
Pua et al. Diagnostic and Prognostic Research             (2023) 7:5  
https://doi.org/10.1186/s41512-023-00143-3

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Diagnostic and
Prognostic Research

Development and validation of a physical 
frailty phenotype index‑based model 
to estimate the frailty index
Yong‑Hao Pua1,2*†   , Laura Tay3†, Ross Allan Clark4, Julian Thumboo2,5,6, Ee‑Ling Tay7, Shi‑Min Mah7, 
Pei‑Yueng Lee8 and Yee‑Sien Ng9,10,11 

Abstract 

Background  The conventional count-based physical frailty phenotype (PFP) dichotomizes its criterion predic‑
tors—an approach that creates information loss and depends on the availability of population-derived cut-points. 
This study proposes an alternative approach to computing the PFP by developing and validating a model that uses 
PFP components to predict the frailty index (FI) in community-dwelling older adults, without the need for predictor 
dichotomization.

Methods  A sample of 998 community-dwelling older adults (mean [SD], 68 [7] years) participated in this prospective 
cohort study. Participants completed a multi-domain geriatric screen and a physical fitness assessment from which 
the count-based PFP and the 36-item FI were computed. One-year prospective falls and hospitalization rates were 
also measured. Bayesian beta regression analysis, allowing for nonlinear effects of the non-dichotomized PFP criterion 
predictors, was used to develop a model for FI (“model-based PFP”). Approximate leave-one-out (LOO) cross-valida‑
tion was used to examine model overfitting.

Results  The model-based PFP showed good calibration with the FI, and it had better out-of-sample predictive per‑
formance than the count-based PFP (LOO-R2, 0.35 vs 0.22). In clinical terms, the improvement in prediction (i) trans‑
lated to improved classification agreement with the FI (Cohen’s kw, 0.47 vs 0.36) and (ii) resulted primarily in a 23% 
(95%CI, 18–28%) net increase in FI-defined “prefrail/frail” participants correctly classified. The model-based PFP showed 
stronger prognostic performance for predicting falls and hospitalization than did the count-based PFP.

Conclusion  The developed model-based PFP predicted FI and clinical outcomes more strongly than did the count-
based PFP in community-dwelling older adults. By not requiring predictor cut-points, the model-based PFP poten‑
tially facilitates usage and feasibility. Future validation studies should aim to obtain clear evidence on the benefits of 
this approach.
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Background
With the fast-aging population worldwide, accu-
rate screening for individuals early in their trajectory 
towards frailty is an urgent and unmet need [1]. Over 
60 frailty instruments have been developed to meas-
ure frailty amongst which the Cardiovascular Health 
Study (CHS) physical frailty phenotype (PFP) [2] and 
the frailty index (FI) [3] are widely used [4]. The multi-
dimensional FI measures frailty by the accumulation 
of deficits across the domains of medical health and 
physical, social, and cognitive functioning. As a con-
tinuous measure, the FI is a sensitive measure of frailty 
[5, 6]. However, comprising at least 30 deficit items, 
the FI may not be suitable for large-scale frailty screen-
ing. The PFP measures frailty by assessing 5 biologic 
manifestations of frailty that are primarily physical in 
nature—that is, reduced gait speed, muscle strength, 
body mass, physical activity, and energy levels. The PFP 
is constructed by dichotomizing these 5 criterion pre-
dictors and summed to produce a count-based meas-
ure. Presumably, this dichotomization approach to 
creating a PFP count score facilitates ease-of-use and 
clinical interpretability; however, it has limitations.

First, a count-based approach assumes that the PFP 
criterion predictors weigh equally—an assumption 
that may be invalid in light of findings that individual 
predictors may have varying prognostic or predic-
tive associations with FI [5, 7] and clinical outcomes 
[8, 9]. Second, constructing the PFP score, originally 
described by Fried et  al. [2], necessitates dichotomiz-
ing its criterion predictors using the 20th percentile 
population cut-point. However, the appropriate refer-
ence population data are often not available in many 
settings, thereby reducing the feasibility of the PFP 
[10]. In the absence of population-specific cut-points, a 
population-independent or literature-derived cut-point 
approach has been advocated and widely adopted [11]. 
However, for a given PFP criterion (e.g., gait speed), 
several cut-points have been proposed in the literature 
[11–15], potentially resulting in varying prevalence 
estimates of prefrailty/frailty which hinder harmoniza-
tion and comparison of findings.

