
Vickers et al. 
Diagnostic and Prognostic Research            (2023) 7:11  
https://doi.org/10.1186/s41512-023-00148-y

METHODOLOGY Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Diagnostic and
Prognostic Research

Decision curve analysis: confidence intervals 
and hypothesis testing for net benefit
Andrew J. Vickers1*  , Ben Van Claster2,3,4, Laure Wynants2,4,5   and Ewout W. Steyerberg3   

Abstract 

Background A number of recent papers have proposed methods to calculate confidence intervals and p values for 
net benefit used in decision curve analysis. These papers are sparse on the rationale for doing so. We aim to assess the 
relation between sampling variability, inference, and decision-analytic concepts.

Methods and results We review the underlying theory of decision analysis. When we are forced into a decision, we 
should choose the option with the highest expected utility, irrespective of p values or uncertainty. This is in some dis-
tinction to traditional hypothesis testing, where a decision such as whether to reject a given hypothesis can be post-
poned. Application of inference for net benefit would generally be harmful. In particular, insisting that differences in 
net benefit be statistically significant would dramatically change the criteria by which we consider a prediction model 
to be of value. We argue instead that uncertainty related to sampling variation for net benefit should be thought of in 
terms of the value of further research. Decision analysis tells us which decision to make for now, but we may also want 
to know how much confidence we should have in that decision. If we are insufficiently confident that we are right, 
further research is warranted.

Conclusion Null hypothesis testing or simple consideration of confidence intervals are of questionable value for 
decision curve analysis, and methods such as value of information analysis or approaches to assess the probability of 
benefit should be considered instead.

Highlights 

• Several papers have recently proposed methods to calculate p values and 95% confidence intervals for net benefit. 
These have not clearly explained how such statistics should be used when evaluating a decision curve.

• Traditional decision theory dictates that we choose the option with the highest expected utility, irrespective of 
uncertainty.

• Sampling variability is relevant for understanding the value of further research.

• Value of information and the probability of benefit are how sampling variability can be appropriately incorporated in 
a decision-analytic context.

*Correspondence:
Andrew J. Vickers
vickersa@mskcc.org
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41512-023-00148-y&domain=pdf
http://orcid.org/0000-0003-1525-6503
http://orcid.org/0000-0002-3037-122X
http://orcid.org/0000-0002-7787-0122


Page 2 of 9Vickers et al. Diagnostic and Prognostic Research            (2023) 7:11 

Background
Decision curve analysis was introduced in 2006 [1] as a 
decision-analytic method for the evaluation of diagnostic 
tests and prediction models. It follows a classic approach 
to the evaluation of a classification method [2]. The key 
advance involves the concept of threshold probabil-
ity (pt): the minimum predicted probability of an event 
at which a decision-maker, such as a doctor or patient, 
would opt for an intervention. This pt is used both to 
determine whether a patient is classified as positive (if 
predicted probability p̂ ≥ pt) versus negative (p̂ < pt) and 
to weight the value of true positive vs. false positives, 
with the latter multiplied by the odds at pt to calculate 
a net benefit. Decision curves display the net benefit of 
a diagnostic test or prediction model against the default 
options of intervening on all or no patients across a range 
of reasonable values for pt.

The advantage of decision curve analysis is that, in 
contrast with the traditional metrics of discrimination 
or calibration, it can inform the decision of whether to 
use a prediction model in clinical practice. For exam-
ple, Nam et  al. [3] compared two models for predict-
ing the risk of prostate cancer on biopsy (“PCPT” vs. 
“Sunnybrook”) in men with elevated prostate-specific 
antigen (PSA). The Sunnybrook model had better dis-
crimination (area-under-the curve [AUC] of 0.67 vs. 
0.61) but was associated with some miscalibration. 
This leaves the clinician unsure of whether to use either 
model for helping decide whether to biopsy: does the 
miscalibration of the Sunnybrook model offset its 
higher discrimination? Is an AUC of 0.61 for the PCPT 
high enough? The decision curve gave a much clearer 
picture: neither model had a higher net benefit than 
the clinically reasonable default strategy of biopsy in all 
men with elevated PSA unless the threshold probabil-
ity was very high (above 30%). There are obviously few 
men who would need a 30% risk of cancer before they 
opt for biopsy.

