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Abstract 

Background:  The severity of SARS-CoV-2 infection varies from asymptomatic state to severe respiratory failure and 
the clinical course is difficult to predict. The aim of the study was to develop a prognostic model to predict the sever-
ity of COVID-19 in unvaccinated adults at the time of diagnosis.

Methods:  All SARS-CoV-2-positive adults in Iceland were prospectively enrolled into a telehealth service at diag-
nosis. A multivariable proportional-odds logistic regression model was derived from information obtained during 
the enrollment interview of those diagnosed between February 27 and December 31, 2020 who met the inclusion 
criteria. Outcomes were defined on an ordinal scale: (1) no need for escalation of care during follow-up; (2) need for 
urgent care visit; (3) hospitalization; and (4) admission to intensive care unit (ICU) or death. Missing data were multiply 
imputed using chained equations and the model was internally validated using bootstrapping techniques. Decision 
curve analysis was performed.

Results:  The prognostic model was derived from 4756 SARS-CoV-2-positive persons. In total, 375 (7.9%) only required 
urgent care visits, 188 (4.0%) were hospitalized and 50 (1.1%) were either admitted to ICU or died due to complica-
tions of COVID-19. The model included age, sex, body mass index (BMI), current smoking, underlying conditions, and 
symptoms and clinical severity score at enrollment. On internal validation, the optimism-corrected Nagelkerke’s R2 
was 23.4% (95%CI, 22.7–24.2), the C-statistic was 0.793 (95%CI, 0.789-0.797) and the calibration slope was 0.97 (95%CI, 
0.96–0.98). Outcome-specific indices were for urgent care visit or worse (calibration intercept -0.04 [95%CI, -0.06 to 
-0.02], Emax 0.014 [95%CI, 0.008–0.020]), hospitalization or worse (calibration intercept -0.06 [95%CI, -0.12 to -0.03], Emax 
0.018 [95%CI, 0.010–0.027]), and ICU admission or death (calibration intercept -0.10 [95%CI, -0.15 to -0.04] and Emax 
0.027 [95%CI, 0.013–0.041]).
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Introduction
Coronavirus disease 2019 (COVID-19), caused by the 
severe acute respiratory syndrome-coronavirus-2 (SARS-
CoV-2), was first described in Wuhan, China, in Decem-
ber 2019 and was declared a pandemic on March 11, 
2020 [1]. The severity of COVID-19 ranges from asymp-
tomatic infection to severe respiratory failure and death. 
While early reports suggested that most infections were 
severe, later studies found that 81% of those who were 
symptomatic had mild disease, 14% had severe disease, 
and 5% developed critical illness [2]. The infection fatal-
ity rate has been estimated to be between 0.26 and 0.66% 
[3, 4].

Since the first diagnosed case of COVID-19 in Ice-
land on February 27, 2020 and until December 31, 2020, 
a total of 6,126 persons tested SARS-CoV-2-positive by 
quantitative reverse-transcriptase polymerase chain 
reaction (qPCR). Broad access to qPCR testing was intro-
duced early in the pandemic for both symptomatic and 
asymptomatic persons. All individuals who tested posi-
tive were enrolled into a telehealth service provided by 
the COVID-19 Outpatient Clinic of Landspitali–The 
National University Hospital of Iceland (LUH) [5]. The 
entire cohort of SARS-CoV-2-positive cases was pro-
spectively followed from the date of diagnosis. A national 
seroprevalence study found that a large proportion (56%) 
of seropositive individuals had been identified by qPCR 
testing during the first wave of the pandemic in Iceland 
[6].

While extensive testing and follow-up is desirable for 
contact tracing and isolation of infected people, large 
numbers of cases can easily overwhelm the capacity 
of the healthcare system for provision of clinical care. 
Early risk stratification offers opportunities for triaging 
SARS-CoV-2-positive persons to appropriate levels of 
monitoring and intervention. A living systematic review 
and meta-analysis of prediction models for COVID-19 
has identified 107 models that predict the prognosis of 
COVID-19 [7]. Of those models, only one predicting the 
prognosis of COVID-19 among individuals in the gen-
eral population (QCOVID) was judged to be at low risk 
of bias [8]. QCOVID predicts the 90-day risk of being 
infected with SARS-CoV-2 and subsequently hospitalized 
or dying in the UK. It has since been externally validated 
and has incorporated two-dose vaccination status as a 
predictor [9, 10]. However, QCOVID does not predict 

the need for urgent outpatient evaluation for COVID-19, 
and it is unclear how certain predictors can be imple-
mented for use in other countries.

The aim of this study was to develop a multivariable 
model to predict the risk of urgent outpatient evaluation, 
hospitalization, and intensive care unit (ICU) admis-
sion or death among unvaccinated SARS-CoV-2-positive 
adults at the time of diagnosis in order to assist clinicians 
in prioritizing infected individuals for clinical monitoring 
and early therapeutic intervention.

Methods
Ethical approval
The study was approved by the National Bioethics Com-
mittee of Iceland (VSN 20-078).