Third, dichotomization discards information and 
decreases the discrimination power of the predictors 
[16]. This information loss leads to assumptions that are 
clinically unrealistic. For example, predictor dichoto-
mization assumes participants with similar gait speed 
values on opposite sides of a 1.0m/s cut-point—for 
example, 0.95m/s and 1.05m/s—are classified differently 
as having “slow” and “normal” gait speed, respectively. 
Given these assumptions, the ability of the count-based 
PFP to finely grade the degree of frailty is likely to be 
adversely affected.

Taken altogether, a count-based dichotomization 
approach reduces the full predictive potential of the 
PFP, which may partially explain why (i) the FI had 
reportedly at least comparable but often better predic-
tive performance than the PFP [7, 17–19] and (ii) the 
PFP was reportedly less adept than the FI in discrimi-
nating levels of frailty particularly at the early stages of 
frailty [6, 19]. Furthermore, we believe it is possible for 
the often-reported poor-to-fair classification agreement 
[7, 18–20] between the PFP and FI to be attributed not 
only to the conceptual differences between the 2 instru-
ments but also to the discrimination loss from predictor 
dichotomization.

Against this background, we propose a more feasible 
approach to computing the PFP by developing and vali-
dating a regression model for FI in community-dwelling 
older adults using criterion predictors of the PFP (termed 
“model-based PFP” henceforth). Specifically, (i) analyzing 
the FI as the response variable capitalizes on its continu-
ous nature [5] whilst (ii) analyzing the PFP components 
as continuous (or ordinal) variables in the regression 
model overcomes problems of information loss and arbi-
trary predictor stratification using cut-points that have 
tended to vary across time and studies.

Methods
Participants and procedures
This prospective cohort study comprised 998 com-
munity-dwelling ambulant adults aged ≥50 years who 
participated in “Individual Physical Proficiency Test 
for Seniors” (IPPT-S)—an ongoing community-based 
program designed to promote fitness and to prevent or 
delay sarcopenia and frailty in older adults [21]. The insti-
tutional review board approved the study (SingHealth 
CIRB 2018/2115, Singapore), and all participants pro-
vided written informed consent. Consenting participants 
completed a questionnaire-based multi-domain geriat-
ric screen and a physical fitness assessment at baseline 
assessment, and they were followed up 1 year later via 
telephone interview.

Frailty index (FI)
The 36-item FI was constructed following a standard-
ized procedure which included medical comorbidities, 
functional performance deficits, cognitive and sensory 
impairments, and psychosocial problems [3] (Additional 
file 1: Appendix A details the FI items and their associ-
ated scores.) The FI is the proportion of deficits present 
and similar to previous studies [7, 19], and the partici-
pants were classified as being robust (≤0.10), pre-frail 
(>0.10–0.21), and frail (>0.21).



Page 3 of 11Pua et al. Diagnostic and Prognostic Research             (2023) 7:5 	

Physical frailty phenotype
The modified PFP comprised the 5 criteria of (i) slow-
ness, (ii) weakness, (iii) shrinking, (iv) low physical activ-
ity, and (v) exhaustion. The “slowness” criterion was 
measured by the 10-m habitual gait-speed test, and slow 
gait speed was defined by a cut-point of <1.0 m/s [13, 22]. 
The “weakness” criterion was measured by the handgrip 
strength test, which was measured using a Jamar digital 
dynamometer (Sammons USA), and the testing proce-
dures followed the Southampton protocol [23]. Consist-
ent with recent recommendations [4], the maximal 
reading from all trials (2 trials for each hand) was ana-
lyzed, and weak handgrip strength was defined using cut-
points of <28 kg for men and <18 kg for women [22]. The 
“shrinking” criterion was defined by a body mass index 
(BMI) of ≤18.5kg/m2 [24].

The “low physical activity level” criterion was meas-
ured by the total walking time per week (hours/week). 
Notably, physical activity was operationally defined by 
walking time—the most common form of physical activ-
ity amongst older adults [25]—to facilitate external vali-
dation of the model-based PFP in established studies 
that have tended to use different physical activity ques-
tionnaires. In our study, low physical activity level was 
defined by a total waking time < 2 h (or 120 min)/week 
[26]. Finally, the “exhaustion” criterion was measured by 
2 questions about effort and motivation from the Center 
for Epidemiological Studies-Depression Scale [27].