Decision curve analysis is now widely used in the 
empirical literature, with close to 2000 papers a year 
using the term in their abstract. It has also been rec-
ommended in editorials in several major journals 
including JAMA, BMJ, Journal of Clinical Oncology 
and the Annals of Internal Medicine [4–7]. Decision 
curve analysis is included in the TRIPOD statement for 
reporting of multivariable models [8]. Naturally, a sec-
ondary methodologic literature has developed, includ-
ing reconceptualizing net benefit using the framework 
of decision regret [9] and relative utility [10], extension 
to time-to-event data [11] and integrating the net ben-
efit function [12].

A number of papers have proposed methods for cal-
culating confidence intervals for net benefit, as well as 

hypothesis tests to compare net benefit between two 
models or between a model and an alternative strategy 
such as assuming that all patients are positive. These 
include work by the original authors [11] and a num-
ber of recent papers proposing alternative formulations 
[12–15]. An interesting feature of this literature is that 
there is sparse discussion of how hypothesis testing or 
confidence intervals for decision curves are informa-
tive, under what circumstances they should be used or 
how they should be interpreted. There seems to be an 
implicit assumption that, because testing of hypotheses 
and estimating uncertainty of estimates is key in the 
field of statistics, and decision curve analysis is a statisti-
cal approach, we should report p values and 95% CI for 
net benefit. In the current paper, we aim to explore the 
relationship between sampling variability, inference, and 
decision-analytic concepts. We show that application 
of inference for net benefit is generally harmful and we 
propose a framework for the role of uncertainty in rela-
tion to decision curve analysis.

Methods and results
Proposals for confidence intervals and hypothesis tests 
for net benefit
We reviewed recent texts that propose methods for 
calculating confidence intervals or inference statistics 
on net benefit. Zhang et al. [12] presented a bootstrap 
method for inference on net benefit without any intro-
duction or discussion; Sande et  al. [15] similarly give 
no clear justification for inference on net benefit in the 
“Introduction” section  of their paper. When discuss-
ing the motivating example, they claim that statistical 
testing of net benefit allows us “to compare models 
more rigorously”, but do not further explain what they 
mean by “rigor”. Pfeiffer and Gail introduce inference 
on decision curves as part of a well-developed discus-
sion on different approaches to net benefit estimation. 
However, their exact justification for doing so appears 
to be that “we have not seen analytical statistical meth-
ods for putting confidence intervals [on net benefit] 
at a given threshold.” [14]. In contrast, Marsh et  al. 
specify a clear role for estimating confidence inter-
vals for net benefit, saying that these help determine 
whether a “biomarker warrants [further research], 
does not demonstrate clinical potential, or that more 
data are needed” [13]. That said, no clear methodology 
was specified for moving from a particular net benefit 
result to a particular conclusion, for instance, a given 
confidence bound including a certain value would 
indicate further research. In an editorial, Kerr et  al. 
recommend estimates of uncertainty to researchers for 
a similar reason, and argue, quite reasonably, that pol-
icy makers “need some quantification of uncertainty”. 
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But while they state that recommending confidence 
intervals for net benefit “does not prescribe how policy 
makers must use them in every instance”, the literature 
lacks any guidance on how confidence intervals should 
be interpreted in different scenarios [16].

We found no instances in the methodological litera-
ture where a specific decision curve is shown with and 
without confidence intervals and the authors make a 
clear and compelling argument how a decision, such 
as whether to use the model in practice, would be ben-
eficially enhanced by this information. This includes the 
work by the original authors [11], who argue that confi-
dence intervals might be of value “where a well-accepted 
clinical practice would be changed”, without provid-
ing an illustrative example. Pfeiffer and Gail provide as 
a motivating example prediction of breast cancer, but 
do not explain how the confidence intervals presented 
around the decision curve should be interpreted [14]. In 
their commentary, Kerr et al. say that “confidence inter-
vals have heightened importance when current policy 
is treat-none” [16] but do not give a specific worked 
example. Given that many thousands of papers that have 
presented a decision curve analysis of empirical data 
without quantification of uncertainty, there would surely 
be empirical examples where presentation of confidence 
intervals would have improved interpretation of the 
findings, if this was indeed the case.

