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Abstract 

Background In a pandemic setting, it is critical to evaluate and deploy accurate diagnostic tests rapidly. This relies 
heavily on the sample size chosen to assess the test accuracy (e.g. sensitivity and specificity) during the diagnostic 
accuracy study. Too small a sample size will lead to imprecise estimates of the accuracy measures, whereas too large 
a sample size may delay the development process unnecessarily. This study considers use of a Bayesian method 
to guide sample size determination for diagnostic accuracy studies, with application to COVID-19 rapid viral detec-
tion tests. Specifically, we investigate whether utilising existing information (e.g. from preceding laboratory studies) 
within a Bayesian framework can reduce the required sample size, whilst maintaining test accuracy to the desired 
precision.

Methods The method presented is based on the Bayesian concept of assurance which, in this context, repre-
sents the unconditional probability that a diagnostic accuracy study yields sensitivity and/or specificity intervals 
with the desired precision. We conduct a simulation study to evaluate the performance of this approach in a variety 
of COVID-19 settings, and compare it to commonly used power-based methods. An accompanying interactive web 
application is available, which can be used by researchers to perform the sample size calculations.

Results Results show that the Bayesian assurance method can reduce the required sample size for COVID-19 
diagnostic accuracy studies, compared to standard methods, by making better use of laboratory data, without loss 
of performance. Increasing the size of the laboratory study can further reduce the required sample size in the diag-
nostic accuracy study.

Conclusions The method considered in this paper is an important advancement for increasing the efficiency 
of the evidence development pathway. It has highlighted that the trade-off between lab study sample size and diag-
nostic accuracy study sample size should be carefully considered, since establishing an adequate lab sample size can 
bring longer-term gains. Although emphasis is on its use in the COVID-19 pandemic setting, where we envisage it will 
have the most impact, it can be usefully applied in other clinical areas.
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Background
In response to the ongoing and continually evolving 
COVID-19 pandemic, early detection of infectious indi-
viduals is critical to successful outbreak containment, 
and thus there is a need to evaluate and deploy accurate 
point-of-care (PoC) diagnostic tests rapidly [19, 28]. The 
development of new diagnostic tests ideally consists of 
various stages, including an analytical validity (labora-
tory) study, a diagnostic accuracy study, and a clinical 
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utility study [15]. Diagnostic accuracy studies compare 
the results of the index test against those obtained from 
the best available reference standard to evaluate its abil-
ity to correctly identify patients with and without the tar-
get condition. Diagnostic accuracy is typically measured 
by the clinical sensitivity and specificity, which should 
ideally attain pre-defined minimum levels to be consid-
ered clinically useful and be estimated with sufficient 
precision. Whether the required precision is attained is 
affected by the sample size used in the diagnostic accu-
racy study, which is often difficult to choose [5]. Too 
small a sample size may lead to imprecise estimates of 
accuracy measures, whereas too large a sample size will 
yield greater precision but may contribute to longer 
recruitment times (especially when prevalence is low), 
require greater resources and delay the development pro-
cess unnecessarily.

Target product profiles (TPPs) are often used to inform 
sample size calculations in diagnostic accuracy stud-
ies. TPPs outline the required profiles of a target product, 
including the minimally acceptable and desirable sensitivi-
ties and specificities, based on the opinion of healthcare 
professionals and scientists. These values are subject to 
review and may be updated as knowledge of the disease and 
clinical needs change. For PoC SARS-CoV-2 viral detection 
tests, which are the focus of this paper, the TPPs published 
by the UK’s Medicines and Healthcare products Regulatory 
Agency (MHRA)  [22] on June 15, 2020, are provided in 
Table 1. PoC tests refer to in vitro diagnostic tests intended 
to be used by a healthcare professional outside of a labora-
tory in primary or secondary care environments, or other 
settings such as schools or a person’s home. They generally 
provide results much quicker than laboratory-based tests.

