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Abstract 

Background The multivariable fractional polynomial (MFP) approach combines variable selection using backward 
elimination with a function selection procedure (FSP) for fractional polynomial (FP) functions. It is a relatively simple 
approach which can be easily understood without advanced training in statistical modeling. For continuous variables, 
a closed test procedure is used to decide between no effect, linear, FP1, or FP2 functions. Influential points (IPs) and 
small sample sizes can both have a strong impact on a selected function and MFP model.

Methods We used simulated data with six continuous and four categorical predictors to illustrate approaches which 
can help to identify IPs with an influence on function selection and the MFP model. Approaches use leave-one or 
two-out and two related techniques for a multivariable assessment. In eight subsamples, we also investigated the 
effects of sample size and model replicability, the latter by using three non-overlapping subsamples with the same 
sample size. For better illustration, a structured profile was used to provide an overview of all analyses conducted.

Results The results showed that one or more IPs can drive the functions and models selected. In addition, with a 
small sample size, MFP was not able to detect some non-linear functions and the selected model differed substan-
tially from the true underlying model. However, when the sample size was relatively large and regression diagnostics 
were carefully conducted, MFP selected functions or models that were similar to the underlying true model.

Conclusions For smaller sample size, IPs and low power are important reasons that the MFP approach may not be 
able to identify underlying functional relationships for continuous variables and selected models might differ sub-
stantially from the true model. However, for larger sample sizes, a carefully conducted MFP analysis is often a suitable 
way to select a multivariable regression model which includes continuous variables. In such a case, MFP can be the 
preferred approach to derive a multivariable descriptive model.

Keywords Continuous variable, Fractional polynomial, Influential point, Model building, Sample size, Simulated data

Introduction
In modeling observational data aimed at identifying pre-
dictors of an outcome and gaining insight into the rela-
tionship between the predictors and the outcome, the 
process of building a model for description consists of 
two components: variable selection to identify the subset 
of “important” predictors, and identification of possible 
non-linearity in continuous predictors. The ultimate aim 
is to build a model which is satisfactory in terms of model 
fit, interpretable from the subject matter point of view, 
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robust to minor variations in the current data, predictive 
in new data, and parsimonious [1].

In model building, many researchers typically assume 
a linear function for continuous variables (perhaps after 
applying a “standard” transformation such as log) or 
divide the variable into several categories. If the assump-
tion of linearity is incorrect, it may prevent the detection 
of a stronger effect or even cause the effects to be mis-
modeled. Categorization of continuous variables, which 
has the effect of modeling (implausible) step functions, is 
common but widely criticized [1–4] and will not be con-
sidered further.

Fractional polynomials have been proposed as a sim-
ple method of dealing with non-linearity [1, 5–7]. First-
degree (FP1, single power) functions are monotonic, 
whereas second-degree (FP2, two powers) functions can 
represent a variety of curve shapes with a single maxi-
mum or minimum. Models with degree higher than two 
are rarely required in practice. Fractional polynomials 
can be viewed as a compromise between conventional 
polynomials (e.g., quadratic functions) and non-linear 
curves generated by flexible modeling techniques such as 
spline functions, but without the inflexibility of the for-
mer or the potential instability of the latter. FPs are global 
functions that cannot handle local features, unlike several 
“flavors” of splines, e.g., restricted regression splines [8], 
penalized regression splines [9], smoothing splines [10], 
and p-splines [11]. Being global functions makes FPs 
more stable than local-influence models, which have a 
higher capacity for model fit but lower transferability and 
relative instability [12, 13].

The multivariable fractional polynomial (MFP) 
approach combines backward elimination with a three-
step closed test procedure (the function selection pro-
cedure, or FSP) to select the most appropriate functional 
form for continuous variables from the proposed class of 
fractional polynomial functions (8 FP1 and 36 FP2). In 
this paper, several issues that may affect the identification 
and estimation of non-linear functions as well as model 
replicability were considered. The presence of covari-
ate outliers, or IPs, may have an undue influence on the 
chosen model. In MFP, IPs are single or pairs (triples) of 
observations which have an unduly large influence on 
the selection of an FP function for a particular variable 
or the selected model [14]. Diagnostic plots were used to 
show how to identify IPs. We are not aware of any paper 
discussing the role of IPs in the selection of variables and 
functional forms for continuous variables.

In addition to the approach in the book by Royston 
and Sauerbrei [1], we discussed an extension to consider-
ing pairs of IPs and proposed two approaches for iden-
tifying IPs in multivariable models. We concentrated 
on the identification of IPs and illustrated their effects 

on functions and models selected by comparing results 
for data with and without IPs. IPs were eliminated and 
potential ways (e.g., truncation or preliminary transfor-
mation) to handle IPs in real data were not discussed. In 
real-world data, handling of IPs depends strongly on the 
specific study and main aim of a model. We also consid-
ered model replicability across datasets. This is an impor-
tant aspect of multivariable modeling, particularly in the 
context of IPs, where the presence of an extreme value 
of a single covariate may affect the functions selected for 
that variable, correlated variables, and the overall model. 
Finally, the effect of sample size was investigated since 
the selection of variables and functions within the MFP 
procedure uses test statistics which depend strongly on 
the sample size. In small samples, variables with mod-
erate or weak effects may be incorrectly eliminated or 
linear functions may be chosen instead of more realistic 
non-linear functions.

To assess whether MFP selects the “true” underlying 
model or a model which is close to it, it is imperative to 
use simulated data in which the parameters are known. 
In this paper, we used data from the ART study (ART 
denoting “artificial”, [1], Chap.10) which consisted of 
5000 simulated observations. A subset of the ART data 
(n=250) were used as the “main” dataset to illustrate on 
how to work with MFP, including sections on model criti-
cism. We conducted investigations in additional subsets 
(3 datasets, each of 250 observations) to examine func-
tion replicability and the influence of sample size (3 data-
sets of 125, 250 and 500 observations, respectively) but 
only selected parts are shown, see “Data not shown” in 
Additional file  1: Table  A1. Based on the key principles 
of plasmode data sets [15], the distribution of the predic-
tors in the ART study and their correlation structure was 
informed by a real study from the German Breast Can-
cer Study Group (GBSG), as described in a number of 
earlier publications [1, 6]. For more background on the 
GBSG study, the original data and data of the ART study 
is available at http:// portal. uni- freib urg. de/ imbi/ Royst on- 
Sauer brei- book/ index. html# datas ets.