Decision‑analysis and inference
As a toy example, imagine that a statistician must 
catch a bus to get to the train station. There is a choice 
of getting a bus that goes downtown, or one that starts 
by heading crosstown, and there is not much to choose 
between them, such as one route having a better view, 
additional seating, or a more comfortable ride. For the 
sake of simplicity, we will also assume that there are no 
other options (such as a taxi) and that the train always 
leaves on time. Fortunately, some data are available on 
typical journey times for each route at the appropriate 
time of day and the statistician is able to calculate that 
they will get to the station on time 70% of the time on 
the downtown bus versus 67% of the time for the route 
that starts crosstown. The risk difference is 3%, with a 
95% CI − 13% to 7%, p = 0.6. Under traditional decision 
theory, the statistician should take the downtown bus 
on the grounds that they would be more likely to catch 
their train.

This example illustrates two general features of deci-
sion-analytic thinking. First, a decision has to be made: 
the statistician has to take one bus or the other and, given 
the lack of statistical difference in times, if they do not 
take the “pick the winner” approach, they are left with 

flipping a coin. This contrasts with classical hypothesis 
testing, where there is nothing forcing us to draw a con-
clusion: we can avoid any statement about whether the 
crosstown or downtown bus is faster, stating only that 
the null hypothesis was not rejected and more data are 
required.

Second, the size of the difference does not matter: if 
the risk difference was only 0.5%, we should still take 
the downtown bus. In traditional statistical estimation 
problems, the size of an estimate is important because 
it has to be weighed against other estimates. The most 
obvious example would be a drug trial want to know 
how much better the drug is than placebo because we 
want to know if its benefits, say, the degree to which 
it reduces pain, offset its potential harms, side-effects, 
financial costs and risks. A decision analysis attempts 
to include all relevant considerations into a single 
estimate. The bus route example is somewhat lim-
ited, because we specified that there was no difference 
between the two routes other than time. In a more typ-
ical decision analysis, all possible benefits and harms 
of a particular decision are put on the same scale, 
typically a utility scale. The approach with the highest 
score is chosen, irrespective of the size of the differ-
ence. In the case of a decision analysis of a diagnos-
tic test, for instance, we could consider not only the 
harms and benefits of true and false positive and nega-
tives, but the cost, inconvenience and any harms of the 
test itself [7].

The toy example of the bus routes does not include a 
third critical feature of decision-analysis, which is that it 
often involves multiple alternatives. In the prostate biopsy 
example, we can biopsy all men with elevated PSA, none 
of the men, biopsy based on the Sunnybrook model or 
use the PCPT model instead. In contrast, hypothesis test-
ing is binary—we reject or fail to reject a null hypothe-
sis—and 95% CI are calculated either for a single estimate 
or the difference in two estimates.

Hypothesis testing has historically had a limited role 
in decision analysis [17]. Decision analyses rarely, if ever, 
report p values. They do commonly include sensitivity 
analyses where input estimates are varied, typically by 
considering different estimates reported in the litera-
ture or by using a “tipping point” approach, identifying 
how much an estimate would have to differ in order for 
the optimal decision to change. As a typical example, 
Packer et  al. created a decision tree for the use of ster-
oids with pregnant women at risk of preterm birth with 
concurrent respiratory infection [18]. Inputs to the deci-
sion tree included the risk of intensive care unit (ICU) 
admission and the risk of maternal death with and with-
out steroids, taking estimates from the literature. In a 
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sensitivity analysis, the risk of ICU admission was varied 
across a wide range and it was found that risk on steroids 
would have to be 32%, rather than the central estimate of 
22%, in order for steroids to be the less beneficial strat-
egy. However, this difference in estimates was discussed 
not in terms of sampling variability (e.g., whether the 
95% C.I. for the cited study included 32%) but in terms 
of patient heterogeneity, such as whether older women 
might be at higher risk. Other studies use probabilistic 
sensitivity analyses, which does incorporate uncertainty 
in parameter estimates associated with sampling variabil-
ity. However, the result is not a 95% C.I. around a deci-
sion-analytic estimate nor a p value [19].

