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Abstract 

Background The performance of models for binary outcomes can be described by measures such as the concord-
ance statistic (c-statistic, area under the curve), the discrimination slope, or the Brier score. At internal validation, data 
resampling techniques, e.g., cross-validation, are frequently employed to correct for optimism in these model perfor-
mance criteria. Especially with small samples or rare events, leave-one-out cross-validation is a popular choice.

Methods Using simulations and a real data example, we compared the effect of different resampling techniques on 
the estimation of c-statistics, discrimination slopes, and Brier scores for three estimators of logistic regression models, 
including the maximum likelihood and two maximum penalized likelihood estimators.

Results Our simulation study confirms earlier studies reporting that leave-one-out cross-validated c-statistics can be 
strongly biased towards zero. In addition, our study reveals that this bias is even more pronounced for model estima-
tors shrinking estimated probabilities towards the observed event fraction, such as ridge regression. Leave-one-out 
cross-validation also provided pessimistic estimates of the discrimination slope but nearly unbiased estimates of the 
Brier score.

Conclusions We recommend to use leave-pair-out cross-validation, fivefold cross-validation with repetitions, the 
enhanced or the .632+ bootstrap to estimate c-statistics, and leave-pair-out or fivefold cross-validation to estimate 
discrimination slopes.

Keywords Bootstrap, Concordance statistic, Discrimination slope, Logistic regression, Resampling techniques

Introduction
The concordance statistic (c-statistic) is a widely used 
measure to quantify the discrimination ability of models 
for binary outcomes. Calculating the c-statistic for the 
data on which the model was fitted will usually give too 
optimistic results for the model performance in subjects 
outside of the model development set, especially with 
small samples or rare events. This over-optimism can be 
corrected by data resampling techniques such as cross-
validation (CV) or the bootstrap. Leave-one-out (LOO) 
CV has the advantage of being applicable even with small 
samples where other techniques such as tenfold or five-
fold CV might run into problems when, e.g., some of 
the CV subsets contain only one category of the binary 
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outcome. Whereas LOO CV is known to yield nearly 
unbiased estimates for performance measures applicable 
to single observations such as the Brier score [16], it has 
been shown to induce negative bias into the c-statistic [1, 
27]. Nevertheless, LOO CV to “cross-validate” estimated 
probabilities and c-statistics is still in widespread use. 
For example, in the current standard implementation of 
logistic regression in the SAS/STAT 15.2 and Viya 3.4 
software, PROC LOGISTIC, a one-step approximation to 
LOO CV is the only built-in cross-validation method for 
estimated probabilities and also for the c-statistic [23].

The present paper aims to provide a better understand-
ing of resampling techniques, in particular LOO CV, 
when combined with different estimators commonly 
used to fit logistic regression models with binary out-
comes and when used to evaluate the model performance 
by means of the c-statistic, the Brier score, and the dis-
crimination slope [30], which is an increasingly popular 
measure of predictive accuracy in binary outcome mod-
els. A similar aim was pursued by Iba et al. [15] but focus-
ing on bootstrap methods only.

Throughout this paper, we focus on the situation of 
relatively few observations or events, where reliable pre-
dictive models are out of scope. Nevertheless, in such 
situations, it could still be of interest to use a prediction 
model to capture the data structure in a compact manner 
[26]. In such a model-based description of the associa-
tion of an outcome with several covariates, an unbiased 
measure of the discrimination ability of that model is still 
of interest.

The remainder of this paper is organized as follows: we 
start with an introduction of the measures of model per-
formance, the resampling techniques, and the model esti-
mators of interest. A study on the association between 
diabetes and the waist-hip ratio serves as illustrative 
example. Subsequently, we provide an intuitive explana-
tion of the problems with LOO CV using a simple toy 
example and present a comprehensive simulation study. 
Finally, we discuss the impact of our findings on routine 
statistical analyses. A preprint of this manuscript can be 
found on arXiv. org [9].

Methods
Measures of model performance
We denote the two outcome values as “event” and “non-
event” and assume that in logistic regression, the prob-
ability of an event is modeled.

The c-statistic is the proportion of pairs among all pos-
sible pairs of observations with contrary outcomes in 
which the estimated event probability is higher in the 
observation with the event than in the observation with 

the non-event. It equals the area under the receiver oper-
ating characteristic curve [10].

