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Abstract 

Background:  The coronavirus disease 2019 (COVID-19) pandemic demands reliable prognostic models for estimat‑
ing the risk of long COVID. We developed and validated a prediction model to estimate the probability of known 
common long COVID symptoms at least 60 days after acute COVID-19.

Methods:  The prognostic model was built based on data from a multicentre prospective Swiss cohort study. 
Included were adult patients diagnosed with COVID-19 between February and December 2020 and treated as 
outpatients, at ward or intensive/intermediate care unit. Perceived long-term health impairments, including reduced 
exercise tolerance/reduced resilience, shortness of breath and/or tiredness (REST), were assessed after a follow-up 
time between 60 and 425 days. The data set was split into a derivation and a geographical validation cohort. Predic‑
tors were selected out of twelve candidate predictors based on three methods, namely the augmented backward 
elimination (ABE) method, the adaptive best-subset selection (ABESS) method and model-based recursive partition‑
ing (MBRP) approach. Model performance was assessed with the scaled Brier score, concordance c statistic and 
calibration plot. The final prognostic model was determined based on best model performance.

Results:  In total, 2799 patients were included in the analysis, of which 1588 patients were in the derivation cohort 
and 1211 patients in the validation cohort. The REST prevalence was similar between the cohorts with 21.6% 
(n = 343) in the derivation cohort and 22.1% (n = 268) in the validation cohort. The same predictors were selected 
with the ABE and ABESS approach. The final prognostic model was based on the ABE and ABESS selected predictors. 
The corresponding scaled Brier score in the validation cohort was 18.74%, model discrimination was 0.78 (95% CI: 0.75 
to 0.81), calibration slope was 0.92 (95% CI: 0.78 to 1.06) and calibration intercept was −0.06 (95% CI: −0.22 to 0.09).
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Background
The World Health Organization (WHO) reported 
over 571 million confirmed coronavirus disease 2019 
(COVID-19) infections globally through to the end of July 
2022 [1]. The acute COVID-19 infection numbers and 
subsequent treatments cause a high burden for the health 
care system, an economic burden and a potential burden 
to the patient. A COVID-19 infection may lead to long-
term health effects [2, 3]. Nowadays different definitions 
of long-term conditions exist. The WHO defines post 
COVID-19 with symptoms for at least 3 months after the 
acute COVID-19 infection [4]. The National Institute for 
Health and Care Excellence (NICE) of England, the Scot-
tish Intercollegiate Guidelines Network and the Royal 
College of General Practitioners of the United Kingdom 
distinguish between post-COVID-19 syndrome and 
ongoing symptomatic COVID-19 [5]. Post-COVID-19 
refers to symptoms persisting for longer than 12 weeks, 
whereas ongoing symptomatic COVID-19 is defined 
by symptoms lasting between 4 and 12 weeks. Ongoing 
symptoms and post-COVID-19 are often described as 
long COVID [5]. According to an umbrella review, the 
prevalence of long COVID in adults ranges from 2.3 to 
53.0% [3].

A prognostic model would allow to identify the 
patients at risk of developing common long COVID 
symptoms. Prognostic models are part of the stratified or 
personalized medicine, which aims at tailoring therapies 
to patients by considering individual patients’ character-
istics as for example genetics, psychosocial or biological 
factors [6, 7].

Due to the potential usefulness of prognostic models, 
it is not astonishing that the number of publications aim-
ing at deriving prognostic models has increased in recent 
years [8]. However, several systematic reviews raise 
doubts about the reliability of published prognostic mod-
els. High risk of bias, lack of validation and insufficient 
reporting were identified across different diseases [9–14]. 
For implementing higher standards of prognostic mod-
els’ quality and facilitating reporting, the Transparent 
Reporting of a Multivariable Prediction Model for Indi-
vidual Prognosis or Diagnosis (TRIPOD) statement and 
checklist was developed and published in 2015 [15, 16].

The COVID-19 pandemic demands for reliable prog-
nostic models for estimating the risk of long COVID. The 

main objective of this study was to develop and validate a 
prognostic model for the probability estimation of com-
mon long COVID symptoms between 60 and 425 days 
after acute COVID-19 infection in adult patients of a 
multicentre prospective Swiss cohort study.

