ignore any observed test results.
Consider that for CRS1+, a single positive test result de-
fines disease positivity; if there are three other negative
test results, those three are functionally non-informative.
Obtaining specimens for most forms of extrapulmonary
TB is invasive and requires trained healthcare workers,
so ensuring collected data are used to their best poten-
tial is an ethical decision.

Limitations
First, as with any statistical model, the latent class
models we have fit cannot be shown to be the true
models. However, our models were reasonably well-
specified, as evidenced by good agreement between ob-
served and expected test result patterns and low residual
correlation between test results. In some applications,
external information, such as the proportion of patients
with a given test pattern who were treated, provides use-
ful information to validate the model. Here, this infor-
mation was not very informative due to the sparse
nature of the datasets. Second, LCA has been character-
ized as “black box-y” [29] and cautions have been raised
that model misspecification is difficult to detect [27].
Certainly, its mechanisms are less intuitive to under-
stand than Boolean decision rules like those often used
when defining CRSs, but the theory underpinning LCA
is well-defined and transparent [30, 31]. We have
attempted to be clear by providing DAGs illustrating our
assumptions of the relationships within the model. A
final, general limitation is that parameter estimates de-
pend on the available data. The available datasets had a
small sample size and did not contain demographic or
clinical assessment variables, resulting in poor precision
of the estimates. Additionally, this prevented any rele-
vant subgroup analyses.

Conclusion
Basic methods like two-by-two table calculations and
CRSs are known to produce imperfect estimates of diag-
nostic test accuracy. Latent class analysis, which can re-
flect knowledge of the individual tests used for
diagnosis, should receive greater consideration in evalu-
ating new tests’ performance.
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