The discrimination slope is the difference between 
the mean estimated probability of an event for observa-
tions with events and the mean estimated probability for 
observations with non-events. Paralleling the construc-
tion of the c-statistic, the discrimination slope can be 
computed as the average pairwise difference in estimated 
probabilities, thus representing a parametric version of 
the c-statistic. It was suggested as “highly recommend-
able R2-substitute for logistic regression models” by 
Tjur [30] and recently revisited by Antolini et al. [2]. For 
model estimators which give average estimated probabili-
ties equal to the event fraction, the discrimination slope 
is equal to the measure of explained variation for binary 
outcomes proposed in [25]; see the Appendix for a proof.

The Brier score is the mean squared difference between 
the binary outcome and the estimated probabilities [29]. 
It equals 0 for perfect models. The magnitude of the Brier 
score has to be interpreted in the context of the event 
fraction of a data set. For instance, at an event fraction of 
0.5, a non-informative model with estimated probabilities 
equal to the event fraction assumes a Brier score of 0.25, 
while at an event fraction of 0.25, it is 0.1875. Unlike the 
c-statistic and the discrimination slope, the Brier score 
can be defined and computed for single observations.

Techniques to correct for over‑optimism
Throughout this paper, we assume that the observations 
in the model development set are drawn from a large 
underlying population and that we are interested in the 
performance of the model applied to this underlying 
population excluding the observations in the develop-
ment set. Calculating performance measures on the same 
data as used for model development will usually result in 
highly biased (“over-optimistic”) estimates which need to 
be corrected. Here, we describe some resampling tech-
niques which provide optimism-corrected estimates of 
the c-statistic. If not mentioned otherwise, methodology 
straightforwardly generalizes to the discrimination slope 
and the Brier score. We denote by “apparent” measures 
that are calculated from the data on which the model was 
fitted without correction.

With f-fold CV, the data are split into f parts or “folds” 
with approximately equal number of observations. A 
model is then fitted on the observations from f-1 folds. 
Using this model, estimated probabilities for the observa-
tions in the excluded fth fold are calculated. By excluding 
each fold in turn, one obtains f c-statistics which are then 
averaged. To decrease variability caused by the random 
partitioning, the whole procedure is repeated r times and 
results are averaged. Here, we consider f = 5 and r = 40, 
i.e., 5-fold CV with 40 repetitions. For brevity, we will not 
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always explicitly mention these repetitions, but we always 
performed repeated 5-fold CV.

Setting f to the sample size n (“leave-one-out CV”), 
the c-statistic cannot be computed using the averag-
ing strategy explained above, as only one observation is 
excluded at each iteration. Instead, one has to resort to 
a pooling strategy by fitting n models using each possi-
ble subset of n-1 observations, each time calculating the 
predictive probability for the observation excluded from 
model estimation, and computing a single c-statistic from 
the pooled n estimated probabilities. Notably, for perfor-
mance measures applicable to single observations such as 
the Brier score, LOO CV can also be applied in conjunc-
tion with the averaging strategy and then gives the same 
result as the pooling strategy.

Leave-pair-out (LPO) CV is an approach that is inde-
pendent of random sampling but based on c-statistics 
calculated within folds [1, 27]. With LPO CV, each pair 
of observations with contrary outcomes is excluded from 
the data and, in turn, a model is fitted on the remain-
ing n − 2 observations, and estimated probabilities for 
the two excluded observations are calculated from this 
model. The LPO cross-validated c-statistic is the propor-
tion of pairs with concordant estimated probabilities, 
i.e., where the estimated probability of the observation 
with the event is higher than that of the observation with 
the non-event. LPO CV can imply considerable com-
putational burden: if k is the number of events, (n − k)k 
models have to be estimated, compared to only n models 
with LOO CV. For example, with 50 events among 100 
observations, 2500 models must be fitted with LPO but 
only 100 with LOO CV. Whereas LPO CV generalizes 
straightforwardly to the discrimination slope, it is not 
clear how it should be adapted for the Brier score: simply 
averaging the Brier score computed for all left-out pairs 
will give biased estimates in the case of unbalanced out-
comes because of the dependence of the Brier score on 
the event fraction. One solution would be to adequately 
weight contributions by events and non-events. Here, we 
refrain from applying LPO CV to the Brier score.

In Harrell’s implementation of an enhanced bootstrap 
to correct bias due to overfitting [12], the bias is explicitly 
estimated and then subtracted from the apparent c-sta-
tistic. Specifically, 200 samples of n observations with 
replacement are drawn from the original data set. On 
each of these bootstrap resamples, a model is fitted and 
used to calculate c-statistics both for the bootstrap res-
ample and the original data. An estimate of “optimism” 
is obtained by subtracting the average c-statistic in the 
original data from the average c-statistic in the bootstrap 
resamples. The enhanced bootstrap c-statistic is then 
given by the apparent c-statistic minus the estimate of 
optimism.

