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Abstract 

Clinical prediction models must be appropriately validated before they can be used. While validation studies are 
sometimes carefully designed to match an intended population/setting of the model, it is common for validation 
studies to take place with arbitrary datasets, chosen for convenience rather than relevance. We call estimating how 
well a model performs within the intended population/setting “targeted validation”. Use of this term sharpens the 
focus on the intended use of a model, which may increase the applicability of developed models, avoid mislead-
ing conclusions, and reduce research waste. It also exposes that external validation may not be required when the 
intended population for the model matches the population used to develop the model; here, a robust internal valida-
tion may be sufficient, especially if the development dataset was large.
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Background
Clinical prediction models (CPMs) calculate risk of cur-
rent (diagnostic) and future (prognostic) events for indi-
viduals [1]. For example, QRISK calculates 10-year risk 
of cardiovascular outcomes [2], and EuroSCORE calcu-
lates risk of in-hospital mortality following major cardiac 
surgery [3]. The traditional pipeline for CPM produc-
tion begins with model development, including internal 
validation; this is followed by external validations of the 
model’s performance in different data; the model’s impact 
may then be tested (e.g., whether its use improves health 
outcomes), and if considered suitable, the model may 
be implemented. This pipeline applies equally whether 
models are developed using AI or machine learning tech-
niques, or regression-based models.

Internal validation is an examination of model perfor-
mance in the same dataset that was used to develop the 
CPM. It is important that internal validation corrects for 
in-sample optimism, which is the tendency of models to 
overfit (perform better in) the development data com-
pared with other data from the same population. This is 
ideally done using cross-validation or bootstrapping, but 
is also commonly done by splitting the dataset into train-
ing and validation subsets. For example, in the develop-
ment and internal validation of a prognostic model for 
muscle injury in elite soccer players, an apparent c-index 
(a measure of the model’s ability to distinguish cases from 
non-cases, where a value of 1 is perfect, and 0.5 is no 
better than chance) of 0.64 reduced to 0.59 when using 
bootstrapping for optimism adjustment [4].

In contrast, external validation is an examination of 
model performance in different dataset(s), often regarded 
as a gold-standard of model ‘credibility’. Selection of 
the dataset(s) is critical, because model performance is 
highly dependent on the population and setting [5, 6]. 
Here, population refers to the group of individuals under 
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consideration—e.g., people of a certain age, people in a 
specific country, people who suffer from a particular dis-
ease (and any combinations thereof ). Setting refers to 
the place in which the CPM would be used, such as in 
hospital, primary care, general population, etc. Accord-
ingly, there are at least three types of external validation 
studies. The first is where researchers investigate model 
performance in one particular population and setting 
carefully chosen to match the intended use of the model. 
This might be the same as (or similar to) the population/
setting used for model development (assessing reproduc-
ibility), or might be a different population/setting (assess-
ing transportability, e.g., evaluating if a model developed 
for adults has predictive value in children). A second 
type is where researchers investigate model performance 
across multiple populations and settings, where each is 
relevant to the intended use (assessing generalisability) 
[7, 8]; for example, in an individual patient data meta-
analysis of performance across multiple countries, with 
a focus on identifying heterogeneity in performance [5]. 
In these first two types, the validation dataset(s) match 
the target population(s) and setting(s) where the CPM is 
intended for deployment, so the validation is meaning-
ful (provided the methodological quality is also high). A 
third type is where researchers examine model perfor-
mance in a new, conveniently available dataset, which is 
neither representative of the population nor the setting 
of interest. For example, in a comprehensive review of 
COVID-19 external validation studies, 35 studies were 
found to be at high risk of bias in the participant/data 
domain, which reflects the use of inappropriate dataset(s) 
for external validation [9]. In these cases, the validation 
dataset bears little relevance to any target population 
and setting, and thus the findings have the potential to 
mislead.

The aim of this paper is to describe why it is necessary 
to validate a CPM in a population and setting that rep-
resents each intended target population and setting of 
the CPM, and in a manner that reflects each intended 
use. These populations and settings need to be clearly 
reported in every validation study. We use the term tar-
geted validation, which emphasises that how (and in what 
data) to validate a CPM should depend on the intended 
use of the model.