During the COVID-19 pandemic, national and inter-
national regulatory agencies produced conflicting mini-
mum TPPs and, based on these, recommended a range 
of sample sizes to use when developing new tests. For 
example, as shown in Table  1, the UK’s MHRA  [22] set 
the minimum desirable sensitivity to be achieved at the 
clinical performance stage to be 97% . The World Health 
Organisation [39] stipulated that the minimum desirable 
sensitivity should be 90% . Sammut-Powell et al. [32] illus-
trate the impact of using these different sample sizes on 
the expected performance of COVID-19 diagnostic tests 
in practice, by evaluating the probability that they will fail 
to meet target specifications after implementation.

Standard practice for determining sample sizes in diag-
nostic accuracy studies is based on hypothesis testing 
or equivalent confidence intervals and associated power 
calculations. If the aim is to attain a required precision 
around estimates of diagnostic accuracy, choosing a sam-
ple size which yields confidence intervals (CIs) of the tar-
get width may be more appropriate [29]. For a review of 
procedures used to determine sample sizes in diagnostic 
accuracy studies, refer to [21, 40].

Most diagnostic accuracy studies do not perform and 
report sample size calculations [20, 33]. For example, in 
the survey by Bachmann et al. [2], only 5% of 43 diagnos-
tic accuracy studies published in eight leading medical 
journals reported sample size calculations. Similarly, in 
Ochodo et  al.  [24], only 11% of 126 published diagnos-
tic accuracy studies included a sample size calculation. 
More recently, a survey of 89 diagnostic accuracy stud-
ies for depression screening tools revealed that only 8% 
mentioned a sample size calculation and the number of 
patients in most studies was too small to provide pre-
cise estimates [34]. However, sample size determina-
tion is increasingly requested by regulatory authorities 
and the updated Standards for Reporting of Diagnostic 
Accuracy Studies (STARD) guideline [3, 10] specifically 
states that “the intended sample size and how it was 
determined” should be reported for diagnostic accuracy 
studies. Despite this, compliance is only moderate and, as 
highlighted in [31],  “methodological improvements are 
needed to guide considerations of sample size in diagnos-
tic research”, which we aim to contribute to in this paper.

We consider sample size determination from a Bayes-
ian perspective by applying the Bayesian assurance 
method (BAM), proposed in [37] and outlined in the 
“Bayesian assurance method (BAM)” section, to diagnos-
tic accuracy studies for PoC SARS-CoV-2 viral detection 
tests. In contrast to traditional power, which represents a 
conditional probability that the study is a “success” given 
the values chosen for the unknown design parameter(s), 
assurance is an unconditional probability which incorpo-
rates parameter uncertainty by averaging the power over 
the parameter range [25]. Conceptually, the assurance 
can therefore be viewed as an expected power which 
offers a robust alternative to standard power. In this 
paper, the assurance represents the unconditional prob-
ability of obtaining precise sensitivity and/or specificity 
estimates (based on a target interval width) at the end of 
the diagnostic accuracy study. We explore the effect of 
utilising information from an earlier laboratory study to 
calculate the sample size required to attain the desired 
assurance level. This has the potential to reduce required 
sample sizes, when compared to those obtained using 
traditional power-based approaches (see the “Simula-
tion structure” section), and thus accelerate the evidence 

Table 1 Target product profiles (TPPs) for SARS-CoV-2 viral 
detection tests from the MHRA [22]

TPP Sensitivity (95% CI) Specificity (95% CI)

Acceptable 80% (70–100%) 95% (90–100%)

Desirable 97% (93–100%) 99% (97–100%)
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development pathway, which is especially important for 
pandemic management. As different variants of COVID-
19 emerge, it is even more pressing to be able to adapt 
and re-assess the diagnostic properties of tests on vari-
ants of concern quickly, which may require an updated 
sample size.