Study population
The study population included all persons who tested 
positive for SARS-CoV-2 by qPCR in Iceland between 
February 27 and December 31, 2020 with the exception of 
those who met the exclusion criteria. During this period, 
no person had been vaccinated for SARS-CoV-2. Three 
national testing programs were implemented during the 
study period; targeted testing based on clinical suspicion 
(from February 1), open invitation population screening 
(from March 13) and mandatory screening at the border 
(from June 15). Due to the oppressive nature of enforced 
quarantine, those who tested positive at border screen-
ing underwent antibody testing, a repeat qPCR test of a 
nasopharyngeal swab and an assessment of symptoms 
and exposure, and the presence of an active infection was 
determined based on these data. All persons who were 
SARS-CoV-2-positive and considered to have an active 
infection were enrolled into the telehealth service of the 
LUH COVID-19 Outpatient Clinic until uneventful dis-
continuation of follow-up care, hospital discharge or 
death from COVID-19. The derivation cohort excluded 
children younger than 18 years of age, individuals with-
out an Icelandic national identification number, and 
those living in a nursing home or who were admitted to 
hospital at the time of diagnosis (Fig. 1).

The COVID‑19 Outpatient Clinic
The COVID-19 Outpatient Clinic coordinated the outpa-
tient care of all SARS-CoV-2-positive persons in Iceland 
as described previously [5]. Data regarding underlying 

Conclusion:  Our prognostic model can accurately predict the later need for urgent outpatient evaluation, hospitali-
zation, and ICU admission and death among unvaccinated SARS-CoV-2-positive adults in the general population at 
the time of diagnosis, using information obtained by telephone interview.
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conditions, medication use, clinical symptoms and sever-
ity of the infection were prospectively recorded using a 
standardized data entry form starting on March 17. Dur-
ing each interview, the presence of 19 specific symptoms 
was documented. Patients were evaluated and assigned 
a clinical severity score by the interviewing physician or 
nurse, based on the combination of their symptoms and 
the clinical judgment of the healthcare provider. The 
clinical severity score was generated by infectious disease 
consultants at LUH at the beginning of the pandemic: (1) 
low severity, defined as having mild or no symptoms; (2) 
moderate severity, defined as mild dyspnea, cough, or 
fever for less than 5 days; and (3) high severity, defined as 
severe dyspnea, worsening cough, and high or persistent 
fever for 5 days or longer. Patients with alarming symp-
toms were brought to the COVID-19 Outpatient Clinic 
for in-person evaluation. Patients were discharged from 
telehealth follow-up when at least 14 days had passed 
from qPCR-based diagnosis and at least seven days from 
the resolution of symptoms.

Data sources
In addition to the prospectively collected information 
that was obtained through telehealth interviews, data 
were retrieved from several population-based regis-
tries in Iceland. All International Classification of Dis-
eases, 10th Revision (ICD-10) diagnosis codes recorded 
≥ 14 days prior to the persons’ first positive qPCR test 
for SARS-CoV-2 were obtained from three registries: 
LUH patient registry (from 2009), the Register of Pri-
mary Health Care Contacts (from 2004) and the Register 
of Contacts with Medical Specialists in Private Practice 
(from 2010). Data on all filled drug prescriptions were 
collected for each individual from the Prescription Medi-
cines Register for the period ranging from 395 days (13 
months) to 14 days before the first positive qPCR test for 
SARS-CoV-2. Finally, all measurements of serum creati-
nine between January 2010 and until 14 days before the 
individual’s first positive qPCR test were extracted from a 
central laboratory database. Estimated glomerular filtra-
tion rate (eGFR) was calculated from serum creatinine 
using the Chronic Kidney Disease Epidemiology Collabo-
ration (CKD-EPI) equation [11].

Fig. 1  Flow diagram of the study cohort
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Prognostic model development
A proportional-odds logistic model was used and out-
comes were defined on an ordinal scale, ranging from the 
least to the most severe: (1) absence of clinical deteriora-
tion requiring in-person evaluation or hospitalization for 
the duration of telehealth care; (2) clinical deterioration 
requiring urgent in-person evaluation at the LUH COVID-
19 Outpatient Clinic, but not subsequent hospitalization; 
(3) hospitalization; and (4) admission to ICU or death. A 
formal minimum sample size calculation was performed 
to justify the number of candidate predictor variables 
using a modification of the four-step approach for binary 
models recommended by Riley et  al. [12, 13]. Assuming 
18 candidate predictor variables, the result was the follow-
ing: (1) a minimum of 2796 persons would be required to 
estimate the proportion experiencing each outcome with 
a targeted margin of error of 1% or less; (2) a minimum of 
2269 persons would be required to target a mean absolute 
prediction error of 2% or less for each of the outcomes; 
(3) assuming a conservative Cox-Snell R2 of only 0.09 for 
the binary prediction of any outcome, a minimum of 3506 
persons would be required for the desired shrinkage of 
the predictor effects to be 5% or smaller; and finally (4) to 
target 2% optimism or less in the model‘s apparent Nagel-
kerke‘s R2, a minimum of 1584 persons would be required. 
The estimated minimum required sample size was there-
fore 3506. Predictor variables were derived from the pro-
spectively recorded data obtained during the enrollment 
interview into the telehealth service. Age was modelled as 
a non-linear variable using a restricted cubic spline with 
knots placed at the 0.05, 0.35, 0.65, and 0.95 percentiles. 
Body mass index (BMI) was included as a linear variable. 
All other predictor variables were dichotomous. All deci-
sions regarding predictors and model development were 
made prior to examining the outcome data and were 
based on the existing literature and clinical expertise of 
the study authors. No statistical selection procedures or 
model comparisons were employed. Two candidate pre-
dictor variables (chronic kidney disease and clinical score 
= high severity) were not included in the final model due 
to small sample sizes. The 16 predictor variables included 
in the prognostic model are shown in Table 1. Missing data 
were imputed 2000 times using multiple imputation with 
chained equations (MICE) and predictive mean match-
ing carried out using the aregImpute function [14] Pro-
portional odds assumptions and missingness mechanisms 
were explored [15]. Penalized maximum likelihood esti-
mation was considered over a range of penalty factors (0, 
0.5, and 1) for both linear and non-linear terms and values 
chosen to maximize the corrected Akaike information cri-
terion. Detailed definitions of all variables included in the 
prognostic model and imputation procedure are provided 
in Supplementary Table 1.