The count-based PFP was graded using the number 
of criteria satisfied, and the participants were classi-
fied as being robust (0 criterion), pre-frail (1-2 criteria), 
and frail (≥3 criteria) [2]. For the model-based PFP, 
the PFP component criteria and sex were included in a 
Bayesian model which generated a continuous FI meas-
ure (described later), from which the 3 frailty categories 
could be derived using FI-defined cut-points (Table  1 
details the operational definitions).

Clinical outcomes
Clinical outcomes were self-reported (i) incident falls 
resulting in emergency department visits and (ii) all-
cause hospitalization within 1 year after baseline 
assessment.

Statistical analysis
We used means with SDs and medians with IQRs for 
continuous variables and frequencies with percent-
ages for categorical variables. Amongst those with 
non-missing FI, all PFP criterion predictors were miss-
ing at very low levels (0.2 to 1.5%). Thus, we used the 
transcan function in the Hmisc [28] R package to singly 
impute missing values.

Model and prior specification
To develop the model-based PFP, we fitted a Bayesian 
multivariable beta regression model, which included (i) FI 

Table 1  Operational definition of count- and model-based physical frailty phenotype

PFP physical frailty phenotype, CES-D Centre for Epidemiological Studies-Depression Scale, FI frailty index, AWGS Asian Working Group for Sarcopenia

Criteria Count-based PFP (modified) Model-based PFP

Slowness Habitual gait speed was measured based on time taken to walk 
10m at comfortable pace. Based on existing guidelines, slowness 
was defined by a gait speed of <1.0 m/s.

Gait speed was modeled continuously and nonlinearly using thin 
plate regression splines.

Weakness Maximum handgrip strength measured using a handheld 
dynamometer. Weakness was defined using the AWGS 2019 cut‑
offs: handgrip strength <28 kg for men and <18 kg for women

Handgrip strength was modeled continuously and nonlinearly 
using thin plate regression splines. Instead of using gender-specific 
cut-points, gender was included in the model

Shrinking Consistent with previous work, shrinking was defined by a body 
mass index (BMI) of <18.5kg/m2

Both body weight and height were modeled continuously and 
nonlinearly using thin plate regression splines

Low physical 
activity level

To facilitate comparability between studies that used different 
physical activity scales, physical activity level was measured by 
the total walking time per week based on the product of the self-
reported frequency of walking per week (0-7days) and duration of 
walking per day (mins/day). Low physical activity level was defined 
by a total waking time < 2 hours or 120mins/week

Total walking time (hours/week) was cubic root transformed and 
modeled nonlinearly using thin plate regression splines.

Exhaustion Exhaustion was measured by 2 items of the Centre for Epidemio‑
logical Studies-Depression Scale (CES-D): (Q1) I felt that everything 
I did was an effort and (Q2) I could not get going. Exhaustion was 
defined by answering at least “a moderate amount of the time” to 
either question

Both CES-D items were modeled as monotonic predictors.

Scoring Each criterion yields a dichotomous score of 0 or 1. Count-based 
PFP was the sum of criteria and it classified patients as robust (0), 
prefrail (1–2), and frail (3–5).

PFP component criteria and gender were included in a Bayesian 
model which generated a continuous FI measure, from which 
the 3 frailty categories could be derived: robust (≤0.10), pre-frail 
(>0.10–0.21), and frail (FI>0.21)



Page 4 of 11Pua et al. Diagnostic and Prognostic Research             (2023) 7:5 

as the response variable and (ii) PFP component criteria 
and sex as predictors. A Bayesian analytical framework 
was used because it aligned closely with our objectives of 
(i) modeling the 2 PFP “exhaustion” criterion items flex-
ibly as monotonic ordered predictors [29] and (i) provid-
ing interpretable uncertainty estimates of the predicted 
FI values. Beta regression was used because it is a flexible 
approach to model the FI—a continuous proportion with 
a non-normal distribution [30]. The model-based PFP 
was reported according to the transparent reporting of a 
multivariable prediction model for Individual Prognosis 
or Diagnosis (TRIPOD) guidelines [31].