Methods
This study was conducted and reported following the 
recommendations of the TRIPOD statement [15, 16]. 
The local ethics committee approved this study (BASEC 
#2020-01311).

Study design and study population
In total, 2799 patients of a multicentre prospective Swiss 
cohort study were included in the study. The prognostic 
model was developed with data from 1588 patients (1395 
outpatients and 193 hospitalized patients) and validated 
with 1211 patients (941 outpatients and 270 hospital-
ized patients). In-hospital patients from either ward and/
or intensive/intermediate care unit (ICU/IMC) were eli-
gible. The patients were at least 18 years old, diagnosed 
with COVID-19 (positive SARS-CoV-2 PCR test) at one 
of four Swiss hospitals, namely the University Hospi-
tal Basel, University Hospital Bern, University Hospital 
Zurich and Cantonal Hospital Baden, between February 
and December 2020. After a follow-up time between 60 
and 425 days, the patients answered a questionnaire. The 
questionnaire contained questions regarding the patient’s 
characteristics (for example sex, age, body mass index), 
symptoms and severity of the acute COVID-19 infection, 
comorbidities, cardiovascular risk factors and questions 
regarding the personal situation during the COVID-19 
pandemic. The questionnaire was available in German, 
French, Italian and English.

Cohort data for derivation and validation
According to the sample size calculation, the data set is 
large enough to split the data into a derivation and vali-
dation cohort. The data for model development and vali-
dation was separated based on geographical reasoning. A 
geographic validation instead of a standard cross-valida-
tion was chosen because a geographic validation is more 
meaningful [17]. The derivation cohort, used for the 
model development, was formed by patients recruited 
at the University Hospital Basel. The validation cohort 

Conclusion:  The proposed model was validated to identify COVID-19-infected patients at high risk for REST 
symptoms. Before implementing the prognostic model in daily clinical practice, the conduct of an impact study is 
recommended.
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contained the patients from University Hospital Zurich, 
University Hospital Bern and Cantonal Hospital Baden.

Outcome definition and follow‑up
More than 50 symptoms have been described to be 
potentially related to long COVID [3]. We defined a 
composite outcome, addressing three long COVID 
symptoms, namely reduced exercise tolerance/reduced 
resilience, shortness of breath and tiredness (REST). 
The focus was placed on the REST symptoms, because 
the symptoms are potentially treatable/modifiable, are 
common [2, 3] and represent a significant burden on 
the patient. The binary REST outcome, encoded with 0 
(no REST symptoms) and 1 (at least one of three REST 
symptoms), was assessed at follow-up. The follow-up 
was defined to be at least 60 days after acute COVID-19 
infection.

Candidate predictors
Twelve candidate predictors including patient’s demo-
graphic information, their number of comorbidities, the 
presence of cardiovascular risk factors, the number of 
symptoms during acute COVID-19, the severity of acute 
COVID-19 and gender-related characteristics were con-
sidered for inclusion in the prognostic model. A detailed 
description of the candidate predictors and their coding 
is given below:

•	 Patient demographics consisting of sex (1 female, 0 
male), age at presentation and body mass index

•	 Number of comorbidities, i.e. the sum of the follow-
ing pre-existing diseases prior to COVID-19 infec-
tion. Each pre-existing disease was coded with 0 
(absent disease) or 1 (present disease, e.g., maximum 
1 point for heart disease):

–	 Heart disease: Heart failure, narrowing of the coro-
nary arteries and/or heart attack, congenital heart 
disease, heart muscle inflammation (myocarditis)

–	 Vascular disease: deep vein thrombosis in the leg, 
pulmonary embolism, stroke, blood clotting disor-
der, blood disease

–	 Kidney disease
–	 Diseases of the immune system including autoim-

mune disease
–	 Lung disease: asthma, chronic obstructive pulmo-

nary disease, pulmonary hypertension
–	 Nervous system disease
–	 Liver disease
–	 Infectious disease including human immunodefi-

ciency virus and hepatitis
–	 Malignant cancer currently or within the last five 

years

–	 Psychiatric disease
–	 Rheumatic disease

•	 Cardiovascular risk factors including diabetes, high 
blood pressure, increased cholesterol and/or family 
history, coded with 1 (at least one condition present) 
or 0 (no condition present)

•	 Candidate predictors related to acute COVID-19 
infection:

–	 Absolute number of symptoms including fever, 
shortness of breath, coughing, loss of smell, loss 
of sense of taste, gastro-intestinal problems, physi-
cal weakness, tiredness, headache and other symp-
toms. The answer “I don’t remember” was counted 
as one symptom.