The .632+ bootstrap [7] is a weighted average of the 
apparent c-statistic and the average “out-of-the-bag” 
c-statistic calculated from bootstrap resamples. The “out-
of-the-bag” c-statistic is obtained by fitting the model in 
a bootstrap resample and applying it to the observations 
not contained in that bootstrap resample. We give the 
technical details in the Appendix.

Penalized likelihood estimation methods
We investigated the performance of the resampling tech-
niques in combination with the following estimators of 
logistic regression:

• Maximum likelihood estimation (ML)
• Firth’s penalized logistic regression (FL) [8, 14]
• Logistic ridge regression (RR) [18]

FL amounts to penalization by the Jeffreys prior and 
was shown to reduce the bias in coefficient estimates 
compared to ML. With RR, the log likelihood is penal-
ized by the square of the Euclidean norm of the regres-
sion parameters multiplied by a tuning parameter. We 
chose the tuning parameter by minimizing a penalized 
version of the Akaike’s information criterion (AIC) given 
by −2l β̂ + 2 dfe with l

(
β̂

)
 the log likelihood,

the effective degrees of freedom, and l∗
(
β̂

)
 the penalized 

log likelihood [33]. This approach of optimizing the tun-
ing parameter is less computer-intensive than the optimi-
zation of cross-validated measures and has been reported 
to yield similar or even superior results [12].

For the implementation of ML and FL, we used the 
R-package logistf with default convergence criteria [13, 
22]. For RR, we applied the function lrm in the R-package 
rms, setting the singularity criterion to  10−15 [11].

If the data are separated, i.e., if a combination of 
explanatory variables perfectly predicts the outcome, 
then ML fails to produce finite regression coefficients, 
and some estimated probabilities will be exactly 0 or 1 
[19]. By contrast, FL gives reasonable results in the case 
of separation. Under separation, RR will supply finite 
regression coefficients if the tuning parameter is greater 
than 0. However, CV or AIC optimization will often set 
the tuning parameter to 0 in case of separation, and then 
RR leads to the same problems as ML [19]. See Addi-
tional file  1: S1 for how we handled separation, linearly 
dependent explanatory variables, or binary outcomes 
restricted to one category occurring in bootstrap resam-
ples or CV subsets.

dfe = trace

(
∂2l

∂β2

(
β̂

)(∂2l∗
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(
β̂

))−1
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Motivation
A real data example: association between waist‑hip ratio 
and diabetes
As part of a smoking cessation project among Afro-
Americans in two rural Virginia counties, a screening 
examination on coronary heart disease risk factors was 
performed [34]. For illustration purposes, we focus on 
the association between the waist-hip ratio and the pres-
ence of diabetes (defined by glycosylated hemoglobin 
>7.0), adjusted for gender, in the Virginia county Louisa. 
Among the 198 study participants, 14.6% (29 persons) 
were classified as having diabetes. A difference of 0.10 in 
the waist-hip ratio was associated with an adjusted odds 
ratio, estimated with ML, of 1.9 (95% CI; 1.01, 3.58). On 
the level of estimated probabilities, this corresponds to 
probabilities of diabetes of 0.112 and 0.193 for females 
with a waist-hip ratio of 0.8 or 0.9, respectively. In line 
with findings from previous studies [1, 27], LOO CV 
resulted in lower c-statistics for ML, FL, and RR than the 
other resampling techniques; see Fig.  1. While a model 
with no discriminative ability (a “random guess”) would 
yield a c-statistic of approximately 0.5, the LOO cross-
validated c-statistic for RR was even only 0.468, while the 
corresponding c-statistics of ML and FL both were 0.54. 
This may give the impression that RR supplies a model 
that performs even worse than a random guess, while ML 
and FL yield better models. All other resampling tech-
niques gave similar c-statistics across model estimators.