The sensitivity and specificity for a particular popula-
tion may not be generalisable to different populations 
or settings where severity of symptoms differ [22]. For 
example, testing populations with more severe COVID-
19 symptoms where viral loads are likely to be higher, 
such as in intensive care, will give rise to higher sensi-
tivity. Testing in general practice or schools, where viral 
loads are lower or more people are asymptomatic, will 
increase the risk of false negatives and reduce the sen-
sitivity of the test (e.g. 12, 38). Other examples affecting 
the accuracy estimates between populations include if 
the quality of the sample varies, which may depend on 
who administers the test (e.g. health-care professional vs. 
self-testing), or if the virus has mutated and the test does 
not detect the new variant. These issues have been raised 
by the Royal Statistical Society [30] who were concerned 
that COVID-19 antigen tests had come to market with-
out adequate statistical evaluation of their performance 
for many of their subsequent uses [17, 27]. The COVID-
19 pandemic therefore highlights the importance of con-
ducting rigorous and unbiased evaluations of tests in a 
variety of settings to ensure tests produce accurate and 
precise estimates in their intended clinical setting [13]. 
Accordingly, in the “Results” section, we assess the sam-
ple sizes required in different real world settings (e.g. 
schools, emergency departments (EDs), general practice) 
and different time points during pandemic waves.

Assurance remains a relatively new concept to many 
biostatisticians and regulators, and software implementa-
tion for public use has been identified as an unmet prac-
tical need [8]. Therefore, to complement this paper, we 
have developed a publicly available interactive R Shiny 
application, which can be used by diagnostic test devel-
opers and researchers to perform sample size calcula-
tions using the BAM. The link to this is provided in the 
“Software implementation” section.

Methods
In this section, we describe how to obtain sample sizes for 
diagnostic accuracy studies using Bayesian assurance and 
commonly used frequentist methods. In both cases, we 
aim to ensure that the sensitivity and/or specificity of the 
test is estimated to a chosen degree of precision. We meas-
ure precision via the width of the corresponding interval 
estimate(s) following the diagnostic accuracy study.

Bayesian assurance method (BAM)
Assurance can be described as the unconditional prob-
ability that a study is “successful”. A successful diag-
nostic accuracy study will result in precise sensitivity 
and/or specificity estimates. Therefore, in this context, 
assurance represents the probability that, for a chosen 
sample size, the resulting interval estimate(s) will have 
width(s) narrower than some pre-specified target(s), 
without conditioning on point estimates of the sensi-
tivity, specificity and prevalence, as would be necessary 
in a power calculation. We use interval estimates in the 
form of Bayesian credible intervals for the sensitivity 
and/or specificity. The sample size can then be chosen 
as the smallest value which provides the desired level 
of assurance (typically 80% or 90%). This approach is 
known as the Bayesian assurance method (BAM), and 
full details are provided in [37]. In the following para-
graphs, we outline the main elements of the BAM.

Suppose we are interested in assuring the precision of 
the sensitivity � following the diagnostic accuracy study, 
by targeting some desirable width of the correspond-
ing interval. Conditional on the true number of indi-
viduals in the study with the target disease, the number 
who obtain a positive test result is binomially distrib-
uted with probability of success given by the sensitiv-
ity. If the prior distribution for the sensitivity is taken 
to be a beta distribution (with parameters a� and b� , 
say) then the analysis is conjugate. This means that the 
posterior distribution for the sensitivity is also a beta 
distribution with updated parameters given by a� + n11 
and b� + n21 , where n11 and n21 represent the number 
of true positives and false negatives, respectively. The 
relevant quantiles of this beta distribution form the 
limits of the posterior credible interval. If we know the 
number of individuals with the target disease and the 
true sensitivity of the test, we can evaluate whether the 
interval meets the target width for each combination of 
positive/negative test results, as well as the probabil-
ity of observing the corresponding combination of test 
results. From this, we can calculate the probability that 
the width of the credible interval meets the target.