Potential harms hypothesis testing in decision analysis: 
interpreting prediction models
To explore inference on the net benefit of a prediction 
model, we will use as an example the scenario described 
above where there is a prediction model for high-grade 
prostate cancer in a group of patients who are currently 
subject to biopsy. The prevalence in biopsied patients is 
25%, meaning that large numbers of patients undergo 
unnecessary biopsy. We specify the range of reasonable 
threshold probabilities as 5% to 25%, with one widely 
accepted threshold being 10%. Let us assume that we 
conducted a large (n = 600) external validation and the 
model performs well according to current expert views, 
with an AUC of 0.76 and almost perfect calibration. 
The decision curve is shown in Fig. 1. The net benefit at 
the common threshold of 10% for the model is 0.1674 
vs. 0.1574 for “biopsy all”. The net number of patients 
avoiding biopsy is calculated as the difference in net 

benefit × the reciprocal of the odds at the threshold prob-
ability = (0.1674–0.1574) × (1–0.1) ÷ 0.1 × 100 = 9 patients 
per 100 avoiding biopsy. A typical conclusion from such 
a curve is that the model is clinically useful: use of the 
model in the clinic would improve outcome by substan-
tially reducing the number of patients exposed to the 
unpleasant biopsy procedure while not missing too many 
high-grade cancers among those with risks below 10%. A 
further discussion of how decision curve analysis should 
be used to inform clinical decision-making is given in the 
Appendix section.

Figure 2a shows the decision curve with 95% CI which 
includes poorer net benefit than the “biopsy all strategy”. 
It is easy to see how this could be interpreted as demon-
strating that the model could lead to harm and should 
therefore be seen as unproven. Figure  2b–d shows that 
this conclusion would not really change even if sam-
ple size was doubled (using the same parameters), or 
increased tenfold; it is only if sample size is 20,000 that 
the 95% C.I. do not cross the decision curve of “biopsy 
all” at the key threshold of 10%, and even then, benefit is 
not shown at the lower bound in the 5–9% range.

Comparing the lower bound of one decision curve 
with the central estimate of another, such as the decision 
curve for treat all, has been seen in the methodologic 
literature but is a questionable approach because of the 
correlation between curves. This is easily illustrated by 
thinking in terms of the bootstrap: if a bootstrapped sam-
ple by chance has a lower prevalence, this will lower the 
net benefit of both the model and of the treat all strategy.

A more valid approach would be to give 95% CI for 
both the difference in net benefit between a model and 

Fig. 1 Decision curve for a hypothetical biopsy study. N = 600. Thick black line: treat none. Thin black line: treat all. Thin grey line: treat according to 
prediction model
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treat all, and for the difference in net benefit between the 
model and treat none, the latter being equivalent to the 
95% C.I. for the net benefit of the model. In the case of 
the model shown in Fig.  1, the lower bound of the 95% 
CI for the difference in net benefit between treat all and 
treat depending on the model is − 0.0004 (p = 0.058) at a 
probability threshold of 10% and − 0.008 (p = 0.8) at 7.5%, 
but 0.009 (p = 0.0052) at 15%. It is likely that these find-
ings would be considered to cast doubt on the value of 
the model. Only with a sample size four or five times 
larger than the original would we have reasonable power 
to reject the null at a threshold of 10%. For the thresh-
old of 7.5%, the study would need to be about 20 times 
larger (n = 12,000). For a threshold of 5%, even a study 
with 250,000 patients would have low power to reject 
the null. Doubts would thus be raised about a predic-
tion model that we would currently view as being of clear 
benefit to patient care. The power problem is even more 
extreme for the comparison between two models, where 
differences are smaller than between a single model and 
reference strategies. If, for instance, we assume that the 

difference between two models is half of that compared 
to a model and treat all, this would entail a sample size 
of 10–12,000 for the 10% threshold, 50,000 for the 7.5% 
threshold and many millions for the 5% threshold. This is 
therefore not simply a case of a method requiring more 
patients that researchers would otherwise prefer, it is 
making research completely infeasible.