Our goal was to optimize the predictive accuracy of the 
PFP by preserving information in its criterion predictors. 
Thus, gait speed, handgrip strength, body weight, body 
height, and total walking time were treated as continuous 
variables. For total walking time, this variable was first 
transformed using its cube root to reduce the potential 
influence of extreme values. To allow prior distributions 
to be scaled for other predictors, we standardized them 
as z scores. To avoid assuming linearity for all continu-
ous predictors, we modeled them with thin-plate splines 
[32]. For the 2 “exhaustion” variables, we modeled these 
ordinal predictors using the “monotonic effects” function 
[29] which allows ordinal categories to exert individual 
conditional effects whilst maintaining monotonically 
(same directionality).

In our analyses, we set weakly informative prior dis-
tributions for the model parameters to reduce the likeli-
hood of estimating unrealistic values without excluding 
reasonable values [33]. All Bayesian models were fitted 
using Stan [34] through the brms [35] R package. Stan 
implements the Hamiltonian Monte Carlo with No-U-
Turn sampling algorithm [34], and each model used 4 
chains, 3000 iterations per chain, to generate the poste-
rior samples for all parameters (Additional file 1: Appen-
dix B provides the model implementation details.). From 
these samples, we derived the posterior predictive distri-
bution of the FI which could be interpreted as the pre-
dictions of possible mean FI values for a given individual 
characterized by a given set of PFP criterion values. To 
summarize this distribution, we used mean as point esti-
mate and 95% credible interval (CrI) as the interval with 
95% probability of containing the true FI, given our prior 
knowledge and observed data.

Model performance
To evaluate the model-based PFP in relation to cur-
rent practice, we developed a “referent” model that had 
the PFP count score as its only predictor. Given that 
gait speed was, amongst the PFP criterion predictors, 
reportedly the strongest predictor of FI and clinical out-
comes [5, 7–9], we also fitted a “gait speed” model which 

included gait speed and covariates [5] routinely and eas-
ily obtained in the clinical setting–namely, age, sex, body 
weight, and body height. To evaluate whether the perfor-
mance of the model-based PFP could simply be the result 
of overfitting a more complex model, we used approxi-
mate Bayesian leave-one-out (LOO) cross-validation—
a technique that assesses how well a model potentially 
generalizes to new individuals [36]. Notably, the approxi-
mate LOO cross-validation technique, based on Pareto 
smoothed importance sampling [36], was chosen because 
the full LOO cross-validation process is computationally 
burdensome in the Bayesian setting. Accordingly, for all 
models, we computed (i) their respective approximate 
LOO cross-validated R2 (LOO-R2) and (ii) the paired 
difference between their respective approximate LOO 
cross-validated expected log-predictive density (denoted 
using ELPDdiff). Notably, as ELPDdiff was estimated 
with respect to the best-performing model, an absolute 
ELPDdiff of greater than twice its standard error was 
taken as evidence that the best-performing model had 
better out-of-sample predictive performance than the 
alternative model. Finally, we evaluated calibration of the 
referent model and the model-based PFP using locally 
weighted scatterplot smoothing calibration plots.

Classification performance
To assess agreement of the various models with the ordi-
nal FI-defined frailty categories, we stratified participants 
by their mean posterior predicted FI values into robust 
(posterior predicted FI≤0.10), pre-frail (>0.10–0.21), 
and frail (FI>0.21), and we computed Cohen’s quad-
ratic weighted kappa coefficient. To assess discrimina-
tive performance, we compared the ability of count- and 
model-based PFP to identify participants with FI-defined 
prefrailty/frailty (FI>0.10) using the area under the 
receiver-operating characteristics curve (AUC) with 
DeLong’s test. To assess the clinical relevance of the 
improvement in discriminative performance over the 
count-based PFP, we computed the categorical net reclas-
sification index (NRI) statistic [37]. To provide a clinical 
view on the consequences of reclassification, similar to 
previous analyses [20], we compared participants with 
discrepant frailty classifications by FI and PFP on their 
demographic and clinical characteristic variables.