To improve the quality of reporting and provide a suit-
able overview of all analyses conducted, we extended the 
recently proposed ADEMP structure for simulation stud-
ies [16] with a structured display of analysis strategies 
and presentations, named MethProf-simu profile (see 
Table A1 in Additional file 1).

The rest of the paper is organized as follows. The sec-
tion “The multivariable fractional polynomial proce-
dure” introduces the MFP approach, while the section 
“Influential points and model replicability” discusses 
various aspects of investigations for IPs, model rep-
licability, and sample size. The section “Design of the 
simulated data” introduces the simulated data. The 

http://portal.uni-freiburg.de/imbi/Royston-Sauerbrei-book/index.html#datasets
http://portal.uni-freiburg.de/imbi/Royston-Sauerbrei-book/index.html#datasets
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results of several investigations for these data are pre-
sented in the section “Results”, followed by a discussion 
and conclusions. Several papers and a book have been 
published about MFP modeling. Therefore, we provide 
only a short explanation in the main text and give more 
details in the additional file (see section A1 in Additional 
file 1), intended for readers who are unfamiliar with the 
approach. Due to space limitations, many analyses and a 
case study have been relegated to the additional File (see 
Additional file 1).

The multivariable fractional polynomial procedure
MFP is a multivariable model building approach which 
retains continuous predictors as continuous, finds non-
linear functions if they are sufficiently supported by the 
data, and eliminates predictors with weak or no effects 
by backward elimination (BE) [1]. The two key compo-
nents are variable selection with backward elimination 
and the function selection procedure (FSP) which selects 
an FP function for each continuous variable. The ana-
lyst must decide on a nominal significance level (α) for 
both components. The choice of these two significance 
levels has a strong influence on the complexity and sta-
bility of the final model [1, 17]. The same α level can be 
used for the two components, though it can differ. This 
decision strongly depends on the aim of the analysis. In 
MFP terminology, MFP(0.05) means an MFP model with 
both variables and functions selected at the 0.05 signifi-
cance level while MFP(0.05, 0.01) means that variables 
are selected at the 0.05 level and functions at 0.01 level. 
In this paper, α = 0.05 was used for both components, 
but we also showed the threshold values for α = 0.01 and 
in some cases we discussed the result for this significance 
level in order to illustrate the importance of the chosen 
significance level on the identification of IPs and on the 
final model chosen. In principle, the MFP approach pre-
fers simpler models because they transfer better to other 

settings and are more suited for practical use. This con-
trasts with local regression modeling (e.g., splines, kernel 
smoothers) which often starts and ends with more com-
plex models [7].

The class of fractional polynomial (FP) functions is an 
extension of power transformations of a variable. For 
most applications, FP1 and FP2 functions are sufficient, 
and in this paper, we allowed FP2 to be the most complex 
function. For more details, see [1, 5] and the MFP website 
http:// mfp. imbi. uni- freib urg. de/.

Fractional polynomial functions are defined in the fol-
lowing way:

with exponents p1 and p2 derived from a set  s = {−2, −
1, −0.5, 0, 0.5, 1, 2, 3}, where 0 stands for natural loga-
rithm of x. If p1 = p2  (repeated powers), the FP2 func-
tion is defined as β1xp + β2xp log(x). Overall, the set of 
powers permits 44 models of which 8 are FP1 and 36 are 
FP2. The FP2 with powers (p1 = 1, p2 = 2) is equivalent to 
the quadratic function. While the permitted class of FP 
functions appears small, it includes very different types 
of shapes as illustrated in Fig. 1 for the eight FP1 powers 
and a subset of FP2 powers [1, 5].

In the MFP context, the FSP is conducted in a model 
adjusting for other variables (with their corresponding 
selected FP functions) currently in the model. The devi-
ance (minus twice the maximized log likelihood) of the 
null model, the linear model, the best FP1 model, and the 
best FP2 model are compared if FP2 is the most complex 
function allowed. The extension to FP3 is straightforward 
but not considered here.

The procedure starts with a comparison of the best 
FP2 model with the null model (step 1). If significant, 

FP1 : βxp1

FP2 : β1x
p1

+ β2x
p2,

Fig. 1 Schematic diagram of eight FP1 (left panel) and a subset of the 36 FP2 (right panel) functions

http://mfp.imbi.uni-freiburg.de/


Page 4 of 17Sauerbrei et al. Diagnostic and Prognostic Research             (2023) 7:7 

the procedure compares the best FP2 function with the 
linear model (step 2), and again if significant, the best-
fitting FP1 is compared with the best FP2 (step 3). As 
interpretability, transportability, and practical usefulness 
are important components of MFP models, a non-linear 
FP function is chosen only if it fits the data significantly 
better than the linear function [7]. If non-linearity is 
required, a simpler (FP1) function is preferred to a more 
complex (FP2) function. The use of a closed test proce-
dure ensures that the overall type 1 error rate of FSP is 
close to the nominal significance level [1, 18]. For MFP, 
it is important to note that if α = 1 for variable selection, 
then x is “forced” into the model and step 1 is redun-
dant. If the best-fitting FP1 function is linear, step 3 is not 
required. For more details on FSP (see section A1 of the 
Additional file 1).

Influential points and model replicability
The leverage of IPs may be high; for example, an FP2 
model may be made statistically significant compared 
with FP1 by a single extreme observation of  x. This is 
overfitting and should be avoided because inferences 
from a model strongly influenced by a single observation 
are unlikely to be reliable or generalize well to new data. 
After selecting a function using the FSP, it is important 
to check whether eliminating any individual observations 
(or pairs of observations) influences the significance of 
any of the three FSP tests and thus the selected function.

Identification of influential points in univariable analysis
Diagnostic plot for single points
In accordance with the leave-one-out approach as 
proposed in the seminal article by Cook [19] on IPs, 
Royston and Sauerbrei [1] suggested that diagnostic 
plots be used to identify observations potentially influ-
encing the selection of a function. Successively delet-
ing each single observation from the original dataset, 
the deviance of the null model, the linear model, and 
the best-fitting FP1 and FP2 models was stored, and 
the deviance differences between model pairs were cal-
culated (FP2 vs. null, FP2 vs. linear, and FP2 vs. FP1) 
and plotted against the deleted observation number 
or observed variable value. The χ2

k  critical values with 
k  degrees of freedom and a significance level of α = 
0.05, i.e., FP2 vs. null (9.488 for k = 4), FP2 vs. linear 
(7.815 for k = 3), and FP2 vs. FP1 (5.991 for k = 2) were 
used to decide whether a point was influential or not. 
For illustration, we also showed corresponding lines 
for significance level of α=0.01 with critical values of 
13.277 (k = 4), 11.345 (k = 3), and 9.210 (k = 2). Obser-
vations which influence the choice of an FP model can 
be easily observed because their deletion changes the 
deviance difference, sometimes dramatically compared 

to the other observations. If the deviance difference is 
less than the χ2

k  threshold, there is evidence that the 
choice of the more complex model depends on this 
observation or observations and that a simpler model 
may be preferred. Since the threshold depends on α, an 
observation may be influential at the 0.05 level but not 
at the 0.01 level.