In practice, however, the number of individuals with 
the target disease and the true sensitivity of the test will 
be unknown. Therefore, we take the expectation with 
respect to the prior distributions on the sensitivity and 
the number of individuals in the study who have the 
target disease. The latter term depends on the preva-
lence and, consequently, we also need to integrate over 
the possible prevalence values in the target population. 
If the prior distribution on the prevalence is also a beta 
distribution, the resulting assurance can be written in 
closed form (see [37], Eq. 2).
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If the target accuracy measure is specificity, the assur-
ance is evaluated analogously. The BAM can also be used 
to assure the sensitivity and specificity together, rather 
than separately. In this case, we average over the priors 
for both quantities. If they are assigned independent beta 
prior distributions, the assurance can still be expressed 
in closed form (see [37], Eq. 3). Otherwise, we revert to 
simulation and numerical integration methods. Note that 
this does not provide the same result as either of the sam-
ple size calculations considering sensitivity or specific-
ity independently. This contrasts with common practice 
where, for simplicity, the larger of the sample sizes from 
the two separate power calculations is often taken when 
testing both sensitivity and specificity together [40]. 
However, this does not necessarily provide the required 
power for both together.

The prior distributions chosen for the sensitivity, speci-
ficity and prevalence in the diagnostic accuracy study 
may be non-informative or elicited from experts. Elicited 
distributions can include opinions from multiple experts 
or be combined with data from other sources [35]. How-
ever, in the development of diagnostic tests and, in par-
ticular, rapid COVID-19 detection tests, data will be 
available from previous developmental stages of the test 
(typically, the analytic validity stage). If this data is from 
the same target population, then we can use the poste-
rior distributions on the measures of interest from the 
analytic validity stage as the prior distributions to choose 
the sample size for the diagnostic accuracy stage. Again, 
if independent beta priors are chosen before the ana-
lytic validity stage, the analysis is conjugate and we will 
have independent beta priors for the diagnostic accuracy 
study.

Simulation structure
The simulation for the BAM takes the following steps: 

1. Choose values for the sensitivity �T and/or specificity 
θT of a rapid COVID test which are consistent with 
the acceptable ( 80% sensitivity and 95% specificity) or 
desirable ( 97% sensitivity and 99% specificity) TPPs. 
Let ρT denote the “true” prevalence in the target 
population, which can be chosen to reflect different 
settings of interest. Specify the target width(s) for the 
interval(s) and the desired assurance level (typically 
80% or 90%).

2. Set the prior distributions for the sensitivity, specific-
ity and prevalence to be (independently) 

� ∼Beta(a�, b�),

θ ∼Beta(aθ , bθ ),

ρ ∼Beta(aρ , bρ).

 In each case, a and b are chosen to represent beliefs 
prior to the analytic validity phase ( a = b = 1 would 
give a flat prior).

3. For i = 1, . . . , I (where I is the total number of itera-
tions), sample the lab results from the analytic valid-
ity phase 

 where n11 ( n22 ) is the number of true positives (neg-
atives) and nc ( nc̄ ) is the number of individuals in the 
sample with (without) COVID-19, as determined by 
the reference standard test; see Table 2(i).

4. Combine the priors from step 2 with the data from 
the analytic validity phase in step 3 to form the prior 
distributions for the diagnostic accuracy study. That 
is, omitting the conditioning, 

5. Using the equations provided in [37], calcu-
late the assurance for a range of sample sizes 
N (i) = N

(i)
0
,N

(i)
0

+ 1,N
(i)
0

+ 2, . . . , where N (i)
0

 is the 
initial sample size at which we begin the search.

6. The minimum sample size N (i)
min

 which gives rise to 
the desired assurance (typically, 80% or 90%) is cho-
sen as the sample size to use in the diagnostic accu-
racy study.

7. Simulate data from the prospective diagnostic accu-
racy study 

n
(i)
11

| �T ∼Bin(nc, �T ),

n
(i)
22

| θT ∼Bin(nc̄, θT ),

� ∼Beta(a� + n
(i)
11
, b� + n

(i)
21
),

θ ∼Beta(aθ + n
(i)
22
, bθ + n

(i)
12
).

m
(i)
c | ρT ∼Bin(N

(i)
min

, ρT ),

m
(i)
11

| �T ∼Bin(m(i)
c , �T ),

m
(i)
22

| θT ∼Bin(m
(i)
c̄
, θT ),

Table 2 (i) A 2× 2 contingency table for the COVID-19 analytic 
validity study. (ii) A 2× 2 contingency table for the prospective 
COVID-19 diagnostic accuracy study

(i) COVID-19 No COVID-19 Total

Positive n11 n12

Negative n21 n22

Total nc nc̄ nc + nc̄

(ii) COVID-19 No COVID-19 Total

Positive m11 m12

Negative m21 m22

Total mc mc̄ Nmin
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 where m(i)
c̄

= N
(i)
min

−m
(i)
c  represents the number of 

individuals without COVID in the diagnostic accu-
racy study; see Table 2(ii).