Prognostic performance
To assess prognostic performance of the count- and 
model-based PFP in predicting clinical outcomes, we 
fitted separate binary logistic regression models for 
1-year incident falls and hospitalization. In these models, 
count-based PFP was modeled as a count variable whilst 
model-based PFP was modeled as a continuous variable 
based on the posterior predicted FI values. The AUCs of 



Page 5 of 11Pua et al. Diagnostic and Prognostic Research             (2023) 7:5 	

the models were compared using the DeLong’s test. To 
evaluate whether model-based PFP provided incremen-
tal prognostic information over the conventional count-
based PFP, we compared nested binary logistic regression 
models with a likelihood ratio χ2 test. To summarize its 
added prognostic value, we computed the proportion of 
explainable variation that was explained by the model-
based PFP (calculated as 1 minus the ratio of variances 
of predicted values before and after adding model-based 
PFP to the model containing only count-based PFP) [38]. 
In all analyses, we have chosen to perform complete-case 
analyses because (i) we did not have strong auxiliary out-
come variables for multiple imputation and (ii) we have 
observed that the baseline characteristics of participants 
without outcome data were similar to those of partici-
pants with outcome data (Additional file 1: Appendix C).

Results
Demographics
Table  2 shows that the mean age of all 998 participants 
was 68 years (SD, 6) and women accounted for accounted 
for nearly three-quarters (74%) of the sample. Based on 
the FI, 49% (n=485) of participants had pre-frailty/frailty 
based on the count- and model-based PFP, 38% and 55%, 
respectively. At 1-year follow-up, 561 patients (56%) 
completed at least a telephone interview and incidence 
rates for falls and all-cause hospitalization were 14% and 
12%, respectively.

Predictive performance
All models converged and the LOO cross-validation 
process was reliable with all Pareto k values below 0.5. 
(Additional file 1: Appendix D shows the trace plots of all 
model parameters). For the model-based PFP, all PFP cri-
terion predictors were predictive of FI and Fig. 1 shows 
their multivariable associations—including nonlinear 
relations—with FI. Overall, the model-based PFP had 
better predictive performance (LOO-R2, 0.35; Table  3) 
than either the referent model containing the count-
based PFP (0.22) or the gait speed model (0.26). Formal 
model validation and comparison using approximate 
LOO cross-validation showed that the model-based PFP 
potentially generalized to new individuals better than the 
referent model (ELPDdiff [SE] = −91 [15]) and the gait 
speed model (ELPDdiff [SE] = −51 [13]). Besides hav-
ing better predictive performance, the model-based PFP 
showed good calibration with the observed FI (Fig. 2).

Classification performance
In terms of classification agreement, frailty classifica-
tions by the count-based PFP showed fair agreement with 
those by FI (kw= 0.36; 95%CI, 0.30 to 0.42) whilst model-
based PFP showed greater (moderate) agreement (kw= 

0.47; 95%CI, 0.42 to 0.52). In terms of model discrimi-
nation ability to separate participants with and without 
FI-defined prefrailty/frailty, the AUROC for the model-
based PFP (0.77, 95% CI, 0.74 to 0.80) was higher than 
the count-based PFP (0.67; 95% CI, 0.64to 0.69; Delong’s 
P<0.001). In terms of the ability of the model-based PFP 
to correctly reclassify participants over the count-based 
PFP, as shown in Table  3 and Additional file  1: Appen-
dix E, model-based PFP resulted in a 23% (110/484) net 
increase in FI-defined “prefrail/frail” participants cor-
rectly classified (event NRI, 0.23; 95% CI, 0.18 to 0.27) 
but a 11% (59/514) net loss in FI-defined “robust” par-
ticipants correctly classified (non-event NRI, −0.11; 95% 

Table 2  Sample characteristics

Continuous variables are summarized as the 25th, 50th, 75th percentiles (mean 
± SD). Categorical variables are summarized as percentages and frequencies (N)

FI frailty index, PFP physical frailty phenotype
a Modified Chinese version of Mini Mental State Examination (cMMSE) < 21 
points
b Geriatric Depression Scale (GDS) ≥5 points

Variables Values

Age (years) 63 67 72  (67.6 ± 7)

Women 74% (741)

Weight (kg) 52 59 67  (60 ±12)

Height (m) 1.51 1.56 1.61  (1.56 ±0.08)

BMI (kg/m2) 21.7 23.9 26.8  (24.5 ± 4.5)

Living alone 18% (179)

Impaired cognitive performancea 7% (71)

Hearing difficulty 16% (162)

Vision difficulty 20% (195)