Internal validation was performed by calculating 
and presenting optimism-corrected indices of fit, dis-
crimination and calibration. The overall model fit was 
quantified with Nagelkerke‘s R2 and discrimination 
was quantified using the C-statistic. Calibration was 
assessed by visual examination of calibration plots and 
from the overall calibration slope and several outcome 
specific calibration indices (calibration intercept, Brier 
score, and Emax) [16]. Optimism-corrected confidence 
intervals (CI) that incorporated both imputation and 
bootstrap variability were constructed by 2000 itera-
tions of the following procedure: (1) sequential selec-
tion of each of the 2000 imputed datasets; (2) fit of 
the proportional-odds model to the selected data-
set; (3) refit of the model on 200 bootstrap resamples 
with replacement of the selected dataset to calculate 
the optimism using the .632 estimator; (4) the extrac-
tion of the optimism-corrected indices and calibra-
tion curve [14, 17]. The lower and upper limits of the 
CI were defined as the 2.5 and 97.5 percentiles of the 
resulting distributions. The sensitivity, specificity, posi-
tive predictive value (PPV) and negative predictive 
value (NPV) of the model were reported for each out-
come over a range of probabilistic thresholds. Decision 
curve analysis was performed to quantify the standard-
ized net benefit of the prognostic model over a range of 
plausible probability thresholds for use in two clinical 
scenarios: (1) to aid in determining whether an individ-
ual‘s risk of clinical deterioration requiring an urgent 
care visit or worse is sufficiently small for omission 
from the telehealth service; and (2) to aid in deciding 
whether an individual’s risk of hospitalization or worse 
is sufficiently large to recommend more intensive fol-
low-up or therapeutic intervention [18]. The decision 
curve analyses are described in more detail in the Sup-
plementary Methods. In addition, the potential impact 
of implementing the model in the COVID-19 Outpa-
tient Clinic was explored by determining the number of 
interviews that would have been prevented if those who 
had a predicted risk of requiring an urgent care visit 
or worse below a given threshold, received only two 
interviews (at enrollment and discharge) instead of the 
observed number of interviews. The prognostic model 
was reported according to the Transparent Reporting 
of a multivariable prediction model for Individual Prog-
nosis or Diagnosis (TRIPOD) guidelines [19].

All statistics were performed in R version 3.6.3 [20]. using 
the tidyverse [21] package for data manipulation. The cow-
plot package [22] was used to create multipanel figures and 
tableone [23] was used to create summary tables. All statis-
tical code is available at https://​osf.​io/​t2bp8/.

https://osf.io/t2bp8/


Page 5 of 10Eythorsson et al. Diagnostic and Prognostic Research            (2022) 6:17 	

Results
Study population
Of the 175,243 persons in Iceland who were tested for 
SARS-CoV-2 using qPCR during the study period, 6126 
were positive. After applying exclusion criteria, 4756 
persons were included (Fig.  1). The mean age was 42 
years (median 40 years, IQR, 28–54) and the propor-
tion of males was 51.6% (Table  1). In total, 4143 (87%) 
individuals never required in-person evaluation during 
telehealth follow-up, 375 (7.9%) required only urgent 
outpatient evaluation, 188 (4.0%) required admission to 
hospital but no further escalation of care, and 50 (1.1%) 
either required admission to ICU or died due to com-
plications of COVID-19. The median time from the first 
positive qPCR test to telehealth enrollment was 0 days 
(IQR, 0–1, range 0–4), and the median follow-up time 
was 15 days (IQR, 14–16, range, 7–67). No person was 
lost to follow-up.