Understanding the bias in LOO cross‑validated c‑statistics
Figure 2 explains the bias in LOO cross-validated c-sta-
tistics by illustrating the estimation process on an artifi-
cial toy example with 20 observations and 5 events. The 

crucial observation in Fig.  2 is that the estimated prob-
ability for a left-out event (CV iterations 1–5) was on 
average lower than for a left-out non-event (CV iterations 
6–20). If an event was left out, the data used in the model 
fitting consisted of only 4 events out of 19 observations 
(event fraction 0.210), compared to 5 out of 19 (event 
fraction 0.263) if a non-event was left out. Hence, the 
LOO cross-validated estimated probability tends to be 
too low for an event and too high for a non-event. Con-
sequently, LOO cross-validated c-statistics (and discrimi-
nation slopes) based on pooling these cross-validated 
estimated probabilities are biased low. Figure 2 also illus-
trates that the bias in LOO cross-validated c-statistics 
is usually more severe for modeling methods yielding 
shrunken estimated probabilities such as ridge regres-
sion. This tendency can lead to undesired results if one 
optimizes the tuning parameter in RR using LOO cross-
validated c-statistics; see Additional file  1: Figure S1. 
Whereas for the null scenario, the discrimination ability 
of RR is independent of the penalization strength, opti-
mization of LOO cross-validated c-statistics favors mod-
els with less regularization.

Simulation study
We follow the ADEMP structured approach in describing 
the setup of our simulation study [21].

Aim
The aim of the simulation study was to compare the 
accuracy of the resampling techniques LOO CV, LPO 
CV, 5-fold CV, enhanced bootstrap, and .632+ boot-
strap in estimating c-statistics, discrimination slopes, 

Fig. 1 Apparent and optimism-corrected c-statistics for three different estimators of logistic regression models using data from a screening 
examination on coronary heart disease risk factors. ML, maximum likelihood; FL, Firth’s logistic regression; RR, ridge regression. LOO, leave-one-out 
cross-validation; LPO, leave-pair-out cross-validation; 5-fold, 5-fold cross-validation; enhBT, enhanced bootstrap; .632+, .632+ bootstrap; app, 
apparent estimate
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and Brier scores for the model estimators ML, FL, and 
RR. In particular, the following questions should be 
answered:

• Is the discrimination slope accurately estimated by 
LOO CV?

• Does the performance of resampling methods differ 
between model estimators?

• Which resampling methods estimate the c-statistic, 
the discrimination slope, and the Brier score most 
efficiently?

Data generating mechanism
Data generation was motivated by the structure of real 
data sets, where typically a mix of variables with differ-
ent distributions is encountered [5]. By sampling from 
a multivariate normal distribution and applying certain 
transformations, we generated one binary, one ordinal, 
and three continuous explanatory variables; see Addi-
tional file 1: S2 and Table S1 for details. Binary outcomes 
yi were drawn from Bernoulli distributions with the event 
probability following a logistic model. We considered 
twelve simulation scenarios in a factorial design com-
bining sample size (n ∈ {50,100}), marginal event frac-
tion (E(y) ∈ {0.25, 0.5}), and effect size (strong or weak 
effects of all explanatory variables, or null scenarios with 
no effects). More information on the magnitude of the 
effects is given in Additional file 1: S2. For each scenario, 
we created 1000 data sets.

Estimands
Our estimands are the c-statistic, the discrimination 
slope, and the Brier score for the model estimators ML, 
FL, and RR.

Methods
For each simulated dataset and each model estimator, we 
assessed the predictive accuracy in terms of c-statistics, 
discrimination slopes, and Brier scores by the five resa-
mpling methods LOO CV, LPO CV, 5-fold CV, enhanced 
bootstrap, and .632+ bootstrap.

Performance measures
We compared the resampling-based c-statistics, dis-
crimination slopes, and Brier scores with those obtained 
if the estimated models were validated in the population, 
in our study approximated by an independent validation 
data set consisting of 100,000 observations. We described 
the performance of the resampling techniques in terms of 
mean and root mean squared difference (RMSD) of the 
resampling-based c-statistics, discrimination slopes, and 
Brier scores to their respective independently validated 
(IV) counterparts. Finally, we calculated Monte Carlo 
standard errors for the mean squared difference [21] and 
the RMSD [17].

Results
First, we describe the distribution of the c-statistic, dis-
crimination slope, and Brier score obtained in the inde-
pendent validation set, which will serve as gold standard. 

Fig. 2 Illustration of the calculation of the c-statistic in leave-one-out cross-validation for the maximum likelihood and ridge estimators. Data 
consisted of 20 observations of a normally distributed explanatory variable, with 5 randomly chosen observations labeled as “events” (t-test 
p-value = 0.584). Each tick on the x-axis corresponds to one of the 20 iterations in leave-one-out cross-validation. Grey symbols mark estimated 
probabilities for the 19 observations used in the model fitting; black symbols mark the estimated probabilities for the left-out observations. Black 
crosses or circles indicate that the left-out observation corresponds to an event or non-event, respectively. The leave-one-out cross-validated 
c-statistic was equal to 0.17 for maximum likelihood estimation and equal to 0 for ridge regression
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The mean IV c-statistics ranged between 0.5 and 0.684; 
see Additional file  1: Table  S2. RR achieved the largest 
mean IV c-statistics in non-null scenarios, but there was 
little difference between model estimators.