Hypertension 45% (446)

Diabetes mellitus 19% (194)

Depressionb 15% (146)

Arthritis 18% (179)

Ischaemic heart disease 3% ( 30)

Stair climbing difficulty 16% (160)

Lifting (10pounds) difficulty 17% (169)

Frailty index (FI) 0.06 0.10 0.15  (0.11 ±0.07)

FI classification

  Robust (≤0.10) 51% (513)

  Prefrail (>0.10-0.21) 38% (383)

  Frail (>0.21) 10% (102)

Count-based PFP

  Robust (0pts) 62% (620)

  Prefrail (1-2pts) 35% (347)

  Frail (3-5pts) 3% ( 31)

Model-based PFP

  Predicted FI 0.08 0.10 0.13  (0.11 ±0.04)

  Robust (≤0.10) 45% (452)

  Prefrail (>0.10-0.21) 51% (506)

  Frail (>0.21) 4% ( 40)
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Fig. 1  Multivariable associations (black lines or points) of physical frailty phenotype criterion predictors (expressed on their natural scales for 
interpretability) with Frailty Index. Predicted mean frailty index values were calculated from a Bayesian beta regression model using thin-plate 
splines for continuous predictors and the monotonic effects approach for ordinal predictors. For all predictors, ribbons are 95% (light blue), 80% 
(medium blue), and 50% (dark blue) credible intervals
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Table 3  Model performance and classification accuracy statisticsa

Abbreviations: PFP Physical Frailty Phenotype, CrI credibility interval, CI confidence interval, SE standard error, LOO-CV leave-one-subject-out cross-validation, LOO-R2 
leave-one-subject-out R-squared statistic, ELPDdiff pairwise difference in leave-one-out expected log posterior density, AUROC area under the receiver operating 
characteristic curve, NRI net reclassification index
a Model performance of the model-based physical frailty phenotype (PFP) (a model with non-dichotomized PFP criterion predictors) was compared to that of the 
referent model (a model with only the PFP count score) and the gait speed model (a model with gait speed and standard covariates)
b Pairwise difference in leave-one-out (LOO) expected log posterior density (denoted using ELPDdiff) between models and its standard error (SE). As ELPDdiff was 
estimated with respect to the best-performing model, an absolute ELPDdiff of greater than twice its SE was taken as evidence that the best-performing model (with a 
ELPdiff of 0) had better out-of-sample predictive performance than the alternative model
c Cohen’s quadratic-weighted kappa coefficients computed based on frailty index-defined robust (≤0.10), pre-frail (>0.10 to 0.21), and frail (>0.21) categories
d AUROC (area under the receiver operating characteristic curve) and net reclassification index (NRI) computed based on frailty index-defined robust (≤0.10) and pre-
frail/frail (>0.10) categories

Referent model Gait speed model Model-based PFP

Model performance (95% CrI)
  R2 0.22 (0.17 to 0.27) 0.27 (0.22 to 0.32) 0.37 (0.32 to 0.41)

Approximate LOO cross-validation
  LOO-R2 0.22 (0.17 to 0.27) 0.26 (0.21 to 0.31) 0.35 (0.29 to 0.40)

  LOO-ELPDdiff (SE)b −90.9 (14.9) −50.7 (12.6) 0.0

Classification performance (95% CI)
  Cohen kappac 0.36 (0.30 to 0.42) 0.40 (0.35 to 0.45) 0.47 (0.42 to 0.52)

  AUROCd 0.67 (0.64 to 0.69) 0.74 (0.71 to 0.77) 0.77 (0.74 to 0.80)

  Overall NRId - 0.05 (−0.02 to 0.13) 0.11 (0.05 to 0.18)

  Event NRI - 0.20 (0.14 to 0.25) 0.23 (0.18 to 0.27)

  Non-event NRI - −0.14 (−0.09 to −0.19) −0.11 (−0.07 to −0.16)

Fig. 2  Visual assessment of model calibration for frailty index (FI). Predicted FI were derived from a model using the count-based physical frailty 
phenotype (PFP) as the only predictor (left panel) and a model using non-dichotomized PFP criterion predictors (right panel). Solid line represents 
the identity line. Dotted line represents a lowess smoother through the data points, showing good calibration (linear relation) between observed 
and predicted FI values for the model-based PFP
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CI, −0.07 to −0.16), with an overall NRI of 0.11 (95% CI, 
0.05 to 0.18). Across all performance metrics, the refer-
ent model did not outperform the gait speed model, with 
the latter model having potentially better model general-
izability (ELPDdiff [SE] comparing gait speed vs referent 
models = −40 [10]) and discrimination ability (AUROC, 
0.72; P<0.05).