Diagnostic plot for combinations of two or more points
Royston and Sauerbrei [1] only discussed the identifica-
tion of single IPs. The inclusion or exclusion of predic-
tor variables in the model, as well as the functional forms 
selected can be influenced by the effect of particular com-
binations of two or more observations, which can lead to 
discrepant results. To extend the use of diagnostic plots 
to detect two or more IPs, the method described in sub-
section “Diagnostic plot for single points” was extended 
by successively deleting a subset of d observations from 
the original data, which led to n ! /(d ! (n − d)!) samples. To 
better understand the effects of IPs, we considered d = 
2 because higher values can be computationally intensive 
due to a high number of possible combinations. For each 
pair (i, j) where i ≠ j, we constructed samples by removing 
the ith and jth data points from the original data and fit-
ting fractional polynomial models. Box plots were used 
to summarize the deviance differences between model 
pairs for each combination. In total, we had 31,125 rep-
licates generated from a sample size of 250 observations. 
Pairs containing one specific observation and a subset of 
the remaining observations are often on opposite sides of 
the threshold. Boxplots for subgroups of the 31,125 pairs 
can be used to illustrate the effect of influential pairs. As 
before, the χ2

k  threshold was used to determine whether 
pairs of observations were influential. The approach 
for searching for triples is straightforward and was not 
explored here. Obviously, it is computer intensive for 
larger sample sizes.

Identification of influential points in multivariable analysis
Conducting diagnostic analyses for IPs in the multivari-
able modeling raises additional issues, and we illustrated 
two approaches. First, we checked for IPs in each covari-
ate using the approach discussed in subsection “Diagnos-
tic plot for single points”. Then all observations that were 
influential for at least one variable were eliminated, and 
the final MFP model was estimated using the reduced 
dataset. The second approach started with an MFP analy-
sis of the full data set, followed by a check for IPs in the 
selected model. In principle, we exchanged the order of 
checking for IPs and deriving the MFP model. We did not 
check for IPs in variables excluded from the MFP model.
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Univariable analyses to identify IPs followed by MFP 
on reduced data
Observations identified as IPs for at least one covari-
ate in univariable models were eliminated and an MFP 
approach was used in data without IPs (the reduced data-
set), with the results referred to as IPXu (IP in data X, 
univariable); in the next subsection, we used IPXm for a 
multivariable approach to avoid confusion. Although this 
process of identification uses the univariable analysis of 
each variable, the observations identified are also likely to 
influence a joint analysis of the variables. The effects of 
the observations identified as possible IPs were evaluated 
by comparing the estimated functions of multivariable 
models selected on the full data and reduced data.

MFP analysis followed by check for IPs
If the underlying model is multivariable, the IPs identi-
fied by univariable analysis may differ from those iden-
tified by multivariable analysis. Thus, another approach 
is to perform diagnostic analyses on the MFP model 
selected using all the data. While adjusting for all other 
variables in the selected model, the three tests of the FSP 
for each continuous variable were performed after suc-
cessively deleting the ith observation (or a pair) as pre-
viously conducted in univariable analysis. The FP powers 
and parameter estimates from the selected MFP model 
were kept for the adjustment model, whereas Royston 
and Sauerbrei [1] kept the power terms but re-estimated 
regression coefficients in the reduced data. We used 
the notation IPXm to denote the MFP model in data X 
after the removal of IPs identified in the multivariable 
approach.

Model replicability
A related issue to IPs is model stability and replicabil-
ity. In this context, replicability means that the results 
of fitting MFP models to datasets generated from the 
same distribution should be identical or nearly identical 
in terms of variables and functions selected. We dem-
onstrated the replicability of models by selecting MFP 
models in the three datasets (n = 250) sampled from the 
ART data: A250 (obs. 1–250), B250 (obs. 2001–2250), 
and C250 (obs. 3001–3250). As IPs have an impact on 
the selection of variables and functional forms, we com-
pared the functions estimated from the data with and 
without IPs.

A single model is produced after a model selection pro-
cedure is applied to a set of candidate covariates. A very 
low p-value indicates that a covariate may have a stronger 
effect and is thus “stable,” in the sense that it has a high 
chance of being selected in similar datasets. For less sig-
nificant covariates, selection may be more of a matter of 
chance and the model chosen may be influenced by the 

characteristics of a small number of observations. If the 
data is slightly altered, a different model may be selected. 
Studies assessing the stability of variable selection proce-
dures using bootstrap resampling show that the variables 
with stronger effects are selected in the vast majority 
of bootstrap replications, whereas those with weak or 
“borderline significant” effects may enter the model at 
random [20, 21], and their inclusion can be heavily influ-
enced by IPs.

Influence of sample size
The MFP relies on significance tests for variable and func-
tion selection and the detection of non-linear functions 
requires a large sample size. The smaller the sample size 
(or in survival analysis, the fewer the number of events), 
the less likely a test is significant at any given significance 
level. In FSP, a linear function is the default, and if the 
sample size is insufficient, a variable may be eliminated 
or a linear function selected, even if the true function is 
very different. In the context of variable selection, a range 
of 10 to 25 observations per variable has been recom-
mended in order to derive suitable models for descrip-
tion [8, 22]. Larger sample sizes are usually required for 
function selection to have sufficient power to reject a lin-
ear function in favor of a non-linear function.

When a non-linear function is required, Type II errors 
(falsely inferring a linear function; second test of FSP not 
significant) or even eliminating a variable (first test of 
FSP not significant) can be a serious problem in smaller 
samples. The effect of sample size on a model selected 
was demonstrated using different-sized subsets of the 
ART data, i.e., A125 (obs. 1–125), A250 (obs. 1–250), and 
A500 (obs. 1–500). For relatively large sample sizes (n = 
500, about 41 observations per variable), model replica-
bility was investigated by comparing the selected MFP 
models for datasets A500, B500 (obs. 2001–2500), and 
C500 (obs. 3001–3500). Based on a reviewers’ suggestion, 
we investigated the effects of IPs in a relatively large data-
set (n = 1000; data D1000 (obs. 3501–4500)). In all data, 
checks for IPs were conducted and results compared 
after exclusion of IPs.