Note that our critique of hypothesis testing is purely 
with respect to its application to decision-analytic met-
rics. We are not engaging in, and are indeed suspicious 
of, arguments that frequentist statistics are universally 
problematic [20].

Appropriate use of hypothesis testing and uncertainty 
for net benefit and decision curve analysis
We have shown that requiring statistical significance for 
net benefit—either directly or implicitly by using confi-
dence intervals—would dramatically raise the bar for 
supporting the use of prediction models. In many cases, it 
would make research infeasible by requiring sample sizes 
in the millions. Even where research would be possible, a 

Fig. 2 Decision curves for a hypothetical biopsy study, with 95% C.I. a N = 600 (same as Fig. 1). b N = 1200; c N = 5000; d N = 20,000. Thick black line: 
treat none. Thin black line: treat all. Thin grey line: treat according to prediction model. Dashed grey lines: 95% CI for treated according to prediction 
model
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strategy of only using models with statistically significant 
improvements in net benefit would delay implementation 
of effective strategies and hence lead to worse clinical 
outcomes in medicine as a whole compared to a strategy 
of using models where the central estimate of net benefit 
was superior.

Our view is that the role of considering uncertainty in 
decision curve analysis is to guide further research. In 
our bus example, the statistician would be right to take 
the downtown bus, but at the same time it would be wise 
to acknowledge that the decision might not be the right 
one. Specifically, on completing the trip, the statistician 
might well gather more data on bus times to use the next 
time there was a need to choose between the two bus 
routes.

In short, we not only want to know what decision to 
make, but how much confidence we should have in that 
decision. The problem is that p values are not informative 
on that point and confidence intervals are not directly 
linked to the ordinary meaning of the degree of “con-
fidence” we have in a particular decision. It might be 
tempting to use a simplistic algorithm of seeing whether 
the p value for the difference in net benefit between a 
model and treat all or treat none is less than a conven-
tional one-sided α of 0.025 and then making a binary con-
clusion of good or poor confidence in the decision, with 
the latter leading to calls for further research. However, 
we should be cautious about such a reflexive and incom-
pletely argued approach. Firstly, there are finite financial 
and intellectual resources for medical research: calling for 
more research on one topic, say, evaluation of a model for 
cancer biopsy, means calling for less research on another, 
say, research on new biomarkers that could improve can-
cer prediction. Moreover, and critically, calls for further 
research are often used to avoid practical decisions. Most 
notoriously, the drumbeat of “further research” has been 
used to avoid curbs on tobacco and pollution, and there 
are clear parallels in clinical medicine: take, for instance, 
the position that cancer screening should be curtailed 
pending as yet, unplanned massive and extremely long-
term studies powered for the endpoint of overall mor-
tality [21]. One can easily imagine routine evaluations 
of prediction models becoming routine calls for further 
research that the p value for the difference in net benefit 
is ≥ 0.05 at one or other threshold probability.

On the other hand, there would appear to be cases 
where a call for further research would be justified. Take, 
for instance, where net benefit is highest for a cancer 
biopsy model across the relevant threshold probabilities, 
and consider the following three situations:

a) The lower bound of the 95% CI around the difference 
in net benefit between the model and both treat all 

and treat none excludes 0 for the entire range of rel-
evant thresholds;

b) The lower bound includes a difference in net benefit 
less than zero, but only trivially so;

c) The lower bound indicates a clear possibility of harm, 
that is, net benefit substantially lower than treat all or 
treat none for at least some thresholds.