Prognostic model performance
The Akaike information criterion was maximized at a 
penalty factor of 0 for both linear and non-linear terms 
and the model was therefore estimated using standard 
maximum likelihood. Visual examination of diagnostic 
figures suggested that the proportional odds and miss-
ingness assumptions were met (Supplementary Fig-
ures 1, 2, 3, 4, 5, 6, 7, 8 and 9). In our cohort, the median 
predicted probability of urgent care visit or worse was 
7.2% (IQR, 4.6–13.2, with a 97.5 percentile of 62.4%), of 
hospitalization or worse was 2.1% (IQR, 1.3–4.1, with 
a 97.5 percentile of 31.7%), and the median  predicted 
probability of ICU admission or death was 0.34% (IQR, 
0.21–0.66, with a 97.5 percentile of 6.7%). On inter-
nal validation, the optimism-corrected Nagelkerke‘s 
R2 was 23.4% (95%CI, 22.7–24.2), the C-statistic was 
0.793 (95%CI, 0.789–0.797) and the calibration slope 
was 0.97 (95%CI, 0.96–0.98) (Table  2). Outcome-spe-
cific optimism-corrected metrics were for urgent care 
visit or worse (calibration intercept -0.04 [95%CI, -0.06 
to -0.02], Emax 0.014 [95%CI, 0.008–0.020], and Brier 
score 0.092 [95%CI, 0.091–0.093]), for hospitalization or 
worse (calibration intercept -0.06 [95%CI, -0.12 to -0.03], 
Emax 0.018 [95%CI, 0.010–0.027], and Brier score 0.039 
[95%CI, 0.038–0.039]), and for ICU admission or death 
(calibration intercept -0.10 [95%CI, -0.15 to -0.04] and 
Emax 0.027 [95%CI, 0.013–0.041], and Brier score 0.010 
[95%CI, 0.010−0.010]) (Table 2, Supplementary Table 3). 
Visual examination of the optimism-corrected calibra-
tion plots revealed excellent calibration with a tendency 
to overestimate risk at the extremes of the predicted risk 
(Fig. 2).

The lower limit of the 95% CI for the NPV of requir-
ing an urgent care visit or worse was maximized at a 

threshold of 3.2% predicted risk. At this threshold, the 
sensitivity of the need for urgent care visit or worse was 
99.3% (95%CI, 98.3–99.7), specificity was 12.2% (95%CI, 
11.2–13.2), PPV was 14.3% (95%CI, 13.3–15.4), and NPV 
was 99.2% (95%CI, 98.0–99.7). Using a threshold of 10% 

Table 1  Variables included in the prognostic model are shown 
for the derivation cohort

Continuous variables are summarized as medians and interquartile ranges (IQR). 
The number of cases behind each categorical variable are presented along with 
the percentage. For each of the variables, the number and proportion of cases 
with missing data are displayed within parenthesis. Two candidate predictor 
variables (chronic kidney disease [n = 25] and clinical score = high severity [n = 
74]) were not included in the final model due to small sample sizes

Predictor Derivation cohort 
n = 4756 
Median and interquartile range 
for continuous or n and % for 
categorical variables
(n missing and %)

Age, years 40, 28–54
(0, 0%)

Sex, male 2455, 51.6%
(0, 0%)

Body mass index 26.0, 23.1–29.45
(1,441, 30.3%)

Current smoking 395, 9.1%
(494, 8.5%)

Diabetes 136, 3.0%
(242, 5.1%)

Hypertension 569, 12.6%
(225, 0.7%)

Heart disease 282, 6.2%
(235, 4.9%)

Chronic kidney disease 25, 0.6%
(246, 5.2%)

Pulmonary disease 245, 5.4%
(239, 5.0%)

Cancer 114, 2.5%
(243, 5.1%)

Flu-like symptoms 3781, 80.8%
(77, 2.2%)

Upper respiratory symptoms 2727, 59.5%
(169, 3.6%)

Lower respiratory symptoms 1206, 26.6%
(226, 4.8%)

Gastrointestinal symptoms 1018, 22.6%
(244, 5.1%)

Clinical score = moderate or high 
severity

470, 10.6%
(306, 6.4%)

Telehealth only 4143, 87.1%
(0, 0%)

Urgent care visit 375, 7.9%
(0, 0%)

Hospitalization 188, 4.0%
(0, 0%)

Intensive care unit admission or 
death

50, 1.1%
(0, 0%)



Page 6 of 10Eythorsson et al. Diagnostic and Prognostic Research            (2022) 6:17 

predicted risk for the same outcome, the sensitivity was 
72.8% (95%CI, 69.1–76.1), specificity was 71.6% (95%CI, 
70.2–72.9), PPV was 27.5% (95%CI, 25.3–29.7), and NPV 
was 94.7% (95%CI, 93.8–95.4). Finally, at a threshold of 
10% predicted risk for hospitalization or worse, the sensi-
tivity was 59.6% (95%CI 53.3–65.7), specificity was 90.8% 
(95%CI 89.9–91.6), PPV was 25.4% (95%CI 22.0–29.2) 
and NPV was 97.7% (95%CI 97.2–98.1). The performance 
of the model as a function of continuous predicted risk is 
shown in Supplementary Figure 10.