Targeted validation
When a CPM is developed, it should be done so with a 
clearly defined intended use and population: i.e., when 
predictions are to be made, in whom, and for what pur-
pose. Validation should be carried out to show how well 
the CPM performs at that specific task—a targeted vali-
dation. A focus on targeted validation has several advan-
tages. First, a targeted validation study provides estimates 

of predictive performance for the intended target setting, 
so are extremely informative for that setting. Second, the 
CPM may be (perhaps subsequently) used in many clini-
cal settings and populations—each of which may require 
its own targeted validation. For example, EuroSCORE 
was developed to predict risk of in-hospital mortality 
following major cardiac surgery [3, 10], but validation 
studies have examined if it could be used in other car-
diac surgical interventions [11, 12], i.e., a different popu-
lation and setting. For any given setting, one can assess 
if existing validation studies sufficiently capture the new 
intended use(s)/population(s), or if further validations 
are required. Similarly, where populations that do not 
match the target are used for validation, the differences 
can be highlighted as a ‘validation gap’ to be acknowl-
edged or addressed (see “Validation gap” section below). 
Third, it focuses intention on developing and validating 
models that have clearly defined uses in practice, since 
the intended use needs to be defined a-priori, thereby 
avoiding research waste.

To motivate this idea, consider the following example 
(see Table 1). A CPM called T-MACS was developed for 
the prediction of acute myocardial infarction in patients 
presenting to the emergency department with chest pain 
[13]. Initially, suppose the intended use of the CPM is to 
aid clinical decision-making within Hospital A in Man-
chester, UK. The targeted validation should assess how 
well the model performs in (a representative sample of ) 
patients from Hospital A, and not how the model gen-
eralises to other hospitals [15, 16]. Subsequently, sup-
pose Hospital B in London, UK, wishes to implement the 
CPM; a new targeted validation should be undertaken 
to estimate model performance in Hospital B. The CPM 
has not changed but the intended target population has, 
hence the required validation is different.

Different targeted validation exercises are important 
because performance in one target population gives little 
indication of performance in another [6]. Indeed, perfor-
mance is likely highly heterogeneous across populations 
and settings [5], due to differences in case mix (i.e., the 
distributions of the patient characteristics in the popula-
tion), baseline risk, and predictor-outcome associations. 
Therefore, any discussion of validity must be in the con-
text of the target population and setting. It is incorrect 
to refer to a model as ‘valid’ or ‘validated’ in general—we 
can only say that a model is ‘valid for’ or ‘validated for’ 
the particular populations or settings in which this has 
been assessed. Targeted validation addresses this by first 
identifying the population and setting where a model 
is intended to be used, and second identifying suitable 
datasets for validations that match the intended popula-
tion and setting. In addition to avoiding acting on poten-
tially misleading validation studies, a focus on targeted 
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validation will also reduce research waste, since being 
explicit about the target population and use will avoid 
uninformative studies being conducted. To be concrete, 
a validation study should not take place unless a popu-
lation and setting has been identified in which the CPM 
could potentially be used, and the validation study should 
be designed to estimate performance in that population 
and setting.

This is not a new idea: we are simply making it explicit. 
Riley et al. [5], state ‘external validation uses new partici-
pant level data, external to those used for model devel-
opment, to examine whether the model’s predictions are 
reliable (that is, accurate enough) in individuals from 
potential population(s) for clinical use’ while Wessler 
et al. [6], remark that we should not accept a CPM in a 
particular context ‘unless CPM performance is specifi-
cally known to be excellent in populations like those’. It 
is also emphasised in the PROBAST risk of bias tool for 
systematic reviews and meta analyses of CPMs, where 
the ‘applicability’ domain checks whether included 
studies consider the same setting and population as the 
review question [17], emphasised in a recent scoping 
review of guidance for prediction models using AI [18], 
and included in the protocol for reporting and risk of bias 
tools for prediction models developed using AI [19]. Tar-
get validity in the clinical trial literature, which quantifies 
bias in transporting a trial-estimated causal effect to a 
target population, has a similar motivation [20].