For the mean IV discrimination slope, the differences 
between the model estimators showed a range of up to 
0.04 units; see Additional file  1: Table  S3. In non-null 
scenarios, ML achieved the largest median IV discrimi-
nation slopes, with values of up to 0.135. RR yielded the 
smallest median IV discrimination slopes, which were at 
least 20% smaller than by ML in all scenarios.

The results for the IV Brier score were in contrast to 
those for the IV discrimination slope: now, ML per-
formed worst in all scenarios, while RR resulted in the 
smallest mean Brier scores in all but one scenarios; see 
Additional file 1: Table S4.

In approximating IV c-statistics, LOO CV performed 
worst both with respect to mean difference (bias) and 
RMSD; see Fig.  3. The downward bias was most severe 
for RR and amounted to − 0.274 in the most unfavorable 
scenario. For this scenario, the magnitude of the bias with 
ML or FL was only about a quarter of the magnitude of 

the bias with RR. In all but two scenarios, the enhanced 
and the .632+ bootstraps yielded the smallest RMSD 
for RR, ML, and FL. Notably, the RMSD increased with 
increasing effect size for the .632+ bootstrap, whereas it 
decreased for all other resampling methods as expected. 
This behavior can be understood by looking at the defini-
tion of the .632+ bootstrap, which ensures that the .632+ 
c-statistic is always greater than or equal to the minimum 
of the apparent c-statistic and 0.5, resulting in a right-
skewed distribution of the .632+ c-statistic especially 
for null scenarios. For all model estimators and all resa-
mpling techniques, the RMSD decreased with increasing 
sample size and increasing event fraction. The differences 
between resampling techniques were less pronounced 
with stronger effects, larger sample sizes, and balanced 
event fraction.

LOO CV also performed poorly in approximating the 
IV discrimination slope, yielding pessimistic estimates 
with a RMSD at least larger than the one by LPO CV and 
5-fold CV; see Fig. 4. However, the differences in RMSD 
across resampling techniques were fairly small. Only for 
RR the two bootstrap techniques sometimes resulted in 

Fig. 3 Mean differences and root mean squared differences (RMSD) between c-statistics computed by data resampling techniques and the 
independently validated (IV) c-statistic for the model estimators ML, FL, and RR for the simulation settings with 50 observations, an event fraction of 
0.25, and either no or strong effects. The Monte Carlo standard errors of the mean difference and of the root mean squared difference were smaller 
than 0.008 and 0.007, respectively, for all scenarios. ML, maximum likelihood; FL, Firth’s logistic regression; RR, ridge regression. LOO, leave-one-out 
cross-validation; LPO, leave-pair-out cross-validation; 5-fold, 5-fold cross-validation; enhBT, enhanced bootstrap; .632+, .632+ bootstrap; app, 
apparent estimate
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discrimination slopes with substantially larger RMSD 
than LPO CV and 5-fold CV. The .632+ bootstrap gave 
overly optimistic discrimination slopes, with an abso-
lute mean difference to the IV values often larger than 
the one by LOO CV. On the other hand, in all but three 
simulation scenarios, the .632+ bootstrap yielded dis-
crimination slopes with smallest median deviations. This 
discrepancy can be explained by the right-skewness of 
the distribution of the differences between optimism-
corrected and IV discrimination slopes, which was 
especially pronounced for the .632+ bootstrap. With 
increasing sample size, the RMSD decreased for all resa-
mpling techniques and all model estimators. Again, the 
differences between resampling techniques were less 
pronounced with increasing effect size, sample size, and 
more balanced event fraction.

As described in the “Methods” section, LPO CV does 
not naturally generalize to the Brier score, so we only 
considered LOO CV, 5-fold CV, enhanced bootstrap, and 
.632+ bootstrap. In all but three simulation scenarios, 
LOO CV performed best with respect to the mean dif-
ference to the IV Brier score for all model estimators; 

see Additional file 1: Figure S2. Similarly, as for the dis-
crimination slope, the enhanced bootstrap gave overly 
pessimistic Brier scores with fairly large RMSD for RR, 
especially in scenarios with no or small effects. However, 
differences in RMSD were small between resampling 
methods, only in scenarios with small or no effects the 
.632+ bootstrap showed some benefit over the other 
techniques. With increasing sample size, the RMSD 
decreased for all resampling techniques and all model 
estimators.