Design of the simulated data
This section introduces the simulated data set used to 
illustrate the MFP approach and investigate the issues 
of IPs, model replicability, and sample size. The data are 
publicly available from the MFP website https:// mfp. 
imbi. uni- freib urg. de/.

In the spirit of plasmode simulations [15], the ART 
data set is composed of 5000 simulated observations 
that mimic the GBSG breast cancer study in terms of 
the distribution of predictors and correlation structure 
(see Appendix A.2.2 in [1]). It has a continuous response 

https://mfp.imbi.uni-freiburg.de/
https://mfp.imbi.uni-freiburg.de/
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variable y, and 10 covariates. The covariates include six 
continuous variables (x1, x3, x5, x6, x7, and x10), two 
binary variables (x2 and x8), and two 3-level categori-
cal variables (x4 and x9), of which x4 is ordinal and x9 
is nominal. For each of x4 and x9, two dummy variables 
with an ordinal (x4) and a categorical (x9) coding were 
used. The true model used to generate the ART data was 
given by

where ϵ is the random noise assumed to be independent 
and identically distributed N(0, σ2) with σ2 = 0.49,result-
ing in R2 of about 0.50. There are five continuous vari-
ables and two categorical variables with an effect on the 
outcome. The power for variable x5 (−0.2) is not an ele-
ment of a set of FP functions, and so can only be modeled 
approximately using the FP approach while a value of 1 
was added to variable x6 before logarithm transformation 
due to 0 values. The contribution of each variable to the 
model fit was assessed using the percentage reduction in 
R2. The magnitude of the reduction in R2 is a measure of 
the importance of a variable [1]. As illustrated in Addi-
tional file 1: Table A2, variable x5 and x6 were the most 
important variables, since their removal from the model 
led to a reduction in R2 of about 56 and 17% respectively, 
while noise variables had a reduction in R2 of less than 
1%. In the GBSG study, the variable x5 relates to the 
number of positive lymph nodes, a variable known to be 
the dominating prognostic factor in patients with breast 
cancer.

Data A250 was used to investigate in details the 
effects of IPs in selection of variables and functional 
forms in univariable and multivariable analysis. Details 
of the distributions and correlation structure for this 
subset of the data are presented in the additional file 
(see Table  A3 and Table  A4 in section A3 in Addi-
tional file  1). Using thresholds of 10 for kurtosis and 
3 for skewness, we see that variable x3, x5, x6, and x7 

y = −4 + 3.5x0.5
1

− 0.25x1 − 0.018x3 − 0.4x4a + 4x−0.2
5

+ 0.25 log
(

x6 + 1
)

+ 0.4x8 + 0.021x10 + �

have high kurtosis while variables x5 and x7 are highly 
skewed (Additional file 1: Table A3). To improve read-
ability, understanding of concepts and results of the 
investigation for IPs, we used a structured approach to 
summarize the key issues in a two-part profile for meth-
odological studies (see section 2 in Additional file 1).

Results
Univariable analysis for continuous variables
To illustrate the three steps of FSP, all p-values of the uni-
variable function selection for each continuous predictor 
in dataset A250 were provided (Table  1). The best FP2 
model was compared to the null model, a linear model, 
and the best FP1 model at α = 0.05. Variable x5 had an 
FP2 (0, 3) function, variable x6 had an FP1 (0) function, 
and variables x1 and x7 had linear terms, whereas x3 and 
x10 were not significant.

There are clear discrepancies between the results of 
selecting a function univariably and the true functions 
from the multivariable model. Two variables with an 
effect were not selected (x3, x10), whereas one vari-
able without an effect was selected (x7). The only “cor-
rectly” selected power term is FP1(0) for variable x6, 
but without related parameter estimates, power terms 
are not informative. One reason for the discrepant 
findings is the multivariable nature of the true model, 
which takes into account the effects of other variables 
in the model while deriving the outcome values. Sev-
eral variables related to outcome were not included 
in the univariable models; thus, severe residual con-
founding occurred [23, 24]. This can be an important 
reason that univariable relationships severely mis-
model the true functions. In addition, mis-modeling 
functions can also be attributed to the effects of IPs, 
specifically in relatively small sample sizes. It is impor-
tant to note that if the significance level of 0.01 had 
been chosen for FSP, an FP1 function would have been 
selected for x5, the linear functions for x6, and x7 
would have been excluded.

Table 1 Data A250. Univariable analysis for continuous variables. Columns 2–4 show the p-values for different FP tests; column 5 gives 
the final FP powers and indicates whether a variable was excluded; the last column shows the FP powers for the true multivariable 
model used to generate the data

P-values in bold indicate the first non-significant test of the FSP

Variable FP2 vs. Null FP2 vs. Linear FP2 vs. FP1 Final selection True model

x1 0.001 0.165 0.391 1 0.5, 1

x3 0.856 0.765 0.659 Out 1

x5 0.000 0.000 0.033 0, 3 −0.2

x6 0.002 0.046 0.265 0 0

x7 0.012 0.449 0.678 1 Out

x10 0.135 0.314 0.295 Out 1
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Diagnostic plot for single observations
Diagnostic plots of deviance differences for the three 
steps of FSP for each observation removed were created 
to illustrate the three tests of FSP and visually examine 
the data set for the presence of observations that alter 
the functional form of a selected FP model or selection 
of variables.

Figure  2 shows the results of the three model com-
parisons for two variables (x5 and x6) with IPs. For x5, 
the first two FSP tests were significant, irrespective of 
which of the two significance levels was used. Three 
IPs (obs. 16, 151, and 175, shown as black dots) were 
identified as observations which affect the shape of the 
selected function for variable x5 (top right). If any of 
these observations were removed, the FP2 vs. FP1 test 
would be non-significant at the 5% level, resulting in 
the choice of a simpler FP1 model. Although the values 
of x5 for observations 16 and 175 were in proximity 
to other observations, the former had a larger influ-
ence on the deviance difference and is thus the first 
potential candidate to be eliminated from the data. 
In principle, we could have used a stepwise approach 
and eliminated one observation at a time (starting with 
obs. 175 because it had the largest influence or with 
obs. 151 because it had an outlying value for x5) before 

repeating the investigation with the remaining 249 
observations.