8. Using the data from step 7, update the posterior dis-
tributions of �, θ , ρ

 Use the posterior measures to determine if the study 
met the success criteria, i.e. is the posterior credible 
interval width for the accuracy measure(s) smaller 
than the target width (based on the TPPs)?

9. Return to step 3.

After I iterations, we can evaluate the different sample 
sizes required and the proportion of times the diagnostic 
accuracy study was a success.

Illustrative example
We concretise the above steps using a specific example to 
illustrate how the sample size for a diagnostic accuracy 
study can be chosen using assurance.

Consider a setting in which �T = 0.8 , θT = 0.95 and 
ρT = 0.1 . Suppose we assign the following prior distribu-
tions to the unknown parameters before the lab study

where the parameters for the prevalence prior have been 
chosen such that the prior mean for the prevalence is 0.1 
and the 95% interval width is 0.1.

Suppose we observe the following data from the lab 
study (Table 3(i)), where we have 30 COVID patients and 
30 non-COVID patients (as determined by the reference 
standard test).

� | m
(i)
11

∼Beta(a� + n
(i)
11

+m
(i)
11
, b� + n

(i)
21

+m
(i)
21
),

θ | m
(i)
22

∼Beta(aθ + n
(i)
22

+m
(i)
22
, bθ + n

(i)
12

+m
(i)
12
),

ρ | m(i)
c ∼Beta(aρ +m

(i)
c , bρ +m

(i)
c̄
).

� ∼Beta(1, 1),

θ ∼Beta(1, 1),

ρ ∼Beta(13.56, 122.06),

Combining these lab results with the above prior dis-
tributions via Bayes’ theorem gives the following updated 
distributions for the sensitivity and specificity (omitting 
the conditioning)

which form the prior distributions for the diagnostic 
accuracy study. We can then calculate the assurance for 
a range of sample sizes and choose the minimum sam-
ple size which yields the target assurance level. For this 
example, the required sample size is 321 when the tar-
get assurance is 80%, as illustrated by the correspond-
ing assurance curve in Fig. 1. This means that by using a 
sample size of 321 in the diagnostic accuracy study, the 
resulting sensitivity and specificity intervals will have suf-
ficient precision with probability 80%.

Suppose the diagnostic accuracy study provides the 
results in Table 3(ii), then the posterior distributions are 
updated as follows (omitting the conditioning)

and can be used to obtain the relevant posterior sum-
mary measures.

Alternative methods
In this section, we outline alternative methods that are used 
in practice to determine sample sizes for diagnostic accu-
racy studies with binary outcomes. Since we are interested 

� ∼Beta(1+ 24, 1+ 6),

θ ∼Beta(1+ 29, 1+ 1),

� ∼Beta(25+ 25, 7+ 7),

θ ∼Beta(30+ 280, 2+ 9),

ρ ∼Beta(13.56+ 32, 122.06+ 289),

Table 3 (i) Example results from the COVID-19 analytic validity 
study. (ii) Example results from the prospective COVID-19 
diagnostic accuracy study

(i) COVID-19 No COVID-19 Total

Positive 24 1 25

Negative 6 29 35

Total 30 30 60

(ii) COVID-19 No COVID-19 Total

Positive 25 9 34

Negative 7 280 287

Total 32 289 321
Fig. 1 Assurance curve. The dashed horizontal line represents 
the target assurance level
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in estimating the sensitivity and/or specificity of a test with 
sufficient precision, it is important to consider the widths 
of the corresponding confidence intervals. To construct 
confidence intervals for the sensitivity and specificity, we 
will use the following standard intervals for binomial pro-
portions. These have been discussed extensively in the lit-
erature [14]. 