The percentage of separated data sets was highest 
(18.2%) for the scenario with a sample size of 50, an event 
fraction of 0.25, and strong effects; see Additional file 1: 
Table S5. In this scenario, more than one third of boot-
strap resamples were separated.

Discussion
The findings of our simulation study confirm that LOO 
CV yields pessimistic c-statistics [1, 27], but they also 
demonstrate that this bias depends on the choice of 
model estimator. Thus, LOO cross-validated c-statistics 
should neither be used to describe the performance of 

Fig. 4 Mean differences and root mean squared differences (RMSD) between discrimination slopes (DS) computed by data resampling techniques 
and the independently validated (IV) DS for the model estimators ML, FL, and RR for the simulation settings with 50 observations, an event 
fraction of 0.25, and either no or strong effects. The Monte Carlo standard errors of the mean difference and of the root mean squared difference 
were smaller than 0.003 and 0.007, respectively, for all scenarios. ML, maximum likelihood; FL, Firth’s logistic regression; RR, ridge regression. LOO, 
leave-one-out cross-validation; LPO, leave-pair-out cross-validation; 5-fold, 5-fold cross-validation; enhBT, enhanced bootstrap; .632+, .632+ 
bootstrap; app, apparent estimate



Page 8 of 11Geroldinger et al. Diagnostic and Prognostic Research             (2023) 7:9 

a single model nor to compare the performance of a set 
of models estimators, e.g., in the optimization of tuning 
parameters in regularized regression. LPO CV, which 
was suggested as an alternative to LOO CV [1], indeed 
performed better both in terms of mean difference and 
RMSD to the IV c-statistic. However, the enhanced boot-
strap and the .632+ bootstrap achieved a smaller RMSD 
in almost all simulation settings. The .632+ bootstrap 
is a weighted average of the apparent c-statistic and a 
certain overly corrected c-statistic which is set to 0.5 if 
smaller. In this way, it is ensured that the .632+ bootstrap 
c-statistics are greater than or equal to 0.5 (or the appar-
ent c-statistic if the apparent c-statistic should be smaller 
than 0.5). One can apply a similar kind of winsorization 
with any resampling technique by reporting c-statistics 
smaller than 0.5 as 0.5, whereas in practice winsoriz-
ing at 0.5 rather entails a loss of information instead of 
a gain in precision, this approach leads to smaller RMSD 
to the IV c-statistic in simulations; see Additional file 1: 
Table S6. With this in mind, the superiority of the .632+ 
bootstrap in terms of RMSD to the IV c-statistic might 
appear less relevant. The performance of LPO CV, 5-fold 
CV, enhanced bootstrap, and .632+ bootstrap in the esti-
mation of c-statistics was too similar to give definite rec-
ommendations in favor of one of these techniques, which 
is in line with a previous study [27]. Thus, the choice 
might be guided by other criteria such as the dependency 
on data sampling, the extent of computational burden, 
the level of complexity of the approach, or the likeliness 
of encountering problems with model fitting in resa-
mples. In particular, if in addition to the c-statistic the 
corresponding receiver operating characteristics curve 
should be estimated, different methods are required [20], 
since the resampling techniques discussed above do not 
provide rankings of the data necessary for estimating 
receiver-operating characteristic curves. One impor-
tant point left aside in our simulation study is that if one 
wants to accurately estimate the performance of a model 
estimator consisting of multiple steps, e.g., a variable 
selection step and a coefficient estimation step, the model 
development should be systematically replayed in every 
bootstrap or CV sample, as emphasized by [28].

LOO CV also gives pessimistic estimates for discrimi-
nation slopes. Moreover, our simulations revealed unex-
pected behavior of some of the bootstrap techniques. 
First, the enhanced bootstrap and the .632+ bootstrap 
performed reasonably well for ML and FL but sometimes 
poorly for RR in estimating the discrimination slope. 
Second, the simple bootstrap resulted in estimates even 
more optimistic than the apparent discrimination slopes; 
see Additional file  1: S3. According to our simulation 
results, we suggest using LPO CV or 5-fold CV to correct 
for optimism in discrimination slopes.

The Brier score is the only performance measure con-
sidered in this study which can be estimated by LOO CV 
using the averaging approach. As expected from the gen-
eral theory on LOO CV [16], the LOO cross-validated 
Brier scores were close to unbiased in our simulation. For 
the Brier score, there was little difference between resam-
pling methods.