To illustrate a different situation, we present results 
for variable x6 (lower panel of Fig. 2). The first FSP test 
(FP2 vs. Null) was significant at 0.05 amd 0.01 levels. 
Several interesting aspects were revealed in the second 
(FP2 vs. Linear) and third (FP2 vs. FP1) tests. First, both 
tests were significant at a 0.01 level when obs. 126, was 
eliminated. This indicated that removing this observation 
resulted in an FP2 function. Second, the elimination of 
observations other than 126 cast doubt on the need for 
a non-linear function because all of the deviance differ-
ence values (FP2 vs. Linear) were close to the chi-square 
critical value at the 0.05 level, with fewer values below the 
critical value, suggesting that their removal would result 
in the selection of a linear function.

Diagnostic plot for combinations of two observations
Deletion of pairs of observations to identify possible IPs 
was also conducted. Figure 3 displays the deviance differ-
ences for the last two FSP tests summarized using three 
groups of boxplots for variables x5 and x6 that had IPs. 
Group G1 shows the distribution of deviance difference 
for all 31,125 possible pairs. G2 and G3 are the distribu-
tion of pairs of subgroups; criteria to define subgroups 

Fig. 2 Data A250. Plots of deviance differences for each model comparison against observed values for variables x5 and x6. A logarithm scale was 
used for variable x6 to ease visualization due to extremely large values. Please note that y-axis scales differ. Two threshold values, representing the 
significance levels α = 0.05 and α = 0.01, are shown on the plots as horizontal solid and dashed lines, respectively. Please note that the test of FP2 vs 
linear and FP2 vs FP1 may not be relevant if the test of FP2 vs Null is not significant. Nevertheless, we will always show the full panel
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depend on influential points. Specific criteria are given in 
the figures (Fig.  3). For variable x5 (top-left panel), two 
groups of deviance differences were evident, as shown in 
G1 under the test of FP2 vs. linear where obs. 151 was 
the grouping factor. The deviance difference was reduced 
when one or two of the obs. 16, 151, or 175 were removed 
(G3), but the test of FP2 vs. linear was still significant, 
indicating that a non-linear function was needed for x5. 
Similarly, in the test of FP2 vs. FP1, the groups are sepa-
rated by the chi-square threshold at 5.991, indicating 
that the elimination of at least one of the observations 
16, 151, or 175 (group G3) led to the non-significance 
of the test in most cases, resulting in the selection of an 
FP1 function. The inclusion of at least one of these three 
observations (group G2) led to an FP2 function for the 
significance level of 0.05. Deletion of pair (126, 151) 
resulted in the selection of an FP2 (−0.5, 3) function 
instead of a simpler FP1. Further scrutiny on the func-
tional plot (bottom-left panel of Fig. 4) after the deletion 
of pairs (126, 151) revealed that obs. 16 and 175 were 
the main causes of an FP2 function. This confirms that 
the three observations (16, 151, and 175) were indeed 

influential. Deletion of these three observations pro-
duced a simpler FP1 (−0.5) function, pointing out that 
the complex FP2 function was not required.

For variable x6, the test of FP2 vs. FP1 (Fig. 3, bottom 
right) identified two groups. The second group (G2) con-
tained all pairs with influential obs. 126. Its presence 
in the data resulted in the selection of an FP1 function, 
while its deletion resulted in an FP2 function at 0.05 
level (G3). The deletion of a pair (14, 126) revealed that 
another observation number 14, which was not influen-
tial in single-case deletion, was influential. This explains 
why an FP2 function was selected when obs. 126 was 
deleted (Fig.  4, top right). After removal of the two IPs 
(14 and 126), an FP1 (−0.5) function was selected (Fig. 4, 
bottom-right panel). Hence, it was sufficient to describe 
x6 using a simpler FP1 function rather than an FP2 
function.

Plot of functions
Figure  4 displays the functional forms of variables x5 
(top-left panel) and x6 (top-right panel) before and 
after IP removal. There were no IPs found for the other 

Fig. 3 Data A250. Detection of IPs in variable x5 and x6 by deleting pairs of observations. The dashed and solid horizontal lines denote the 
thresholds of the FSP test at 0.01 and 0.05 level respectively. IPs are highlighted on the graph. Group G1 is the distribution of deviance difference for 
all 31,125 possible pairs. G2 and G3 are the distribution of pairs of subgroups, and criteria to define subgroups depend on influential points. Specific 
criteria are given in the figures
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continuous variables (x1, x3, x7, and x10). For x5, the true 
function FP1 (−0.2) was quite similar to the FP2 (0, 3) 
function from all the data up to about x5 = 50. There-
after, there was a huge deviation due to the influence of 
obs. 151. The FP1 (−0.5) function obtained by omitting 
observations 16, 151, and 175 was a better approximation 
of the true function than the FP2 function estimated from 
all the data. The larger uncertainty (wider 95% point-wise 
confidence interval) towards the right end is a result of 
fewer observations with values of x5 larger than 50. It is 
important to note that the uncertainty of the function is 
underestimated because the function was derived data-
dependently, an aspect ignored here. Furthermore, the 
estimated function refers to a univariable model, whereas 
the data were generated using a multivariable model with 
some correlated covariates.

The true and selected function for variable x6 with all 
the data was slightly different even though both func-
tions were FP1(0) (top-right panel). The difference was 
caused by true and estimated coefficients (βtrue = 0.25 

andβ̂estimated = 0.15 ) as well as the effects of influential 
obs. 126. Deletion of obs. 126 resulted in an FP2 (−1, 
3) function, but closer inspection revealed that the data 
might contain other IPs (e.g., obs. 14 or 218).

Investigation of function replicability
The replicability of the selected univariable functions 
was investigated across three data sets (A250, B250, and 
C250). The functional forms of continuous variables were 
compared before and after IPs were removed as shown in 
Fig. 5 which is based on the results of Table 2. The graph 
of variable x5 (top-middle panel) demonstrates how an IP 
can lead to an unnecessary complex function. When the IP 
was removed (bottom-middle panel), the functional form 
of variable x5 was quite similar to the true function. A lin-
ear function of variable x1 did not correspond to the true 
FP2 function (bottom left). For variable x6, the functional 
forms were similar to the true function after IPs were 
removed as expected since this variable had a strong effect 

Fig. 4 Data A250. Functional forms of variables x5 and x6. Top: the estimate of the functional form from complete data (red, short-dashed), data 
without IPs identified using the L-1 approach (solid line) and true function (blue, long-dashed line). Bottom: the estimate of the functional forms of 
variables x5 (left) and x6 (right) after the removal of observation (126, 151) and (14, 126), respectively. Please note the different scales
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and the correlation in the data was low. These findings 
indicate that function replicability is influenced by both 
sample size and IPs. More information on identifying IPs 
in data B250 and C250 can be found in the additional file 
(see Figure A1, A2, A3, A6, and A7 in Additional file 1).