Prognostic model usage
The full model is presented in Supplementary Table  2. 
For the decision to omit individuals at low-risk for 
requiring an urgent in-person evaluation or worse from 
monitoring, a decision curve analysis revealed that the 

standardized net benefit of the prognostic model, com-
pared with the strategy of enrolling all SARS-CoV-2-pos-
itive persons into monitoring, ranged from 0.07 to 0.31 
over a reasonable span of low-risk thresholds (3% to 
10%) (Fig. 3A). At these thresholds of low risk, one would 
expect to omit from monitoring between 93 and 658 out 
of every 1000 SARS-CoV-2-positive adults, of whom 
between 92 (98.9%) and 623 (94.6%) would never require 
urgent in-person evaluation (Fig.  3B). Similarly, for the 
decision to recommend comprehensive monitoring or 
early treatment for individuals at high risk of hospitaliza-
tion or worse, the standardized net benefit of the model, 
compared with a strategy of not offering intensive man-
agement to anyone, ranged from 0.40 to 0.57 over a rea-
sonable scope of high-risk thresholds (5 to 10%) (Fig. 3C). 
If individuals with a predicted risk of 5% or higher were 

Table 2  Optimism-corrected calibration and discrimination indices of the prognostic model for each of the outcomes. The 95% 
bootstrapped confidence intervals are presented within parenthesis

Emax is the maximum absolute difference between the predicted probabilities of the prognostic model and the weighted scatterplot smoothing (LOWESS) calibrated 
probability

Indexes Urgent care visit Hospitalization Intensive care unit admission or death

C-statistic 0.793 (0.789 to 0.797)

Negalkerke’s R2 0.234 (0.227 to 0.242)

Calibration intercept -0.043 (-0.064 to -0.023) -0.063 (-0.094 to -0.033) -0.098 (-0.155 to -0.042)

Calibration slope 0.973 (0.963 to 0.983)

Brier score 0.092 (0.091 to 0.093) 0.039 (0.038 to 0.039) 0.010 (0.010 to 0.010)

Emax 0.014 (0.008 to 0.020) 0.018 (0.010 to 0.027) 0.027 (0.013 to 0.041)

Fig. 2  Optimism-corrected calibration curves of the prognostic model illustrate the relationship between the observed and predicted probability 
of urgent care visit or worse (A), hospitalization or worse (B) and admission to intensive care unit or death (C). The sample distribution of predicted 
probabilities is presented as marginal histograms. The sample is divided into 10 equally large groups of predicted probability and the mean 
observed probability of each group depicted as a black dot and point range centered at the mean predicted probability of the group. The weighted 
scatterplot smoothing (LOWESS) relationship between the observed and predicted probabilities of bootstrap resamples with replacement from 
2000 imputed datasets are shown as individual thin gray lines with the mean relationship shown as a blue line. These are compared to the dashed 
black line, reflecting a perfect relationship between observed and predicted probabilities
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considered high risk, one would expect to recommend 
intensive management for 208 (95%CI, 196–219) out of 
every 1000 infected adults, of whom 37 (95%CI, 33–43) 
would have later required hospitalization. At a thresh-
old of 10% or higher, 118 (95%CI, 109–127) out of 1000 
would be classified as high risk, of whom 30 (95%CI, 
25–34) would be hospitalized (Fig.  3D). Decision curve 
analysis for the risk of ICU admission or death is shown 
in Supplementary Figure  11. The potential impact of 

incorporating the prognostic model in the clinical path-
way of the telehealth service provided by the COVID-19 
Outpatient Clinic is shown in Supplementary Figure 12.

Discussion
In this nationwide study, a prognostic model was derived 
in a prospective population-based cohort of SARS-CoV-
2-positive unvaccinated adults. We demonstrate how 
the model could be implemented in the context of a 

Fig. 3  A, C Illustration of the standardized net benefit of the prognostic model (blue lines) compared with the strategies of monitoring or treating 
all individuals (black lines) and not providing any follow-up or treatment (red lines) over a range of risk thresholds. B, D The number of persons (out 
of 1000) who would be categorized at high or low risk for each risk threshold. A The use of the prognostic model to omit persons from follow-up 
who are at low risk of an urgent care visit or worse. The Y-axis represents the net increase in the proportion of low-risk individuals who avoid 
unnecessary monitoring (out of a hypothetical maximum achieved when the true negative rate is one and false negative rate is zero) compared 
with the strategy of enrolling all persons. B Illustration of the expected number of individuals (out of 1000) who would be omitted from monitoring 
using the prognostic model as a function of low-risk threshold (blue line) and the number of persons who would be omitted and who would never 
require an urgent in-person evaluation or worse (dashed blue line). C The use of the prognostic model to offer individuals who are at high risk of 
hospitalization or worse more rigorous follow-up or therapeutic intervention. The Y-axis represents the net increase in the proportion of high-risk 
individuals who are offered treatment (out of a hypothetical maximum achieved when the true positive rate is one and the false positive rate 
is zero) compared with the strategy of treating no cases. D The expected number of individuals (out of 1000) who would be offered treatment 
(blue line) and not be offered treatment (dashed green line) as a function of high-risk threshold. Also shown is the expected number of high-risk 
individuals (blue line) and those not at high risk (dashed green line) who later would have required hospitalization
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telehealth service, in which all the necessary information 
for prognostication is obtained through telephone inter-
views, followed by triage to the appropriate level of care.