According to Austin and Steyerberg [3], the split-sam-
ple method, where a proportion of the data is excluded 
from model fitting and later used as independent data 
set for assessing the model performance, is quite popu-
lar among clinical investigators. However, we have not 
included the split-sample method in our simulation study 
as it is known to perform poorly, resulting in estimates of 
even larger RMSE than the apparent estimates [3]. Vari-
ous authors proposed to use the internally leave-one-out 
cross-validated calibration slope as global shrinkage fac-
tor to correct predictions for overestimation [6, 24, 31, 
32]. We plan to investigate the calibration slope in this 
context in a separate report. Another interesting topic of 
future research is the reliable estimation of variability for 
internally validated performance measures (see, e.g., [4]).

Our study illustrates that the performance of resam-
pling techniques can vary considerably between model 
estimators, even if the model estimators are similar in 
construction. Including for instance machine learning 
methods such as support vector machines into the com-
parison might even have revealed larger performance dif-
ferences. This interaction between resampling techniques 
and model estimators implies that simulation studies 
aiming to assess the accuracy of a resampling technique 
should consider a broader set of model estimators to be 
widely applicable.

Summarizing, our study emphasizes that estimates 
provided by resampling techniques should be treated 
with caution, no matter whether one is interested in 
absolute values or a comparison between model estima-
tors. Especially in studies with small samples or possibly 
spurious effects, it might be reasonable to scrutinize the 
validity of a performance measure estimate by applying 
an alternative resampling method.

Appendix
Reinterpreting the discrimination slope
Here, we show that for an arbitrary model estimator 
which gives estimated probabilities π̂i which are on aver-
age equal to the mean y of the binary outcome y = (yi), 
yi ∈ {0, 1}, i = 1, …n, the discrimination slope is equal 
to the measure of explained variation V̂B defined by 
Schemper [25]. Denote by π = n−1

(∑
iπ̂i

)
 the average 

estimated probability, by assumption, we have π = y . The 
explained variation V̂B is defined as
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The denominator is equal to 2π(1− π) as can be veri-
fied by splitting the sum into summands with yi = 0 and 
summands with yi = 1, noting that there are n(1− π)

summands of the first type and nπsummands of the sec-
ond type. Similarly, we can decompose

where we have used that 
∑

i:yi=1π̂i is equal to 
nπ −

∑
i:yi=0π̂i . Summarizing, V̂B can be calculated as

Using the notation introduced above, the discrimina-
tion slope can be computed as 

∑
i:yi=1 π̂i

n π
−

∑
i:yi=0 π̂i

n (1−π)
. Again 

exploiting that 
∑

i:yi=1π̂i = nπ −
∑

i:yi=0π̂i , we con-
clude that the discrimination slope and the measure of 
explained variation V̂B agree.

Applying the .632+ bootstrap to the c‑statistic
The .632+ bootstrap was introduced as a tool provid-
ing optimism corrected estimates for error rates [7]. It 
allows for different choices of the particular form of this 
error rate but assumes that the error rate can be assessed 
on the level of observations, i.e., quantifies the discrep-
ancy between a predicted value and the corresponding 
observed outcome value. As both the c-statistic and the 
discrimination slope cannot be applied to single observa-
tions but only to collections of observations, we had to 
slightly modify the definitions.

The .632+ bootstrap estimate of the c-statistic, 
ĉ.632+, is a weighted average of the apparent c-statistic 
ĉapp and an overly corrected bootstrap estimate ĉ(1) . It 
is constructed as follows: the model is fitted on each 
of, say 200 bootstrap resamples (i.e., random samples 
of size n drawn with replacement), and is used to cal-
culate the estimated probabilities for the observations 
omitted from the bootstrap resample. For each of the 
bootstrap resamples, the c-statistic is then calculated 
from the omitted observations. Finally, these c-statis-
tics are averaged over all bootstrap resamples yielding 
the estimate ĉ(1).

V̂B =

(
n−1

∑∣∣yi − π
∣∣− n−1

∑∣∣yi − π̂i
∣∣)

n−1
∑∣∣yi − π

∣∣ .

∑∣∣yi − π̂i

∣∣ = nπ −
∑

i:yi=1
π̂i +

∑
i:yi=0

π̂i

= 2
∑

i:yi=0

π̂i,

V̂B =
nπ(1− π)−

∑
i:yi=0π̂i

nπ(1− π)
.