Moreover, the targeted validation framework sug-
gests that there may be contexts where the data used 
for validation could be the same as for development. In 
the first part of the example above, the closest data to 

the intended target population (Hospital A) may be the 
development data (Table 1). In this case, there is little to 
be gained through evaluating performance in other hos-
pitals; instead, the focus should be on a thorough internal 
validation using the development dataset. This internal 
validation is likely to give a robust estimate of the model’s 
performance when appropriate steps were taken during 
the model development to ensure the study has adequate 
sample size [21], that overfitting is minimised [22], that 
in-sample optimism is estimated precisely and corrected 
for [8], and that the optimism was examined by replay-
ing all the model development steps. Moreover, the 
internal validation should include, for example, tempo-
ral or demographic subgroups to test the reproducibil-
ity and generalisability of the model. Provided all these 
steps are thoughtfully conducted, internal validation can 
be viewed as a reliable measure of performance in the 
intended population, and the lack of any external valida-
tion is not a concern. Indeed, whenever a new model is 
developed, the model development data should always 
be chosen according to the anticipated target population 
and setting: for example, if a model is intended to be used 
in UK primary care, then UK primary care data should be 
used to develop the model.

One size fits all versus tailored models
Consider the situation where we wish to implement 
T-MACS across all hospitals in the UK (Table  1). Here, 
we could evaluate the CPM in each hospital, and then—
depending on the observed performance, and a sub-
sequent impact assessment study—choose to either 
deploy the model as originally specified, or deploy it after 

Table 1  Consider T-MACS—a CPM developed for the prediction of acute myocardial infarction in patients presenting to the 
emergency department with chest pain [13]. Suppose our intended use is initially for hospitals within the Greater Manchester (UK) 
area, and then we are considering rolling out the CPM across the UK

External validation where… Example

…a particular population and setting of intended use is of interest T-MACS was developed using data from a hospital in Manchester, and validated 
using data from other hospitals in Manchester [13]. Hence the original develop-
ment and validation results match the intended use.
If, however, we wished to use T-MACS in London, UK, the validation above would 
be of limited value. We would need a new targeted validation to examine perfor-
mance in London, UK.

…multiple populations and settings of intended use are of interest Suppose we wished to implement T-MACS across all hospitals in the UK. Then, 
validation would be required across many hospitals in the UK, potentially using 
individual patient data meta-analysis of performance across hospitals to evaluate 
heterogeneity in performance [5].
Such a validation could also be useful to indicate expected performance of 
T-MACS in UK hospitals not included in the validation set. This is because, if 
heterogeneity in performance is low across the included hospitals, this gives some 
confidence that the CPM will perform well in all areas in the UK.

…an arbitrary dataset is used without consideration of the 
intended population or setting

A further validation was conducted in hospitals in Australia and New Zealand 
[14]. For our intended use, this validation offers little evidence. However, it would 
be very valuable if we were considering using the model in Australia and New 
Zealand.
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updating it for each particular context [23, 24]. This situ-
ation—in which one wishes to implement a CPM across 
multiple populations/settings—is common, and there are 
two main ways of achieving this: building a single CPM 
for use in all target settings or building tailored CPMs for 
each target setting.

Under the first approach, one needs to assess generalis-
ability of the CPM [25–27]. A natural way of doing this 
is to obtain (new) datasets from multiple populations 
(e.g., across countries, or across clusters of data within 
electronic health records), evaluate performance of the 
relevant model in each dataset/cluster, and then meta-
analyse [28], with particular attention to quantifying and 
identifying sources of heterogeneity [5]. Alternatively, we 
might conduct internal-external cross-validation to com-
bine model development with assessment of model gen-
eralisability across the multiple populations/settings [5, 8, 
29].

However, developing a model that generalises across 
multiple populations is difficult, not least because pre-
dicted risks are unlikely to calibrate well with observed 
risks in every population and setting. Methods are 
emerging that support this [30], and incorporating causal 
inference principles is also likely to help generalisability 
and transportability [31, 32]. Nevertheless, insisting on a 
model with broad general applicability comes at the price 
of reduced performance in specific settings or popula-
tions [15]. Model performance being worse in specific 
subgroups also raises concerns over fairness [33]. As 
such, the second approach—in which one starts with a 
CPM developed using sufficient (and appropriate) data 
[21], and then tailors or updates it to local settings [23, 
24]—may be appealing. This implies targeted updating of 
a given CPM updated for specific target populations/set-
tings; following this, targeted validation exercises would 
be needed in each local population/setting to examine 
the locally tailored CPM. However, the feasibility of hav-
ing a large family of tailored CPMs is a challenge with 
regard to provenance and maintenance.