1. The Wald interval [40] is the most well-known con-
fidence interval for proportions and is based on 
the asymptotic normal approximation to the bino-
mial distribution. For sensitivity, it takes the form 
�̂± zα

�̂(1−�̂)
mc

 , where zα is the 1− α quantile of the 
standard normal distribution and �̂ = m11/mc is the 
maximum likelihood estimate of sensitivity (with m11 
the number of true positives and mc the total number 
of COVID patients). The Wald interval is criticised 
for having a low coverage probability, i.e. the percent-
age of times that the interval includes the true sensi-
tivity is typically much smaller than desired.

2. The Clopper-Pearson (CP) interval [9] is based on the 
exact binomial distribution (so is sometimes referred 
to as the ‘exact’ method). Although the coverage is 
considerably higher than the Wald interval, the CP 
interval is very conservative and produces wider inter-
vals than necessary.

3. The Agresti-Coull (AC) interval [1] is a slightly modified 
version of the Wald interval to improve coverage, giving 
rise to an asymmetric interval no longer centred on �̂.

4. The Wilson (or score) interval [36] is another modifi-
cation of the normal approximation, which is centred 
on the same value as that used in the AC interval.

5. The Jeffreys interval [4] uses a Bayesian approach 
which assumes that the unknown binomial propor-
tion has a non-informative Beta(1/2, 1/2) prior distri-
bution (referred to as Jeffreys prior).

Each of these intervals require specification of: the expected 
sensitivity and/or specificity; the required precision of the 
sensitivity and/or specificity estimates, i.e. the target interval 
width; the significance level α and the target power.

We will compute the above intervals using the BinomCI 
function from the DescTools R package. By simulating 
these intervals repeatedly (10,000 times), we choose the 
minimum sample size which gives rise to the desired pro-
portion of intervals (equal to the target power) smaller than 
the target width.

Simulation study: application to COVID‑19
We implement the BAM and alternative methods via 
simulation in a variety of scenarios motivated by the 
COVID-19 pandemic setting. This section provides 
details of the simulation study conducted.

We focus on assuring the half width of the one-sided 
100(1− α)% posterior credible interval(s) for the accu-
racy measure(s), where α = 0.05 is the significance level. 
The target interval half widths for the sensitivity w∗

�
 and/

or specificity w∗
θ of SARS-CoV-2 viral detection tests are 

displayed in Table 4. These are calculated as the distance 
between the relevant TPP and the lower limit of the cor-
responding 95% interval (shown in Table  1). From the 
illustrative example above (in the “Illustrative example” 
section), we obtain posterior medians and 95% one-sided 
credible intervals of 0.784 (0.692, 1) and 0.967 (0.948, 
1) for sensitivity and specificity, respectively. The corre-
sponding one-sided interval half widths, 0.092 and 0.019, 
are given by the distance between the posterior medi-
ans and the lower limits of the interval. Since these are 
smaller than their respective acceptable target widths of 
0.10 and 0.05, the diagnostic accuracy study can be con-
sidered a success according to our definition.

In order to create a comprehensive picture of the per-
formance of the BAM in a variety of COVID settings, we 
run simulations for a range of parameter combinations. 
In particular, we vary: 

1. Prevalence of COVID in the target population: 
ρT = (0.05, 0.10, 0.20, 0.30) . These values reflect 
fluctuations in the prevalence of COVID across dif-
ferent real-life settings, patient groups, locations and 
during the course of the pandemic (e.g. [6, 11, 26]). 
Prevalences were generally low in the community but 
high in secondary care settings, particularly the ED, 
and very high in areas where tests were being used to 
confirm positivity.

2. Number with, nc , and without, nc̄ , COVID in the 
initial lab study: nc = nc̄ = (10, 20, 30, 40, 50) , 
to give total lab study sample sizes of 
nT
0
= (20, 40, 60, 80, 100).

3. Target assurance: we consider a target assurance of 
80%, which is often used in practice, and 90%, which 
is the ideal value in the COVID context.