–	 Severity categorized in outpatients, hospitalized 
patients to normal ward and/or intensive or inter-
mediate care unit (ICU/IMC), coded with 1 outpa-
tients, 2 normal ward and 3 ICU/IMC.

•	 Gender-related candidate predictors:

–	 Responsibility for childcare/family member on a 
numeric rating scale from 1 (no responsibility or 
not applicable/low risk) to 6 (full responsibility/
high risk).

–	 Being the main responsible person for the house-
hold as factor candidate predictor with 1 (no/low 
risk), 2 (the partners contribute to roughly equal 
shares) and 3 (yes or I live alone/high risk).

–	 Feeling of stress at home measured on a numeric 
rating scale ranging from 1 (no stress/low risk) to 
10 (maximum stress/high risk).

The candidate predictors were chosen based on pre-
existing medical knowledge and discussions with clini-
cal experts. With the exception of the severity of acute 
COVID-19 infection and age at presentation, the candi-
date predictors were obtained by questionnaire at follow-
up. The patients provided information on their health 
status, and no clinical measurements were collected. 
The severity of acute COVID-19 infection as well as the 
patient’s age at first presentation was ascertained based 
on the patient file.

Sample size
The minimum sample size for developing and validat-
ing a prognostic model was calculated following the 
recommendations of Riley et al. [18, 19]. For the predic-
tion of the REST outcome, with an observed prevalence 
of approximately 22% in the derivation cohort, an esti-
mated variance explained by the prognostic model of 15% 
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[18], an assumed shrinkage factor of 0.932 and twelve 
candidate predictors (10 variables), 1006 patients are 
required. This corresponds to approximately 222 events 
and an event per predictor parameter ratio equal to 18 
in the derivation cohort. For validation, a sample size of 
988 patients is required. A calibration slope of 1, a cor-
responding 95% confidence interval width of 0.35 and a 
calibration intercept of 0 were assumed. The parameters 
Iα = 0.140, Iα,β = −0.154 and Iβ = 0.297 (for explanations 
reference is made to [19]) were calculated based on the 
linear predictors, based on the prediction model from the 
derivation cohort.

Missing data
Very few missing values in the candidate predictors 
were observed (max 1.6% in the variable responsibility 
for childcare/family member). They were replaced with 
a non-parametric iterative imputation method using a 
random forest algorithm [20]. In brief, the missing values 
from all candidate predictors are replaced temporarily. 
The iterative imputation methods starts with the candi-
date predictor xs containing the smallest proportion of 
missing values. A random forest with the non-missing 
values of xs as dependent variable and all candidate pre-
dictors as independent variables is built. Based on the 
random forest, the missing values of xs are imputed. The 
iterative imputation continues with the next candidate 
predictor and stops when a stopping criterion is reached. 
The iterative imputation method was performed on the 
derivation, validation and total cohort with the R package 
MissForest [21]. Missingness at random was assumed.

Statistical analysis methods
Candidate predictors were summarized with descriptive 
statistics, with median and interquartile range (IQR) for 
continuous candidate predictors and counts and percent-
age for categorical candidate predictors by cohort. The 
standardized mean difference (SMD) between the deriva-
tion and validation cohort was calculated. A SMD greater 
than 0.1 was considered as indicating imbalance [22].

The prognostic model was developed by (I) selecting 
relevant predictors by applying three methods and (II) 
estimating the parameters at the selected relevant pre-
dictors. Based on the validation cohort, the (III) three 
models were geographically validated and the (IV) final 
prognostic model was determined. A detailed description 
of the four steps is given in the following.