Multivariable analysis—effect of influential points
Elimination of influential points identified in univariable 
analysis
MFP analyses were run to generate multivariable mod-
els for data A250, B250, and C250 before the IPs were 

deleted. The selected models are displayed in Table  3, 
in the column labeled “all”. Next, all the IPs identified 
in univariable analyses for the six continuous variables 
were deleted and an MFP model was fitted, the results of 
which are displayed in the column labeled “IPXu.” Finally, 
the column labeled “IPXm” presents the MFP model 
selected after deleting IPs that were identified in the diag-
nostic analysis of the multivariable model.

In the univariable analysis, a total of 5, 3, and 4 IPs were 
identified in A250, B250, and C250, respectively. Deleting 
these observations resulted in the selection of variables 

Fig. 5 Data A250, B250, and C250. Functional forms of continuous variables in univariable analysis for x1, x5, and x6 that were selected in three 
datasets. Variable x10 was only selected in C250 and had a linear function, hence its plot is not provided. The upper panel shows the plots from 
complete data, while the lower panel shows the plots after the removal of IPs

Table 2 Data A250, B250 and C250. Univariable analysis for continuous variables. “All data” and “all data-IPs” refer to FP powers 
obtained with complete data and after removing IPs, respectively. Variable (a, b, c) refers to the total number of IPs for each variable in 
each dataset, where a, b, and c stand for A250, B250, and C250 respectively. “=” denotes same power term selected

A250 B250 C250

Variable(a,b, c) All data All data-IPs All data All data-IPs All data All data-IPs True

x1(0, 0, 1) 1 = 1 = 3, 3 1 0.5, 1

x3(0, 0, 0) Out = Out = Out = 1

x5(3, 0, 2) 0, 3 −0.5 0 = 0 0.5, 0.5 −0.2

x6(2, 0, 1) 0 −0.5 −0.5 = 1 0.5 0

x7(0, 3, 0) 1 = Out 0 0 = Out

x10(0, 0, 0) Out = Out = 1 = 1
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similar to the model fitted to the full data. However, in 
data A250, a simpler FP1 (−0.5) function was estimated 
for variable x5 after deleting IPs rather than an FP2 (0, 3) 
function from complete data. In data set B250, different 
powers of FP2 functions were also estimated for variable 
x1. Compared to the results from the univariate investi-
gations (Table  2), several functions differ substantially. 
For x1, a linear function was selected in B250 whereas an 
FP2 is selected with the multivariable approach (all and 
IPBu). In A250, x3 was not significant in the univariate 
analyses but was included with a linear function in the 
multivariable case.

Diagnostic analyses on multivariable model
Diagnostic analyses were performed on the selected mul-
tivariable model (column “all” in Table 3) as a second way 
to check for IPs in a multivariable context. The IP investi-
gation for dataset A250 is described in this section, while 
the IP investigations for datasets B250 and C250 were 
described in the additional file (see section A4 in Addi-
tional file 1).

In leave-one-out approach (Figure A4 Additional file 1), 
obs. 175 was found to influence the functional form of 
variable x5 at the 0.05 level. Its removal turned an FP2 (0, 
3) function into an FP1 (−0.5) function. In the leave-two-
out approach, IPs were found in variables x5 and x10. For 
variable x5, deletion of any pair with obs. 175 rendered 
the test of FP2 vs. FP1 non-significant except when two 
pairs (37, 175) and (151, 175) were deleted (Additional 
file 1: Figure A5). An inspection of the functional forms 
(Figure A5 Additional file  1) revealed that when a pair 
(37, 175) was deleted, an FP2 function was estimated 

because of the effects of obs. 151 that was still in the data. 
Similarly, when a pair (151, 175) was deleted, an FP2 
function was driven by obs. 37. As such, observations 37, 
151, and 175 were indeed influential in variable x5. An 
easy and informal way to check for the three IPs simulta-
neously is by deleting three observations at a time instead 
of pairs. Only two observations, 151 and 175, were influ-
ential in both univariable and multivariable checks for IP. 
For variable x10, deleting two pairs (37, 76) and (74, 76) 
rendered the test of FP2 vs. linear significant, implying 
that observations 37, 74, and 76 were IPs. Deleting any of 
the pairs led to an FP1 function. In total, five IPs (37, 74, 
76, 151, and 175) were identified in A250 as presented in 
Table 3.

Table  3 compares models from complete data (“all”) 
and after eliminating IPs (IPAu and IPAm) in the three 
datasets with a sample size of 250. Elimination of IPs 
had an influence on some of the selected functions (x1 in 
B250, x5 in A250, and x10 in A250 and C250). IPs had 
also an influence on the selection of the binary variable 
x8 in B250. In particular, in A250 an FP2 (0, 3) function 
was estimated for variable x5 due to the effects of IPs and 
a satisfactory function is FP1 (0) which was quite similar 
to the true function (Fig. 6). However, elimination of IPs 
may also result in the selection of a non-linear function 
instead of a linear function (x10 in A250).

More important is the comparison of the selected 
models with the true model. Concerning the inclusion of 
binary and categorical variables, we observed full agree-
ment in A250, a difference for x2 in C250, and some dif-
ferences in B250. Concerning power terms of functions, 
we observed good agreement for x6 and x7 (was always 

Table 3 Data A250, B250, and C250. Selected MFP models with complete data (“all”) and after removal of IPs identified from the 
univariable (IPXu) and multivariable (IPXm) diagnostic analyses. The number of IPs identified univariable and multivariable, respectively, 
are shown in parentheses. “=” is used if the power selected agreed to the power from all data

Cont, Cat, and Bi denote continuous, categorical, and binary variables respectively

Type Variable Dataset A250 (5, 5) Dataset B250 (3, 3) Dataset C250 (4, 6) True model

All IPAu IPAm All IPBu IPBm All IPCu IPCm

Cont. x1 1 = = −1, 3 0, 3 1 Out = = 0.5, 1

x3 1 = = Out = = Out = = 1

x5 0, 3 −0.5 0 0 = = −0.5 = = −0.2

x6 0 = = −0.5 = = 0 = = 0

x7 Out = = Out = = Out = = Out

x10 1 = 3 Out = = 1 = Out 1

Cat. x9a Out = = In = = Out = = Out

x9b Out = = Out = = Out = = Out

Bi x2 Out = = Out = = In = = Out

x4a In = = In = = In = = In

x4b Out = = Out = = Out = = Out

x8 In = = Out = In In = = In
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out), and non-linear functions selected for x5 in all analy-
ses. Several disagreements were observed in other vari-
ables. In specific, for x1, where FP2 was the true function, 
but the variable was excluded in C250 and a linear func-
tion was estimated in A250, a strong indication that the 
power was insufficient to identify the non-linear effect. A 
larger sample size seems to be needed.