In all three cases, we would follow traditional decision 
theory and recommend using the model in clinical prac-
tice: on the day after the paper is published a patient will 
present to a clinic with the risk factors for the cancer and 
a doctor will have to decide whether or not to biopsy—
they cannot postpone that decision until another 
research paper is published—and the best decision is the 
one with the highest expected utility. However, in case 
(c), more external validation data is required to reduce 
uncertainty to an acceptable level. Note that we are leav-
ing aside the issue of clinical impact studies, which are 
sometimes warranted to evaluate empirically the effect of 
a model on patient outcomes in practice.

Value of information analysis provides an attractive 
quantitative methodology for decisions about allocating 
research resources [22]. In a typical study, an analyst con-
structs a decision tree for a given medical decision (such 
as whether to use a certain drug), estimates how uncer-
tainty in the inputs (such as the absolute risk reduction 
of the drug) affects cost-effectiveness (often in terms of 
the cost per quality adjusted life year) and then calculates 
the value of reducing uncertainty by a given amount for 
one or more of the inputs. The expected value of infor-
mation is greater when the possible range of outcomes is 
high and the number of patients affected large: we should 
be more ready to fund a clinical trial if we are currently 
unsure whether a drug does a lot of good or a lot of harm 
in treating a common disease than if the possible out-
comes of a drug for a rare disease varied between small 
and moderate benefit.

Recently, Sadatsafavi et  al. have reported an approach 
for the net benefit of a model in a training data set based 
on the “Expected Value of Perfect Information” (EVPI). A 
Monte Carlo method is used to estimate the net benefit 
of a model if the true coefficients were known; the ratio 
of the observed net benefit of the current model to the 
hypothetical net benefit of an optimized model is inform-
ative of the value of further research [23]. Depending on 
whether this ratio is high or low, investigators should, 
respectively, move to external validation or conduct fur-
ther studies on the model before external validation [23].

Further methodological work is ongoing to develop 
comparable approaches for the key scenario where 
decision curves are applied to an external validation 
data set [24]. In particular, there is a need to compare 
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non-parametric (bootstrap-based), parametric and 
model-based approaches for calculating EVPI. Moreover, 
it remains to be determined how to interpret multiple 
EVPI estimates across the range of reasonable probability 
thresholds.

Value of information analysis is relatively complex and 
has not been widely applied in the context of prediction 
model research. An alternative is to calculate the prob-
ability that the model of interest is the superior strategy, 
compared to competing strategies (such as treat all, treat 
none, a diagnostic test or a competing model). A prob-
ability close to 1 means that there is little doubt that 
the model is of value; a probability just about 0.5 would 
indicate that although decisions taken with the model 
are likely to lead to better patient outcome than a strat-
egy of treating all or no patients, there is considerable 
doubt associated with the model and further research is 
required. This approach bears similarities with cost-effec-
tiveness acceptability curves [25] and stochastic league 
tables [26] in health economics, and the selection prob-
ability function for biomarkers [27].

Several other approaches have been reported in the lit-
erature. One is to conduct Bayesian meta-analysis of data 
from multiple studies or multiple centers, which may be 
from heterogenous settings where problems with model 
calibration may be expected [28]. In this case, it is inter-
preted as the probability that the model would be the 
best option, with the highest net benefit, in any randomly 
selected new setting. Even with very wide and overlap-
ping credible and prediction intervals around the net 
benefit curves, this probability can be close to 1 at a wide 
range of thresholds.

Conclusions
In decision analysis, we compare reasonable alternatives, 
and hypothesis testing will often be one of the criteria for 
deciding what counts as reasonable. An obvious example 
would be a decision analysis comparing two drugs, one 
which had higher efficacy, and the other lower toxicity. A 
conclusion that expected utility is greater for one of the 
two drugs will not generally include hypothesis testing, 
but the choice of drugs to enter into the decision analysis 
undoubtedly will. We would only consider drugs for the 
decision analysis that have been shown in clinical trials 
to be of benefit, and analyses of those trials undoubtedly 
involve inference statistics.