I) Selecting relevant predictors
A global logistic regression model was fitted with the 
REST outcome as dependent variable and all candi-
date predictors as independent variables. Interactions 
between age and number of comorbidities, age and body 

mass index, age and responsibility for childcare/family 
member, sex and presence of at least one cardiovascular 
risk factor, and body mass index and number of comor-
bidities were included in case of evidence for an inter-
action (p-value ≤ 0.05). Interactions were preselected 
based on clinical reasoning. The assumptions of the logis-
tic regression model were checked with leverage plots 
and Tukey-Anscombe plots. Nonlinear relationships 
between individual continuous candidate predictors and 
the REST outcome were investigated visually by fitting 
a generalized additive model [23]. The generalized addi-
tive model was fitted with the REST outcome as depend-
ent variable and all candidate predictors as independent 
variables, with smooth functions (penalized regression 
splines) for the continuous or ordinal candidate predic-
tors age, body mass index, responsibility for childcare/
family member and feeling of stress at home. Collinear-
ity may reduce the accuracy of the estimated coefficients 
[17], and for this reason, linear relationships between 
continuous candidate predictors were assessed by calcu-
lating Pearson’s correlation r and the variance inflation 
factor (VIF) [24]. Values of |r| ≥ 0.7 and/or VIF ≥ 5 were 
considered as problematic [25]. A high VIF or r indicates 
that the calculated regression coefficients are unstable. 
Variable selection was performed based on three meth-
ods, including augmented backward elimination (ABE) 
[26], adaptive best-subset selection (ABESS) [27] and 
model-based recursive partitioning (MBRP) [28]. In the 
following, each method is described.

ABE  ABE combines the backward elimination method 
with the change-in-estimate criterion. A detailed descrip-
tion of the method is given by Dunkler et al. [26]. In brief, 
ABE starts with the global logistic model. More impor-
tant predictors can be predefined as ‘passive’ candidate 
predictors, less important predictors as ‘active’ candidate 
predictors. ABE will only be performed on active can-
didate predictors or candidate predictors of unknown 
importance. Backward elimination can be based on the 
significance level α , Akaike’s information criterion (AIC) 
or Bayesian information criterion (BIC). Candidate pre-
dictors not selected with backward elimination will be 
evaluated further with the change-in-estimate criterion. 
The change-in-estimate criterion evaluates the change in 
the coefficient of a passive candidate predictor by remov-
ing an active candidate predictor repeatedly. By applying 
backward elimination only, an important predictor might 
falsely be excluded. The additional change-in-estimate 
criterion in the ABE method minimizes this risk. Back-
ward elimination was conducted based on AIC and with 
the threshold of the relative change-in-estimate criterion 
set equal to 0.05 [26] by using the R package abe. Candi-
date predictors were neither specified as ‘passive only’ nor 
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‘active only’ variables. In other words, all candidate pre-
dictors were classified as predictors of unknown impor-
tance.

ABESS  The algorithm selects a few relevant predic-
tors out of a set of candidate predictors, so that the cor-
responding prognostic model has the highest prediction 
accuracy [27]. For this, the algorithm builds an initial first 
set S1 , consisting of candidate predictors that are most 
correlated with the outcome. The remaining candidate 
predictors form a second set S2 . Less important candidate 
predictors from S1 are replaced iteratively with relevant 
candidate predictors from S2 by the ABESS algorithm 
until the model error is minimized. The most suitable 
model sparsity level is determined by a data-driven proce-
dure using the special information criterion developed for 
ABESS. The algorithm for the best-subset selection prob-
lem is implemented in R with the package abess and the 
function abess.

MBRP  The MBRP algorithm builds a decision tree 
[28]. In brief, the algorithm starts by first fitting a logis-
tic regression model to the full derivation cohort. Model 
parameter instabilities are assessed. In case of instabilities 
in candidate predictor estimates, the derivation cohort 
will be split into two child nodes at the highest instability. 
The split point that locally optimizes the negative log-like-
lihood is determined and one logistic regression model 
per node (in other words per split) is fitted. The procedure 
is repeated in each child node until there is no further evi-
dence for parameter instability. The MBRP algorithm can 
handle nonlinear relationships and interactions between 
candidate predictors. All predictors could potentially be 
used for partitioning. In R, the MBRP algorithm is imple-
mented in the function glmtree of the package partykit.

II) Estimation of parameters
The logistic regression model MABE and MABESS was fit-
ted containing all selected predictors found with the 
ABE and ABESS method, respectively, as independent 
variables, and the REST outcome as dependent variable. 
Non-linear and non-additive (interaction) effects were 
investigated [26]. The logistic regression model MMBRP 
was fitted containing the selected predictors found with 
the MBRP approach as independent variables and the 
REST outcome as dependent variable.