The COVID-19 pandemic has in many cases over-
whelmed national healthcare systems due to the large 
number of seriously ill patients requiring advanced 
medical care. High rates of virologic testing and isola-
tion of positive individuals can assist in curtailing spread, 
but increases the number of identified cases. Although 
SARS-CoV-2 infection can lead to severe disease and 
death, most cases are mild or asymptomatic. Predicting 
who will subsequently require comprehensive care and, 
equally importantly, identifying those who will only need 
minimum or no further follow-up is challenging. How-
ever, potential solutions do exist, including optimization 
of healthcare resources allocation and reduction of the 
overall healthcare burden using early interventions. Risk 
stratifying patients in a pandemic setting with soaring 
case counts requires efficient and robust methods that 
should ideally be implemented without the need for in-
person contact or extensive clinical testing. Limited evi-
dence supporting such stratification is currently available.

Our prognostic model was derived in a large commu-
nity-based cohort of adults that is considerably larger 
than most SARS-CoV-2-positive cohorts used for previ-
ously developed models, which have had a median of 338 
cases [23]. On internal validation, our model was found 
to have good ability to discriminate between persons 
who either will or will not experience each of the three 
outcomes, as reflected by a high optimism-corrected 
C-statistic (Table  2). Although calibration metrics were 
excellent, visual examination of the calibration plots 
revealed a slight tendency to yield overly extreme predic-
tions for individuals at high risk (Fig. 2). This was espe-
cially apparent for the outcome event ICU admission or 
death above a risk of approximately 20%, which likely 
resulted in part because only 30 individuals in our cohort 
had this predicted risk or higher. These extreme predic-
tions would only have practical relevance if decision mak-
ers intended to use the prognostic model at this or higher 
threshold for this particular outcome event. However, in 
Supplementary Figure 11 we show that the standardized 
net benefit of the prognostic model at high-risk thresh-
olds at or above 16% is zero to negative compared with a 
strategy of treating no patient irrespective of risk. Using 
the prognostic model at such thresholds would therefore 
seem to be inadvisable regardless of calibration. Even so, 
it should be stated that if future predictions appear at or 
above this level of risk they should be considered to be of 
unknown accuracy.

In addition to demonstrating good discrimination and 
calibration of the prognostic model, we report the clinical 
utility of the model based on decision curve analysis. The 

optimal thresholds at which the prognostic model should 
be used for resource allocation will vary based on local 
factors, such as the number of persons that are diagnosed 
in relation to the capacity of the healthcare infrastructure 
and the costs and benefits of the treatments or monitor-
ing strategies being considered. The rationale for basing 
the decision of whom to monitor on the risk of urgent 
care visit or worse, is the need to minimize unexpected 
clinic visits of SARS-CoV-2-positive persons to avoid 
potential transmission to other patients and healthcare 
workers. By monitoring those at risk, urgent visits can 
be managed more effectively. We show that the prognos-
tic model can identify low-risk individuals who could be 
safely omitted from telehealth monitoring. Conversely, 
early therapeutic interventions such as administration 
of monoclonal antibodies against SARS-CoV-2  [24]  or 
antiviral drugs, should be prioritized for those who are at 
high risk of subsequent hospitalization. We again show 
that the prognostic model can identify a large propor-
tion of those who will later require hospitalization for 
COVID-19.

A strong practical advantage of our prognostic model 
is the ability to estimate the risk of several important 
clinical outcomes using predictor variables that can be 
collected by telephone interview at the time of diagno-
sis, as opposed to conventional clinical assessment that 
usually includes physical examination, laboratory test-
ing and imaging studies. The model was derived in the 
setting of easy access to diagnostic testing for SARS-
CoV-2, and included all adults in Iceland who were not 
hospitalized at the time of diagnosis of SARS-CoV-2 
infection and in whom language barriers would not 
prevent effective telephone interview. The risk of selec-
tion bias is therefore minimal. Furthermore, data were 
invariably obtained by trained healthcare providers 
within 24 h of the individual’s first positive qPCR test 
using a standardized questionnaire, thereby minimizing 
recall bias. A systematic review by Wynants et al. com-
pared 107 models that predicted progression to severe 
disease or mortality from COVID-19 [7]. The authors 
identified only two prognostic models that were associ-
ated with low risk of bias, the 4C mortality score and 
QCOVID. The 4C mortality score was developed in a 
cohort of hospitalized patients with COVID-19 and is 
intended to be used at the time of hospitalization [25]. 
It included predictor variables that would require in-
person evaluation by trained healthcare workers (res-
piratory rate, peripheral oxygenation and Glascow 
coma scale) and laboratory findings (urea  and  CRP) 
that would necessitate a blood draw. This model there-
fore would not be helpful in performing triage of SARS-
CoV-2-positive adults in the community at the time of 
diagnosis and could not inform the decision to omit 
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individuals at low  risk of requiring urgent care visits 
from telehealth monitoring, nor the decision to provide 
early treatment to individuals at high risk of hospitali-
zation. The QCOVID model was developed based  on 
data collected from population-based registries and is 
meant to predict the time until death and hospitaliza-
tion at the population level, rather than solely for  per-
sons  with a confirmed SARS-CoV-2 infection [8, 9]. It 
does not predict the need for urgent outpatient evalu-
ation, and some of the included predictors, such as the 
Townsend deprivation score, are difficult to  implement 
in populations outside of the UK. Among the remaining 
105 prognostic models at high or unknown risk of bias, 
common causes of bias were small and non-represent-
ative study cohorts in which inclusion was unclear, and 
many individuals were excluded because they had not 
developed an outcome by the end of the study period, 
i.e., they had not recovered, been discharged from hos-
pital, or died [7]. In the current study, follow-up of all 
cases was complete, as they were only discharged from 
monitoring if at least 14 days had passed from qPCR-
based diagnosis and at least 7 days had passed from 
resolution of symptoms, resulting in a median dura-
tion of follow-up time of 15 days and up to 64 days for 
patients with persistent symptoms. Finally, the report-
ing of our prognostic model derivation adhered to the 
TRIPOD guidelines. For these reasons, we believe our 
model adds to the existing literature as a potential tool 
for clinical decision-making.