Figure 6 compares the functional forms of continuous 
variables from three datasets with and without IPs. The 
true function for variable x1 was an FP2, which was well 
approximated by data B250 before the removal of IPs 
but elimination of IPs resulted in the selection of a linear 
function which is far away from the true effect of x1.The 
true and estimated functions for variables x5 and x6 were 
nearly identical when IPs were removed.

Sample size and its effect on identifiability of the true 
model
To evaluate the effect of the sample size on the identifi-
ability of the models, we compared models derived with 
different sample sizes and also after IPs were deleted. Uni-
variable and multivariable approaches were used to check 
for IPs.

Small to relatively large dataset
Table 4 summarizes the power terms of the nine models 
selected from small to relatively large datasets, while Fig. 7 
shows related functions for data without IPs (i.e., IPAm).

Multivariable analysis of the complete data set A125 
led to the selection of only three variables: x5, x6, and x8 
due to low power for selecting variables with moderate 
effects (Table  4). Even though the sample size was rela-
tively small, non-linearity of x5 and x6, the two variables 
with a stronger effect (see Additional file  1: Table  A2), 
was identified. The removal of three IPs (obs.14, 16, and 
105) that were identified in the univariable approach 
led to the inclusion of variable x3 and changed the FP1 
power term for variable x5. No IPs were found in the 
diagnostic analysis of the multivariable model of data 
set A125. Compared to the true model, the main differ-
ences in selected MFP models were the elimination of 
x1, x10, and x4a, while x3 was only included with the IPu 
approach. These results illustrate that the sample size of 
125 was much too low to select a suitable MFP model.

The results for the sample size of n = 250 were much 
closer to the true model since variables x1 (although 
only linear), x3, x10, and x4a were included in the model. 

Fig. 6 Data A250, B250, and C250. Functional forms of continuous variables for the selected MFP models (see Table 3). The upper panel shows the 
plots from complete data, while the lower panel shows the plots after the removal of IPs. The horizontal line indicates that no variable was selected. 
Not shown are x3 (linear in true and A250, out in B250 and C250) and x7 (true out and never selected).
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The elimination of five IPs did not affect the selection of 
variables but changed some of the power terms of con-
tinuous variables. For n = 500, the selected MFP models 
agreed well to the true model. Selected functions for x1 
(Fig. 7) best illustrate the significant impact of the sam-
ple size. The variable was eliminated when n = 125, a 
linear function was selected when n = 250, and an FP2 
function that was close to the true function was selected 
when n = 500.

Relatively large dataset
Results for three relatively large datasets (A500, B500, 
and C500) were summarized in the additional file (see 
subsection 4.3 in Additional file 1). IPs had some effects 
on the power terms chosen, and binary variables were 
not always correctly included. Figure  8 shows the esti-
mated functions (after deletion of IPs) for the five con-
tinuous variables that had an effect on the outcome. In 
C500, a non-linear function was estimated for variable 

Table 4 Data A125, A250, and A500. Selected functions from MFP models with all data (“all”) and after removal of IPs identified from 
the univariable (“IPAu”) and multivariable (“IPAm”) diagnostic analyses. The number of IPs identified in each respective analysis is shown 
in parentheses next to the name of the data

Type Variable Data A125 (3, 0) Data A250 (5, 5) Data A500 (6, 1) True model

All IPAu IPAm All IPAu IPAm All IPAu IPAm

Cont. x1 Out = = 1 = = 0.5, 1 = = 0.5, 1

x3 Out 1 Out 1 = = 1 = = 1

x5 0 −0.5 0 0, 3 −0.5 0 0, 3 −1, 0 0 −0.2

x6 0 = = 0 = = 0 = = 0

x7 Out = = Out = = Out = = Out

x10 Out = = 1 = 3 1 = = 1

Cat. x9a Out = = Out = = Out = = Out

X9b Out Out = = In = Out Out

Bi. x2 Out = = Out = = Out = = Out

x4a Out = = In = = In = = In

x4b Out = = Out = = Out = In Out

x8 In = = In = = In = = In

Fig. 7 Data A125, A250, and A500. Functional forms of continuous variables after elimination of IPs identified in multivariable model (results of 
IPAm in Table 4). Variables x1, x3, and x10 were not selected in A125
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x10 instead of the correct linear function but otherwise 
the agreement is good. Identification and elimination of 
IPs improved the selected function for x5 (FP2 in all data, 
FP1 after removal of IPs) and changed the selection of 
x9b and x4b in A500, but otherwise the effect was negli-
gible in the three data sets.

One of the reviewers suggested to investigate the 
effects of IPs in larger dataset which is often encoun-
tered in practice. This prompted us to conduct addi-
tional analysis in data D1000 with a sample size of 
1000. Due to computational complexity, we only con-
ducted a single-case deletion and the multivariable 
approach. No IPs were found at the 5% significance 
level for function selection, but three IPs were found 
at 1% in only variable x5 which caused an FP2 function 
as shown in Additional file 1: Figure A8. The FP2 func-
tion was clearly driven by IPs (Additional file 1: Figure 
A9, left panel). The function without IPs agreed well 
with the true function (Additional file  1: Figure A9, 
right panel).

Generally, with large sample sizes and removal of IPs, 
variables selected and the estimated functional forms 
were good approximations of the true model (Additional 
file 1: Table A5).

Discussion
In areas of science in which empirical data are analyzed, 
various types of regression models are derived for pre-
diction, description, and explanation [25]. In medicine, 
continuous measurements such as age and weight are 

often used to assess risk, predict an outcome, or select a 
therapy. Background knowledge or the type of question 
should strongly influence how continuous variables are 
used. However, knowledge is often insufficient and the 
analyst needs to decide how to handle continuous vari-
ables, a very difficult issue in the context of multivari-
able analysis when the selection of the functional form 
of a continuous variable needs to be combined with the 
selection of variables which have an influence on the 
outcome.