III) Model validation
The model performance of MABE , MABESS and MMBRP 
was assessed by evaluating the overall performance, the 
relative performance (discrimination) and the absolute 
performance (calibration) in the validation cohort. An 
internal validation was conducted as well.

Overall performance  The overall performance was 
assessed with the scaled Brier score. The Brier score can 
be calculated with Brier =  1

N
N
i = 1(yi − ŷi)

2 , with the 
number of patients N, actual outcome y and predicted 
probability ŷ for each patient i [17]. A perfect prognos-
tic model has a Brier score of 0. Since the Brier score 
depends on the prevalence of the outcome, the interpre-
tation of the Brier score can be simplified by scaling the 
Brier score from 0% (non-informative model) to 100% 
(perfect model): Brierscaled = (1− Brier

Briermax
)× 100 , with 

Briermax = 1
N

∑N
i = 1 yi × (1− 1

N

∑N
i = 1 yi).

Relative performance  The model discrimination is 
the model’s ability to differentiate between the patients 
with and without the outcome [17]. Model discrimina-
tion was summarized with the concordance c statistic 
and its corresponding 95% confidence interval, calcu-
lated with a bootstrap resampling approach. Due to 
the binary outcome, the c statistic is equal to the area 
under the receiver operating characteristic (ROC) 
curve (AUC), a summary statistic of the ROC curve. 
The ROC curve contains the sensitivity on the y-axis 
and 1 - specificity on the x-axis. A perfect prognostic 
model has an AUC of 1; a non-informative prognostic 
model has an AUC of 0.5.

Absolute performance  The agreement between the 
actual outcome y based on a suitable binning and the pre-
dicted probability ŷ is shown with a calibration plot [17]. 
A calibration slope smaller than 1 is an indicator for over-
fitting, or in other words, the predicted probabilities are 
higher than the observed outcome rates. In R, the func-
tion val.prob.ci.2 of the package CalibrationCurves was 
used to plot the calibration plots and calculate the cali-
bration intercept, calibration slope and AUC. Calibration 
intercept corresponds to calibration-in-the-large [29].

IV) Final prognostic model
The final prognostic model was defined by the model 
with the best model performance regarding calibration 
intercept, calibration slope and AUC. The final prognos-
tic model was also fitted to the total cohort (derivation 
and validation cohort).

Software
The statistical analysis was conducted with the statis-
tical software R, version 4.2.0 [30]. A dynamic report-
ing approach with a fully scripted analysis was chosen. 
The following R base packages (base, datasets, graphics, 
grDevices, grid, methods, parallel, splines, stats, stats4, 
utils) and other packages (abe 3.0.1, abess 0.4.5, bestglm 
0.37.3, Cairo 1.5.15, CalibrationCurves 0.1.2, colorspace 
2.0.3, doParallel 1.0.17, doRNG 1.8.2, dplyr 1.0.9, foreach 
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1.5.2, Formula 1.2.4, ggplot2 3.3.6, Hmisc 4.7.0, iterators 
1.0.14, lattice 0.20.45, leaps 3.1, libcoin 1.0.9, magrittr 
2.0.3, mgcv 1.8.40, missForest 1.5, mvtnorm 1.1.3, nlme 
3.1.157, partykit 1.2.15, randomForest 4.7.1.1, readxl 
1.4.0, regclass 1.6, rms 6.3.0, rngtools 1.5.2, rpart 4.1.16, 
skimr 2.1.4, SparseM 1.81, survival 3.3.1, tableone 0.13.2, 
VGAM 1.1.6, VIM 6.1.1, xtable 1.8.4) were used.