While the strength of the present study resides in 
the population-based approach, there are several note-
worthy limitations. The clinical threshold at which an 
urgent care visit is considered to be indicated will likely 
vary between cultures and healthcare systems. This 
variation in clinical thresholds also exists for hospitali-
zations and ICU admissions, but is probably consider-
ably smaller than for outpatient evaluation. In addition, 
the clinical severity score was loosely defined and was 
largely based on the clinical impression of the physician 
or nurse conducting the enrollment interview. Inter-
rater variability was not quantified and we are therefore 
unable to speculate how this predictor will general-
ize to other settings. As the need for urgent in-person 
evaluation at the COVID-19 Outpatient Clinic was also 
determined by the same healthcare professionals dur-
ing telephone interviews, it is perhaps not surprising 
that the clinical severity score was predictive. However, 
the clinical severity score during the enrollment inter-
view also predicted the need for hospital admission, 
ICU care and death. Furthermore, a study examining 
the humoral response to SARS-CoV-2 in an overlapping 
cohort found a strong correlation between the clinical 
severity score and higher anti-SARS-CoV-2 antibody 

levels, supporting the validity of the clinical severity 
score [6]. Finally, our prognostic model was developed 
in 2020, before vaccination for SARS-CoV-2 became 
available. The predicted risks are therefore only accu-
rate for unvaccinated adults and should be considered 
an upper-limit estimate for those who have received 
vaccination. Further studies are needed to evaluate the 
prognostic model in vaccinated persons.

Conclusion
Our multivariable prognostic model predicts the risk 
of COVID-19-related urgent care visit, hospitalization, 
and ICU admission or death, for an unselected group 
of unvaccinated SARS-CoV-2-positive adults based 
on symptoms at diagnosis, comorbidities and demo-
graphic factors. These variables can be sampled by 
telephone interview at the time of diagnosis of SARS-
CoV-2 infection. This information may be valuable for 
risk stratification of cases at the time of diagnosis and 
prioritization of health care resources.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s41512-​022-​00130-0.

Additional file 1. 

Acknowledgements
Not applicable.

Authors’ contributions
EE, VB, HLR, MIS, OSI, and RP developed the concept of the study. EE, VB, HLR, 
DH, HKB, LBO, SB, ASA, KO, HHT, and GK participated in acquiring data. EE, LBO, 
MIS, and RP were responsible for data curation. EE developed the methodol-
ogy. EE, OSI, and RP analyzed the data. MIS, OSI, and RP provided supervision. 
EE, VB, AB, and OSI wrote the original draft of the manuscript. All authors 
reviewed and edited the manuscript. The corresponding authors attest that 
all listed authors meet authorship criteria and that no others meeting the 
criteria have been omitted. RP is guarantor for the study. All authors read and 
approved the final manuscript.

Funding
This work was supported by the Landspitali University Hospital Research Fund 
(A-2021-051). Neither the authors nor their institutions received payment or 
services from a third party for any aspect of the submitted work.

Availability of data and materials
The data that support the findings of this study are available from the cor-
responding authors on reasonable request.

Declarations

Ethics approval and consent to participate
The study was approved by the National Bioethics Committee of Iceland (VSN 
20-078).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

https://doi.org/10.1186/s41512-022-00130-0
https://doi.org/10.1186/s41512-022-00130-0


Page 10 of 10Eythorsson et al. Diagnostic and Prognostic Research            (2022) 6:17 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Received: 19 September 2021   Accepted: 21 June 2022

References
	1.	 Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel corona-

virus from patients with pneumonia in China, 2019. N Engl J Med. 
2020;382(8):727–33.

	2.	 Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of 
patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 
2020;395(10223):497–506.

	3.	 Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates 
of the severity of coronavirus disease 2019: a model-based analysis. 
Lancet Infect Dis. 2020;20(6):669–77.

	4.	 Blackburn J, Yiannoutsos CT, Carroll AE, Halverson PK, Menachemi N. 
Infection fatality ratios for COVID-19 among noninstitutionalized persons 
12 and older: results of a random-sample prevalence study. Ann Intern 
Med. 2021;174(1):135-6.

	5.	 Helgason D, Eythorsson E, Olafsdottir LB, Agustsson T, Ingvarsdottir S, 
Sverrisdottir S, et al. Beating the odds with systematic individualized 
care: Nationwide prospective follow-up of all patients with COVID-19 in 
Iceland. J Intern Med. 2021;289(2):255–8.