For the case of a decision curve analysis of a predic-
tion model, we would argue that good statistical evidence 
favoring the model is paramount. While there are no 
widely agreed criteria as to what counts as “good statisti-
cal evidence”, many statisticians would be worried about 
a prediction model where most of the predictors were 
not significantly associated with outcome, or where the 

95% CI for the C-index includes 0.5. It is not hard to cre-
ate simulated data sets for such scenarios with apparently 
favorable decision curves, similar to prediction models 
based on noise variables [29].

Conversely, incautious use of hypothesis testing on 
net benefit in decision curve analysis would be harmful, 
changing the conventional interpretation of much pre-
diction research and requiring infeasibly large sample 
sizes. There are no compelling examples where hypoth-
esis testing would importantly change the conclusion of 
a decision curve analysis to a more intuitively correct 
finding. Sampling variability might indicate the need 
for further research. However, this should not change 
the conclusion of a decision curve based on the central 
estimate of net benefit, which guides us on whether a 
prediction model is likely to improve patient outcome. 
Inference or simple consideration of confidence inter-
vals are of questionable value in this context, and more 
sophisticated methods, such as value of information 
analysis or approaches to assess the probability of ben-
efit, should be considered.

Appendix
How should decision curve analysis be used to inform 
clinical decision‑making?
A typical conclusion of a decision curve analysis is that 
basing clinical decisions on a prediction model will lead 
to better outcomes than any alternative strategy. This 
would seem to suggest that such a decision curve can be 
used directly to determine clinical practice, that is, once 
the paper has been published, clinicians should start 
making the relevant clinical decision using the prediction 
model in every relevant case. There are both intrinsic and 
extrinsic reasons why this may not be appropriate.

With respect to intrinsic influences, decision curve 
analysis does not always consider the complete range of 
influences on a given decision. For instance, in the biopsy 
example given in the main paper, the threshold probabili-
ties are based on the clinician’s views about the relative 
harms and benefits of biopsy including pain, risk of infec-
tion and the risk of cancer progression. It may not con-
sider financial costs of a biopsy, social costs of the biopsy 
(e.g. time off work for the patient) or resource constraints 
(e.g. availability of office space or MRI slots). Hence read-
ers will often have to interpret the results of a decision 
curve in the light of factors that were not included in the 
analysis.

We characterize “extrinsic” influences on the inter-
pretation of a decision curve analysis as similar to 
affecting interpretation of any clinical research paper. 
In brief, it is not the case that once a research paper 
is published, then practice universally changes. If, say, 
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a randomized trial finds clinically and statistically sig-
nificant differences between a new treatment and con-
ventional care, the authors will conventionally conclude 
that patients should be offered the new treatment. Yet 
clinical implementation is rarely immediate and may 
not happen at all. Clinicians or policy makers may take 
into account the availability of other treatments, bio-
logical plausibility, replication studies and logistical 
concerns. A favorable decision curve analysis is subject 
to similar considerations. Net benefit for a model may 
be higher than for all alternatives across the full range 
of reasonable threshold probabilities, but clinicians or 
policy makers might rationally decline to implement if 
a similar model is already available, plausibility is ques-
tionable (e.g. predictors in the model are not widely 
validated), replication studies are missing or it would 
be difficult to incorporate the model into the clinical 
workflow smoothly.

Applicability to a local population is an additional 
key consideration before clinical implementation. This 
consideration holds similarly for implementation of 
results of a clinical trial of a new treatment or decision 
curve analysis of a prediction model. A clinician or 
policy maker may decline to recommend a treatment 
even if demonstrated as effective in a randomized trial 
if there are important differences between the popula-
tion they are responsible for in comparison to the pop-
ulation evaluated in the trial; a similar position might 
be taken with respect to the decision curve analysis of 
a prediction model. An issue of particular pertinence 
for prediction modeling concerns minority popula-
tions. It is not at all uncommon for a prediction model 
to be validated in a cohort with limited minority repre-
sentation and this may raise important questions about 
the properties of the model in such populations.
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