Results
The characteristics of the patients in this study are given 
in Table 1. In total, 2799 patients participated in the study. 
1588 patients were included in the derivation cohort and 
1211 patients in the validation cohort. Fifty-four per-
cent of the patients were male. Missing values occurred 
rarely, specifically in the candidate predictors body mass 
index (0.3%), presence of at least one cardiovascular risk 
factor (0.4%), responsibility for childcare/family mem-
bers (1.6%), main responsibility for household (0.9%) 
and perceived stress level at home (0.7%). The following  
candidate predictors had a SMD between derivation and 
calibration cohort greater than 0.1: Sex (SMD =  0.105), 
age at presentation (SMD  =  0.122), the severity of 
acute COVID-19 (SMD  =  0.316) and responsibility for 

childcare/family member (SMD  =  0.160). In the deriva-
tion cohort, the median age was higher than within the 
patients of the validation cohort, whereas the IQR was 
similar. The proportion of women participating was 
higher than in the validation cohort. In the validation 
cohort, more patients were admitted to the ward or the 
ICU/IMC and less patients seemed to be responsible for 
childcare/family members. The median follow-up time 
was 162 days (146 to 282) in the derivation cohort and 
176 days (127 to 225) in the validation cohort. The REST 
prevalence was similar between the cohorts, with 21.6% 
(n = 343) in the derivation cohort and 22.1% (n = 268) in 
the validation cohort.

The largest Pearson’s correlation coefficient (r =  0.34) 
was calculated between the candidate predictors age at 
presentation and number of comorbidities. All Pear-
son’s correlation coefficients were shown for the deriva-
tion cohort in Additional  file  1. The highest VIF value 
was found for age (VIF =  1.48). The final global logistic 
regression model, including all candidate predictors, 
was fitted without interactions, because no evidence for 
an interaction between age and body mass index, age 
and number of comorbidities, age and responsibility for 

Table 1  Study participants characteristics, stratified by data cohort

Legend: ICU/IMC intensive or intermediate care, IQR interquartile range, SMD standardized mean difference between derivation and validation cohort

Derivation cohort Geographic validation 
cohort

SMD Missing 
values (%)

n 1588 1211

Female sex (%) 765 (48.2) 520 (42.9) 0.105 0.0

Age at presentation in years (median [IQR]) 44.00 [30.00, 56.00] 38.00 [29.00, 56.00] 0.122 0.0

Body mass index in kg/m2 (median [IQR]) 24.65 [22.27, 28.05] 24.22 [21.77, 27.34] 0.098 0.3

Number of comorbidities (median [IQR]) 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 0.020 0.0

Presence of at least one cardiovascular risk factor (%) 489 (30.9) 361 (29.9) 0.023 0.4

Number of acute COVID-19 symptoms (median [IQR]) 5.00 [3.00, 6.00] 5.00 [3.00, 6.00] 0.041 0.0

Severity of acute COVID-19 (%) 0.316 0.0

   Outpatients 1395 (87.8) 941 (77.7)

   Ward 147 (9.3) 151 (12.5)

   ICU/IMC 46 (2.9) 119 (9.8)

Responsibility for childcare/family member (median [IQR]) 1.00 [1.00, 4.00] 1.00 [1.00, 3.00] 0.160 1.6

Main responsibility for household (%) 0.026 0.9

   No 368 (23.4) 294 (24.5)

   Partners contributed  approximately equally 533 (33.9) 398 (33.1)

   Yes or live alone 672 (42.7) 509 (42.4)

Feeling of stress at home (1 no, 10 max) (median [IQR]) 3.00 [2.00, 5.00] 3.00 [2.00, 5.00] 0.084 0.7

Study site 0.0

   University Hospital Basel 1588 (100.0) 0 (0.0)

   University Hospital Zurich 0 (0.0) 897 (74.1)

   University Hospital Bern 0 (0.0) 36 (3.0)

   Cantonal Hospital Baden 0 (0.0) 278 (23.0)
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childcare/family member, sex and presence of at least one 
cardiovascular risk factor, and body mass index and num-
ber of comorbidities was found. Furthermore, there was 
no evidence for non-linear relationships following graphi-
cal display (Additional file 2).

According to ABE and ABESS methods, the same pre-
dictors were selected, specifically the number of acute 
COVID-19 symptoms, severity of the acute COVID-19, 
feeling of stress at home, age at presentation, sex, pres-
ence of at least one cardiovascular risk factor, responsi-
bility for childcare/family member and body mass index. 
The following five candidate predictors were selected 
with the MBRP approach (Fig.  1): number of acute 
COVID-19 symptoms, severity of the acute COVID-19, 
feeling of stress at home, age and presence of at least one 

cardiovascular risk factor. The first partitioning variable 
was the number of acute COVID-19 symptoms. Accord-
ing to the generalized linear model, patients with more 
than nine symptoms had on average approximately an 
80% risk for REST symptoms. Having equal or less than 

nine symptoms and being an outpatient reduced the risk 
on average to approximately 28%.