	6.	 Gudbjartsson DF, Norddahl GL, Melsted P, Gunnarsdottir K, Holm H, 
Eythorsson E, et al. Humoral immune response to SARS-CoV-2 in Iceland. 
N Engl J Med. 2020;383(18):1724–34.

	7.	 Wynants L, Calster BV, Collins GS, Riley RD, Heinze G, Schuit E, et al. Predic-
tion models for diagnosis and prognosis of covid-19: systematic review 
and critical appraisal. BMJ. 2020;369:m1328.

	8.	 Clift AK, Coupland CAC, Keogh RH, Diaz-Ordaz K, Williamson E, Harrison 
EM, et al. Living risk prediction algorithm (QCOVID) for risk of hospital 
admission and mortality from coronavirus 19 in adults: national deriva-
tion and validation cohort study. BMJ. 2020;20:m3731.

	9.	 Nafilyan V, Humberstone B, Mehta N, Diamond I, Coupland C, Lorenzi L, 
et al. An external validation of the QCovid risk prediction algorithm for 
risk of mortality from COVID-19 in adults: a national validation cohort 
study in England. Lancet Digit Health. 2021;3(7):e425–33.

	10.	 Hippisley-Cox J, Coupland CA, Mehta N, Keogh RH, Diaz-Ordaz K, Khunti 
K, et al. Risk prediction of covid-19 related death and hospital admission 
in adults after covid-19 vaccination: national prospective cohort study. 
BMJ. 2021;374:n2244.

	11.	 Levey AS, Stevens LA, Schmid CH, Lucy ZY, Castro AF, Feldman HI, et al. 
A new equation to estimate glomerular filtration rate. Ann Intern Med. 
2009;150(9):604.

	12.	 Riley RD, Snell KI, Ensor J, Burke DL, Harrell FE Jr, Moons KG, et al. Mini-
mum sample size for developing a multivariable prediction model: PART 
II - binary and time-to-event outcomes. Stat Med. 2019;38(7):1276–96.

	13.	 Riley RD, Ensor J, Snell KIE, Harrell FE, Martin GP, Reitsma JB, et al. Calculat-
ing the sample size required for developing a clinical prediction model. 
BMJ. 2020;368:m441.

	14.	 Harrell FE Jr. Regression modeling strategies. 2nd ed. Cham: Springer 
International Publishing; 2016. 

	15.	 Harrell FE Jr, Margolis PA, Gove S, Mason KE, Mulholland EK, Lehmann D, 
et al. Development of a clinical prediction model for an ordinal outcome: 
The World Health Organization Multicentre Study of Clinical Signs and 
Etiological Agents of Pneumonia, Sepsis and Meningitis in Young Infants. 
Stat Med. 1998;17(8):909–44.

	16.	 Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ, Steyerberg 
EW. A calibration hierarchy for risk models was defined: from utopia to 
empirical data. J Clin Epidemiol. 2016;74:167–76.

	17.	 Bartlett JW, Hughes RA. Bootstrap inference for multiple imputation 
under uncongeniality and misspecification. Stat Methods Med Res. 
2020;29(12):3533–46.

	18.	 Vickers AJ, Elkin EB. Decision curve analysis: A novel method for evaluat-
ing prediction models. Med Decis Mak. 2006;26(6):565–74.

	19.	 Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg 
EW, et al. Transparent Reporting of a multivariable prediction model for 
Individual Prognosis Or Diagnosis (TRIPOD): explanation and elaboration. 
Ann Intern Med. 2015;162(1):W1–73. 

	20.	 R Core Team. R: A language and environment for statistical computing 
[Internet]. Vienna: R Foundation for Statistical Computing; 2020. Available 
from: https://​www.R-​proje​ct.​org/

	21.	 Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. 
Welcome to the tidyverse. J Open Source Softw. 2019;4(43):1686.

	22.	 Wilke CO. Cowplot: Streamlined plot theme and plot annotations for 
‘ggplot2’ [Internet]. 2019. Available from: https://​CRAN.R-​proje​ct.​org/​
packa​ge=​cowpl​ot

	23.	 Yoshida K, Bartel A. Tableone: Create ‘Table 1’ to describe baseline 
characteristics with or without propensity score weights [Internet]. 2020. 
Available from: https://​CRAN.R-​proje​ct.​org/​packa​ge=​table​one

	24.	 Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. 
REGEN-COV antibody combination and outcomes in outpatients with 
Covid-19. N Engl J Med. 2021;385(23):e81.

	25.	 Knight SR, Ho A, Pius R, Buchan I, Carson G, Drake TM, et al. Risk stratifica-
tion of patients admitted to hospital with covid-19 using the ISARIC WHO 
Clinical Characterisation Protocol: Development and validation of the 4C 
Mortality Score. BMJ. 2020;9:m3339.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.r-project.org/
https://cran.r-project.org/package=cowplot
https://cran.r-project.org/package=cowplot
https://cran.r-project.org/package=tableone

	Development of a prognostic model of COVID-19 severity: a population-based cohort study in Iceland
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Introduction
	Methods
	Ethical approval
	Study population
	The COVID-19 Outpatient Clinic
	Data sources
	Prognostic model development

	Results
	Study population
	Prognostic model performance
	Prognostic model usage

	Discussion
	Conclusion
	Acknowledgements
	References