Concerning continuous variables, categorization and 
the assumption of a linear effect are still the most popu-
lar approaches [26], despite many well-known weak-
nesses [2–4, 13]. This unfortunate situation is partly 
caused by lack of guidance for the selection of variables 
and modeling of continuous variables. Sauerbrei et  al. 
[13] described and discussed the fractional polyno-
mial and spline-based approaches in an overview paper 
of topic group 2 “Selection of variables and functional 
forms in multivariable analysis” of the STRengthening 
Analytical Thinking for Observational Studies (STRA-
TOS) initiative [27]. Various spline-based approaches 
have been proposed and an overview of the most widely 
used spline-based techniques and their implementation 
in R software is given in [12]. The authors illustrated 
some challenges that an analyst face when working with 
continuous variables using a series of simple scenarios 
of univariable data. They concluded that an “…experi-
enced user will know how to obtain a reasonable out-
come, regardless of the type of spline used. However, 

Fig. 8 Data A500, B500, and C500. The plots were created after removing the IPs identified in the multivariable model (results of IPAm in Additional 
file 1: Table A5). Variable x7, which was irrelevant in the true model, was not selected in each data set, so it was not plotted
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many analysts do not have sufficient knowledge to use 
these powerful tools adequately and will need more 
guidance.”

Univariable analysis was the emphasis of this overview. 
A brief overview of spline-based techniques for multi-
variable model building was given in [13]. While FPs are 
global functions, splines are much more flexible and can 
also estimate local effects. However, that comes at the 
price of more function instability and uncertainty [7]. 
Furthermore, local features may be identified by a sys-
tematic check of residuals of the MFP model, and statisti-
cally significant local polynomials can be parsimoniously 
added [28]. Results of MFP and spline-based approaches 
were compared in several examples [1, 7], and a simula-
tion study [29], but it is obvious that more comparisons 
of spline procedures in both univariable and multivari-
able contexts and comparisons to MFP are needed.

In contrast to the spline approaches, the MFP proce-
dure is a well-defined pragmatic approach. Deriving suit-
able models for description is the main aim, and the two 
significance levels for the BE and FSP parts are the key 
tuning parameters. Using simulated data, we illustrated 
all steps of the procedure and the importance of check-
ing whether IPs affect (strongly) the selected model with 
the potential consequence of (severe) errors in variables 
or functional forms selected. IPs can also have a strong 
effect on model (in-)stability [17]. Leave-one-out and 
leave-M-out are simple and helpful techniques for the 
identification of IPs which can be easily understood by 
most analysts with at least some background in regres-
sion modeling. It is important to check each multivaria-
ble model that includes continuous variables for potential 
IPs. Here, we eliminated identified IPs, but other options 
may be preferable in real data.

The effects of sample size on MFP models were illus-
trated in datasets A125, A250, and A500 (Table  4 and 
Fig.  7). We observed that MFP models derived from a 
relatively small sample size (A125) deviated severely from 
the underlying true model since some relevant variables 
were excluded and linear functions were estimated for 
some continuous variables instead of non-linear func-
tions, probably due to low power to detect non-linearity 
[1]. We also observed that an MFP can detect stronger 
non-linear functions in small sample sizes (e.g., variables 
x5 and x6). As the sample size increased (A500), the per-
formance of MFP improved drastically since important 
variables were correctly selected and non-linear func-
tions (e.g., x1 and x3) were identified. In addition, all 
models derived with a relatively large sample size (500 
observations, 12 variables, about 42 observations per var-
iable) and IPs eliminated were similar to the true model 
as shown in Additional file 1: Table A5 and Fig. 8. These 
results indicate that with about 50 or more observations 

per variable, it may be possible to derive suitable descrip-
tive models for studies with several variables ranging 
from about 5 to 30. In our simulated data, we had six 
continuous and six binary variables.

The results of the function selection procedure can 
be driven by IPs. For instance, the estimated functional 
form for variable x5 (Fig. 4) from the complete data with 
IP is a non-monotonic FP2 function instead of a mono-
tonic FP1 function. Similar results were observed in the 
case study where an FP2 function was estimated for the 
variable abdomen instead of a linear function (Addi-
tional file  1: Table  A6). These results indicate that the 
data analyst needs to use the algorithm carefully while 
selecting the functional forms of continuous variables 
since, in some instances, a simple function may suffice 
instead of a complex function driven by IPs (see Addi-
tional file  1: Table  A7 and Figure A10). Plots of devi-
ance differences for variables x5 and x6 (Figs. 2 and 3) 
illustrate that such additional investigation can support 
the final decision for a model, e.g., we might prefer a 
simpler model despite a (just) significant result for the 
more complex model. Comparisons of two competing 
functions (e.g., linear versus best FP1) may show that 
the difference is small and subject matter knowledge 
or practical usefulness may be used as a criteria for the 
final selection.

As often done, we started with the investigation of 
one variable, while our outcome was created accord-
ing to a multivariable process. Such marginal investiga-
tion may be misleading, and researchers may prefer to 
derive a multivariable model and check whether single 
points have a severe influence on the model selected. 
In several datasets, we conducted such an approach 
and found some differences in potential IPs identified. 
We did not check whether variables eliminated by MFP 
would have been included if we had eliminated single 
observations from the data set. In real data, we would 
recommend that. If a single continuous variable is of 
main interest (e.g., a continuous risk factor in epide-
miology), it is straightforward to use our “univariable” 
investigations, adjusted for relevant confounders, to 
check whether single points drive the selected function 
for this variable.

Conclusions
Variable selection by using backward elimination and the 
fractional polynomial function selection procedure can 
be easily understood and used by non-experts. It is obvi-
ous that the sample size needs to be sufficient and aspects 
of model criticism should be standard for each derived 
multivariable model. We concentrated on the importance 
of IPs, but other aspects (e.g., residual plots) are also rel-
evant. Some issues are discussed in chapters 5, 6, and 10 
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in [1], and on the MFP website. If the effect of continu-
ous variables needs to be investigated in the context of 
a multivariable regression model, recommendations for 
practice were proposed under several assumptions ([1] 
Chapter 12.2, 7).

If the sample size is too small, models selected with the 
MFP approach might differ substantially from the underly-
ing true model. However, for larger sample sizes, a carefully 
conducted MFP analysis is often a suitable way to select a 
multivariable regression model which includes continu-
ous variables. In such a case, MFP can be the preferred 
approach to derive a multivariable descriptive model.
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