The .632+ bootstrap estimate of the c-statistic is then 
given by

where 
ŵ = 0.632∕

(

1 − 0.368 R̂
) with R̂ =

(

ĉapp − ĉ(1)
)

∕( ĉapp − 0.5). In 
order to ensure that R̂ falls between 0 and 1 such that ŵ 
ranges from 0.632 to 1, the following modifications are 
made:

• set ĉ(1) to 0.5 if ĉ(1) is smaller than 0.5 and

• set R̂ to 0 if ĉ(1)> ĉapp or if 0.5 ≥ ĉapp.

The value 0.5 occurring in these modifications and in 
the denominator of R̂ is the expected c-index if the out-
come is independent of the explanatory variables. The 
.632+ bootstrap estimate of the discrimination slope can 
be obtained analogously, just replacing 0.5 by 0 in the 
definitions above.
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org/ 10. 1186/ s41512- 023- 00146-0.

Additional file 1: S1. Problems in resampling techniques associated with 
small samples. S2. Data generating mechanism. S3. A side remark on the 
simple bootstrap: resampling may increase the optimism. Figure S1. Inde-
pendently validated (solid line) and leave-one-out crossvalidated (dashed 
line) c-statistics for different penalization strengths in ridge regression on 
six artificially constructed data sets. The data were created in the same 
way as for one of the scenarios in our simulation study (null scenario, 
sample size of 50, marginal event fraction of 0.25). The x-axis shows the 
tuning parameter in ridge regression (lambda in the R package glmnet) 
with higher values corresponding to stronger penalization. For each data 
set we fitted 96 ridge regression models corresponding to a series of 
log-equidistant tuning values. As in our simulation study, the indepen-
dently validated c-statistics were obtained by validating the models on an 
independent data set consisting of 100,000 observations. As expected, the 
independently validated c-statistics are very close to the true value of 0.5. 
LOO, leave-one-out crossvalidation; IV, independently validated. Figure 
S2. Mean and root mean squared differences (RMSD) between Brier 
scores (BS) computed by data resampling techniques and independently 
validated (IV) BS for three different model estimators for the simulation 
settings with 50 observations, an event fraction of 0.25 and either no or 
strong effects. The Monte Carlo standard errors of both, the mean differ-
ence and of the root mean squared difference (x100), were smaller than 
0.2 for all scenarios. ML, maximum likelihood; FL, Firth’s logistic regression; 
RR, ridge regression. LOO, leave-one-out crossvalidation; 5-fold, 5-fold 
crossvalidation; enhBT, enhanced bootstrap; .632+, .632+ bootstrap; app, 
apparent estimate. Table S1. Construction of explanatory variables in the 
simulation study, following Binder H, Sauerbrei W, Royston P. Multivariable 
Model-Building with Continuous Covariates: 1. Performance Measures 
and Simulation Design. Germany: University of Freiburg; 2011. Square 
brackets […] indicate that the argument is truncated to the next integer 
towards 0. The indicator function  1{…} is equal to 1 if the argument is 
true and 0 otherwise. Table S2. Mean and standard deviation (x100) of 
independently validated (IV) c-statistics for different model estimators 
and all simulation scenarios. The standard deviation strongly depends on 
the number of new observations (in our case 100 000) used to estimate 

ĉ
.632+ =

(
1− ŵ

)
· ĉapp + ŵ · ĉ(1),
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the IV c-statistics. Table S3. Mean and standard deviation (x100) of 
independently validated (IV) discrimination slope for different model 
estimators and all simulation scenarios. The standard deviation strongly 
depends on the number of new observations (in our case 100 000) used 
to estimate the IV discrimination slope. Table S4. Mean and standard 
deviation (x100) of independently validated (IV) Brier score for different 
model estimators and all simulation scenarios. The standard deviation 
strongly depends on the number of new observations (in our case 100 
000) used to estimate the IV Brier score. Table S5. Percentage of separated 
data sets for the twelve simulation scenarios in the full data sets, in the 
data sets used for model fitting in leave-one-outcrossvalidation, leave-
pair-out crossvalidation and 5-fold crossvalidation, respectively, and in the 
bootstrap data sets. Table S6. Mean difference and root mean squared 
difference (x100) between winsorized c-statistics computed by different 
resampling techniques and the independently validated (IV) value (as 
presented in Table S2) for simulation scenarios with sample size of 50 and 
event fraction of 0.25. Resampled c-statistics were winsorized by replacing 
values smaller than 0.5 by 0.5. Figure 3 shows the analogous results for the 
untransformed c-statistics.
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