Prognostic performance
Overall, the model-based PFP showed stronger prognos-
tic performance than count-based PFP in predicting inci-
dent falls and hospitalization. When predicting the risk of 
incident falls, the model-based PFP had an AUC of 0.56 
whist the count-based PFP had an AUC of 0.51 (P=0.10 
for difference between 2 models). Using the likelihood 
ratio χ2 test for nested models, the model-based PFP 
predictor added statistically significant incremental pre-
dictive value (P<0.01) to a model comprising the conven-
tional count-based PFP predictor. In a model comprising 
both predictors, ~93% of its prognostic information was 
attributed to the model-based PFP predictor. When pre-
dicting the risk of incident hospitalization, the model-
based PFP showed higher AUC (0.63 vs 0.55; P=0.01) 
and it provided statistically significant incremental prog-
nostic value above count-based PFP (P<0.01). In a model 
comprising both predictors, ~87% of its prognostic infor-
mation was attributed to the model-based PFP predictor.

Discussion
In 998 community-dwelling older adults, we developed a 
model-based PFP which showed better prognostic per-
formance for clinical outcomes and predicted FI more 
accurately than the count-based PFP. Specifically, a mod-
eling approach that (i) avoided dichotomizing the PFP 
criterion predictors and (ii) avoided assuming that pre-
dictors act equally or linearly better captured the rela-
tionship between the PFP and FI (LOO-R2, 0.35 vs 0.22). 
In clinical terms, the improvement in prediction trans-
lates to improved classification agreement with the FI 
(kw, 0.47 vs 0.36) and an overall net correct reclassifica-
tion of 11% for FI-defined prefrailty/frailty. Importantly, 
model validation using approximate LOO cross-valida-
tion indicated that this improvement in predictive and 
classification performance was unlikely to be achieved 
by over-fitting a more complex model. Overall, our find-
ings of lower predictive and classification accuracy for 
the count-based PFP are consistent with those from both 
clinical [39] and simulation [40] studies demonstrating 
the substantial loss of information and predictive power 
from predictor dichotomization. Indeed, our count-
based PFP comprising 5 elaborately-obtained—but even-
tually dichotomized—criterion predictors did not even 
outperform a model comprising a non-dichotomized gait 

speed predictor and standard covariates, further attesting 
to the toll of dichotomization.

Dichotomizing the criterion predictors to create the 
count-based PFP requires the availability of a contempo-
rary reference population, from which the lowest quintile 
cut-points derive [2]. In the absence of population nor-
mative data, several cut-points have been proposed in 
the literature even for the same criterion. For example, 
proposed cut-points for gait speed have included 0.8m/s 
[11, 12], 0.9m/s [14], 1.0m/s [13], and 1.1m/s [15]. Col-
lectively, these cut-points led to the question: Do optimal 
cut-points exist? In our analyses, we allowed potential 
nonlinear effects for the criterion predictors, and we 
found that whilst nonlinear in form (Fig. 1), their associa-
tions with FI did not evince sharp inflection points which 
argue against the existence of universal cut-points. In the 
absence of apparent thresholds, recent simulation [40] 
and clinical [41] studies have indicated that it is unlikely 
for the study-specific predictor cut-points to generalize. 
Thus, although our findings await further confirmation, 
we believe the concept of population-independent cut-
points should be interpreted with some caution. Con-
sistent with previous recommendations [40, 41], we urge 
future studies aspiring to propose new optimal predictor 
cut-points to first inspect the relationship between the 
PFP criterion predictors and various clinical outcomes 
and explore whether optimal thresholds are apparent.