Validation gap
Focus on targeted validation makes the interpretation 
of the predictive performance clearer. If the target pop-
ulation is patients in Hospital B, then we need to esti-
mate model performance in Hospital B. If we can obtain 
data, and have the resource, to validate the model in 
this population, then the corresponding performance 
estimates are appropriate. However, if the validation 
had instead been performed in Hospital C (for example, 
if there is little or inadequate historical data available in 
Hospital B, or resource constraints do not permit the 
validation study to be conducted in Hospital B), then 

targeted validation allows one to infer how applicable 
the predictive performance estimates we obtain might 
be for Hospital B given the difference between the two 
settings: a ‘validation gap’. Identification of a validation 
gap suggests caution in using the CPM within the tar-
get population. In this situation, we recommend that 
differences between the validation population and tar-
get population can be described qualitatively, such as 
by contrasting the setting, case-mix and patient eligi-
bility criteria; or quantitatively (where sufficient data 
exists), by examining membership models for whether 
individuals belong to the validation population or tar-
get population [25, 34]. We then recommend being 
explicit about the required assumptions for the valida-
tion results to transport, and to address the differences 
where possible, such as through reweighting the valida-
tion population to resemble the target population [35]. 
This reweighting could be done at individual level, or 
at group level—for example, if performance is known 
to vary across groups of patients in different disease 
subgroups, then performance in each of the subgroups 
could be reported in the validation population, then 
combined through appropriate weighting to estimate 
performance in the target population. Such reweighting 
would allow estimation of global performance meas-
ures such as AUC, while the weights themselves can be 
used to infer where the differences between the valida-
tion and target are largest (e.g., under-represented sub-
groups), and therefore where the CPM may have poor 
local performance in the target population (i.e., issues 
with strong calibration as defined in [36]). The valida-
tion gap concept can also help researchers to decide 
when a full new validation exercise might not be nec-
essary—i.e., where existing validations are performed 
in sufficiently similar populations and settings, and the 
model has been shown to be generalisable.

A particular challenge that targeted validation 
emphasises is that the implementation of the CPM 
will always be after validation and subsequent impact 
study—so a validation gap in time will always be pre-
sent [37]. CPMs can be prone to changes in the under-
lying distribution, which causes calibration drift and 
other performance issues, particularly in contexts 
such as surgical risk [38], and infectious disease risk 
[39]. Therefore, model development strategies that 
allow a CPM to respond to changes over time—such 
as dynamic modelling [40, 41] or temporal recalibra-
tion [42]—are very promising. This also emphasises the 
importance of a validation exercise thoroughly consid-
ering heterogeneity in geography, over time, and over 
setting [5], and indeed the possibility of targeted updat-
ing, in which CPMs are updated to a new time period 
before revalidating.
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Conclusion
We recommend that validation of clinical prediction 
models should relate to the target population and setting, 
and suggest using the term targeted validation to make 
this focus explicit. This provides a framework in which 
researchers are transparent about the intended use of the 
model being validated, and motivates the use of a valida-
tion dataset that is representative of the population(s) 
and setting(s) of intended use. If such a dataset is not 
available, and validation is undertaken, then researchers 
should highlight differences between the validation and 
target populations (a ‘validation gap’) so that the findings 
can be placed in context.

There are three key implications of focusing on tar-
geted validation. First, validation studies that do not 
state, and clearly justify, the intended target population 
or setting are not fit for purpose. The prevalence of this 
problem has not yet been quantified. Second, a new 
intended use of a model requires a new targeted valida-
tion exercise (which may be a new validation, or careful 
consideration of the relevance of existing validations): 
CPMs should not be referred to as ‘valid’ or ‘validated’ as 
this is meaningless without reference to a target popula-
tion. Third, external validation studies may not always be 
needed, specifically if the development dataset is suffi-
ciently large, already represents the target population and 
setting, and appropriate steps have been taken to adjust 
performance estimates for in-sample optimism.
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