In the following, the results of the validation cohort are 
given. The Brier score and scaled Brier score of MABE , 
MABESS was 0.14 and 18.74%, respectively. In contrast, 
MMBRP had a Brier score and scaled Brier score of 0.15 
and 12.78  %, respectively. The c statistic was 0.78 (95% 
CI: 0.75 to 0.81) for MABE and MABESS and 0.74 (95% CI: 
0.70 to 0.77) for MMBRP . The calibration plots are shown 
in Fig. 2. The final prognostic model (Table 2) was based 
on the ABE and ABESS method because model perfor-
mance (calibration slope and c-statistic) was better. The 
corresponding results of the derivation cohort are given in 
Additional file 3.

The prediction of the REST outcome can be calculated 
with the following formula:

with feeling of stress at home ranging from 1 (no stress) 
to 10 (maximum stress) and responsibility for childcare/
family member ranges from 1 (no responsibility/not 
applicable) to 6 (full responsibility). A patient’s predicted 
probability ŷ for REST symptoms can be calculated with 

S = −4.946

+0.349 × number of acute COVID-19 symptoms

+0.339 × severity of acute COVID-19 ward

+1.738 × severity of acute COVID-19 intensive or intermediate care

+0.128 × feeling of stress at home

+0.013 × age at presentation

+0.351 × female sex

+0.346 × presence of at least one cardiovascular risk factor

−0.096 × responsible for childcare/family member

+0.022 × body mass index,

Fig. 1  Results of the the model-based recursive partitioning (MBRP) approach
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ŷ =
exp(S)

1+exp(S) . For comparison purposes, the coefficients 
were re-estimated on the total cohort (derivation and val-
idation) and the coefficients are given in Additional file 4, 
resp. Table 3.

In the following, an example for the calculation of the 
REST outcome is given. The patient had seven acute 
COVID-19 symptoms and was admitted to the ward 
during the acute COVID-19 disease. The stress level at 
home was rated as 4. The patient is 38 years old and 
a woman, has two cardiovascular risk factors, has no 
children at home and is not responsible for another 
family member. The patient has a BMI of 22. The prob-
ability for the REST outcome is 50.57% and calculated 
as follows:

with exp(0.023)
1+exp(0.023) × 100 = 50.57 %.

0.023 = −4.946

+0.349× 7

+0.339× 1

+1.738× 0

+0.128× 4

+0.013× 38

+0.351× 1

+0.346× 1

−0.096× 0

+0.022× 22,

Table 2  Logistic regression model based on the ABE and ABESS variable selection, calculated on the derivation cohort

Legend: CI confidence interval, OR odds ratio. Feeling of stress at home ranges from 1 (no stress) to 10 (maximum stress) and responsibility for childcare/family 
member ranges from 1 (no responsibility/not applicable) to 6 (full responsibility)

Estimate OR 95 % CI for OR

(Intercept) −4.95

Number of acute COVID-19 symptoms 0.35 1.42 from 1.33 to 1.51

Severity of acute COVID-19 Ward 0.34 1.40 from 0.90 to 2.20

Severity of acute COVID-19 ICU/IMC 1.74 5.68 from 2.86 to 11.31

Feeling of stress at home 0.13 1.14 from 1.07 to 1.21

Age at presentation [years] 0.01 1.01 from 1.00 to 1.02

Female sex 0.35 1.42 from 1.08 to 1.87

Presence of at least one cardiovascular risk factor 0.35 1.41 from 1.05 to 1.91

Responsibility for childcare/family member −0.10 0.91 from 0.84 to 0.98

Body mass index [kg/m2] 0.02 1.02 from 0.99 to 1.05

Fig. 2  Calibration plots for the logistic regression models MABE = MABESS (left side) and MMBRP (right side)
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Discussion
In this study, a prognostic model to estimate the proba-
bility of common REST symptoms in COVID-19 patients 
was developed and validated. Long COVID can have seri-
ous consequences on daily living, employment, social 
functioning, mental health and quality of life for months 
after the acute COVID-19 infection [3]. An early detec-
tion of high-risk patients directly after the acute COVID-
19 would allow to support patients at an early stage. 
Interventions such as tailored exercise training, breathing 
exercise and psychological support could have a positive 
effect on the further course of the disease and reduce the 
socio-economic burden of long COVID.