In our study, classification agreement between count-
based PFP and FI was fair (kw = 0.36)—a finding con-
sistent with several previous studies [7, 18–20]. When 
compared to previous studies [7, 18, 20], another consist-
ent finding was that amongst participants with discrepant 
frailty classifications, proportionally more were classified 
as prefrail/frail by the FI (228 vs 112; Additional file  1: 
Appendix F1). Different from previous studies, however, 
our findings shed further light by showing that classifica-
tion agreement improved to moderate (kw = 0.47) with 
the model-based PFP. Amongst participants with dis-
crepant frailty classifications, participants classified as 
prefrail/frail by the FI but not by the model-based PFP 
substantially reduced in number (n=181 vs 228) and they 
were less likely to report having stair climbing difficulties 
(Additional file 1: Appendix F2). Given this improvement 
in sensitivity (event NRI, 23%; Table 3), the model-based 
PFP may be less prone to the criticism often made of the 
PFP—that the (count-based) PFP may be less adept than 
the FI in discriminating levels of frailty particularly at the 
early stages of frailty [6, 19]. Further studies are needed 
to confirm the improved sensitivity of model-based PFP 
over the count-based PFP.

Besides predictive and discriminative accuracy, ease-
of-use and result interpretability are keys to adoption 
and implementation. Although model complexity and 
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ease-of-use are often seen as competing factors, we argue 
that they need not be trade-offs. Indeed, whilst the flex-
ible modeling of predictors and the inclusion of spline 
terms may have complicated the underlying algorithm 
of the model-based PFP, this approach has removed the 
need for predictor cut-points which likely facilitates 
usage and feasibility. Furthermore, to promote ease-of-
use, we have incorporated the model into an online cal-
culator (https://​sghpt.​shiny​apps.​io/​ippts_​pfp/), and the 
approximated model equation can be found in Additional 
file  1: Appendix G. To facilitate results interpretability, 
we have used (i) a Bayesian modeling framework to gen-
erate continuous predicted FI scores and (ii) established 
FI cut-points to generate frailty classifications based on 
the predicted FI scores. Given this flexibility and depend-
ing on the context and purpose, the model-based PFP 
could potentially be used as a continuous variable for 
prediction and longitudinal tracking purposes or as a 
categorical variable for risk-stratification purposes. That 
said, we should clearly state that the model-based PFP 
was developed into an online calculator purely as a proof-
of-concept and a thought-starter for encouraging similar 
validation work across the diverse populations and set-
tings where both PFP and FI measures have already been 
collected. Hence, pending external validation, its use 
should be confined to research purposes at present.

Limitations
Our study has limitations. First, the model-based PFP 
was developed and validated in Asian older adults; hence, 
it may not directly apply to non-Asians. Nonetheless, our 
study should be rightly viewed as a proof-of-concept for 
the potential use of the model-based PFP, and we hope it 
will encourage similar work in other racial/ethnic groups. 
Second, our use of the FI as the reference standard may 
be criticized as it is not the gold standard frailty measure. 
In the absence of a gold standard, however, we believe the 
FI is a sensible choice because of (i) its continuous nature, 
(ii) its positive association with the count-based PFP [7, 
42], and (iii) and its comparable—and if not often bet-
ter—predictive performance than the count-based PFP 
[7, 17–19]. Third, we did not have follow-up clinical out-
comes of 44% of the participants; however, included and 
excluded participants did not differ meaningfully in base-
line characteristics and frailty status (Additional file  1: 
Appendix C). Whilst our analyses focused on the relative 
prognostic performance of the count-based and model-
based PFP, it is unknown how the missing data would 
impact the results. Fourth, we validated the model-based 
PFP using approximate LOO cross-validation but this 
strategy could be criticized for not representing a true 
external validation procedure performed in samples 

geographically and temporally different from our devel-
opment sample. Nonetheless, given the current study 
findings and existing knowledge about the limitations of 
predictor dichotomization, we expect the model-based 
PFP to have better predictive and classification perfor-
mance than the count-based PFP in other settings.

Conclusions
In community-dwelling older adults, we developed and 
validated a model-based PFP which predicted adverse 
clinical outcomes and FI more strongly than did the 
count-based PFP. By not needing population-specific 
predictor cut-points, the model-based approach rep-
resents a potentially feasible and innovative method 
to compute the PFP. As many cohort studies have 
obtained both PFP and FI measures, it is our hope that 
this work could efficiently leverage on existing studies 
to further evaluate the model-based PFP. Future work 
should also aim to obtain clear evidence on the benefits 
of this model-based approach compared with the con-
ventional count-based approach.
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