Predictors were selected and estimated based on 
three methods, namely ABE, ABESS and MBRP. The 
same predictors were selected with the ABE and 
ABESS method. The model performance (in regard 
to c statistic and calibration slope) of MABE = MABESS 
was better compared to MMBRP . The calibration slope 
for MABESS = MABE indicated slight overfitting. In par-
ticular, higher probabilities were overestimated. The 
MBRP approach allows physicians to determine a 
patient’s risk for long COVID by following a decision 
tree and may for this reason be easier to implement 
in clinical practice. The decision tree contained nine 
subtrees for predicting the REST outcome. Patients 
within a subtree had the same risk estimate for REST 
symptoms, resulting in nine different predicted 
probabilities.

To the best of the authors’ knowledge, two prognos-
tic models for the prognosis of long COVID were pub-
lished so far [31, 32]. In the first published prognostic 
model [31], the probability for long COVID lasting 
for at least 28 days was calculated with the predic-
tor number of acute COVID-19 symptoms, age and 
sex based on self-reported data of 2149 patients from 
Sweden, the UK and the USA. The second published 
prognostic model [32] included age, number of acute 
COVID-19 symptoms, history of asthma bronchiale, 
the antibodies total Immunoglobulin (Ig) M, IgG3 and 
the interaction between IgM and IgG3. The model was 
developed based on 134 patients (85 patients with the 
long COVID outcome) from four Swiss hospitals in 
and around Zurich. Model validation was performed 
with data of 389 patients (212 patients with long 
COVID). In the derivation cohort, 53.9% patients with 
a mild COVID-19 course and 82.2% patients with a 
severe COVID-19 course suffered from long COVID. 
In the validation cohort, 54.7% patients reported long 
COVID. Long COVID was defined similarly in both 
publications. The prognostic models for the prog-
nosis of long COVID mentioned above could not be 

validated with our data due to different long COVID 
symptoms and follow-up time and because immuno-
globulins such as IgM and IgG3 were not assessed in 
our cohort.

Our study has several strengths. These include the 
large number of patients and relevant candidate predic-
tors. Additionally, the geographic validation can be con-
sidered as an external validation of the model. Further, 
the percentage of missing data was low. The limitations 
of the study were the following: patients with a wide 
variety of disease severity (from outpatient to ICU/
IMC) were included. Furthermore, there was heteroge-
neity in the follow-up time, which might have reduced 
the performance of the prognostic model. However, the 
median follow-up time was similar in derivation and 
validation cohort. Nevertheless, theoretically, it is pos-
sible that some patients have suffered from persistent 
REST symptoms but have since recovered from their ill-
ness. At the design phase of this study, however, no clear 
guidelines regarding timeframes in the context of long 
COVID existed. For this reason, the minimum follow-
up period was 60 days (corresponding to 8.6 weeks) in 
our study. As a sensitivity analysis, the recent timeframe 
definition of post-COVID, i.e. persisting symptoms last-
ing longer than 12 weeks, was applied post-hoc, lead-
ing to an exclusion of 54 patients from the analysis. 
The results were comparable as the same variables were 
selected and the coefficients of the logistic regression 
model were similar.

Our study has implication for future research 
in the sense that the prognostic model developed 
and validated in this study should be validated in 
new patients (e.g. from different settings, different 
COVID-19 mutations, and other countries). Further-
more, different presentation methods of the model 
could be developed. Before implementing the devel-
oped and validated prognostic model for estimating 
the risk of REST symptoms in daily clinical practice, 
it is advisable to evaluate the model impact. This 
might be done with a randomized ‘impact study’ [33]. 
The aim of the impact study would be to investigate if 
the application of the prognostic model is leading to 
better patient outcomes by earlier detection or reduc-
tion of REST symptoms.

Conclusions
The proposed model was validated to identify COVID-
19-infected patients at high risk for REST symptoms. 
Before implementing the prognostic model in daily 
clinical practice, the conduction of an impact study is 
recommended.
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