When implementing the BAM, we set the initial sam-
ple size N (i)

0
 to 10 and increase by one thereafter (step 

5 in the “Simulation structure” section) until the target 
assurance is attained. We set the beta prior distribu-
tion parameters before the lab study to reflect a lack of 

Table 4 Target interval half widths w∗ for sensitivity � and 
specificity θ of SARS-CoV-2 viral detection tests

TPP w
∗
�

w
∗
θ

Acceptable 0.10 0.05

Desirable 0.04 0.02
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knowledge (i.e. a = b = 1 ). We simulate I = 10, 000 rep-
lications for each of the scenarios listed above and sum-
marise the proportion of times that the posterior credible 
interval widths for the sensitivity and/or specificity are 
within the target width, i.e. attain the desired precision. 
This provides an estimate of the probability that the diag-
nostic accuracy study is successful.

In practice, if the results from the lab study indicate 
that the performance of the diagnostic test is unsatisfac-
tory, then the test should not proceed to the next stage of 
development, to avoid wasting resources. Therefore, for 
each i, if the probability of the sensitivity and/or speci-
ficity being below the corresponding target is above 50% , 
based on the updated prior distributions following the 
lab study (step 4 in the “Simulation structure” section), 
this data set is discarded and does not contribute to the 
sample size calculation for the diagnostic accuracy study. 
For example, suppose we are interested in the specificity 
of the test, which we assume follows a Beta(1, 1) flat prior 
distribution before the lab study. If the true number of 
participants without COVID in the lab study is nc̄ = 10 ; 
n22 = 9 of which correctly test negative and n12 = 1 
which incorrectly tests positive, then the distribution 
on the specificity is updated to Beta(1+9, 1+1) (left plot 
in Fig.  2). The probability of the specificity lying below 
the acceptable target of 0.9 is 70% (red shaded region in 
Fig. 2). Since this is greater than 50% , we consider this a 
‘pessimistic’ lab result and exclude it from the sample size 
calculation. However, if the lab results appear promising, 
we proceed to obtain the sample size for which the pos-
terior probability of the interval being sufficiently narrow 
meets the desired target assurance. For example, if all ten 
patients in the lab study correctly test negative, so that 
the specificity follows a Beta(11, 1) distribution, the prob-
ability that the specificity is below the target of 0.9 is 31% 

(green shaded region in Fig. 2) and hence this lab result 
will contribute to the sample size calculation for the diag-
nostic accuracy study.

Results
In this section, we present the results corresponding to 
the acceptable TPPs presented in Table 1. Results for the 
desirable TPPs (with the pessimistic data included) are 
provided in Appendix “Performance of the BAM for the 
desirable TPPs” and yield similar conclusions.

Bayesian assurance method (BAM)
We first focus on the sample sizes obtained from the 
BAM for a variety of scenarios, before comparing them 
to those obtained via the alternative methods outlined in 
the “Alternative methods” section.

Figures  3, 4 and 5 illustrate how the sample size 
required for the diagnostic accuracy study to attain the 
desired assurance level varies with the number of COVID 
cases in the lab study and the prevalence of COVID in 
the target population. The number of circles represents 
the number of unique sample sizes that were obtained 
in the simulation study; each one corresponding to a dif-
ferent set of lab results. The size of the circles is propor-
tional to the number of times the corresponding sample 
size occurred in the I = 10, 000 simulations. For exam-
ple, when nc = 10 in the top plot of Fig. 3 (i.e. sensitivity, 
target assurance of 0.8), there are three possible sample 
sizes corresponding to lab results in which the number 
of true positives is n11 = 8 , 9 and 10. For a prevalence 
of 0.05, the sample sizes are 1630, 1295 and 783, which 
occur in approximately 30% , 27% and 11% of the I simula-
tions, respectively. For a larger prevalence of 0.3, the sam-
ple sizes are 182, 154 and 101, which similarly occur in 
approximately 30% , 27% and 11% of the simulations. Note 

Fig. 2 Examples of updated prior distributions for the specificity following a “pessimistic” (left) and “optimistic” (right) lab study. The dashed vertical 
line represents the acceptable specificity target
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that these are simply the binomial probabilities of obtain-
ing n11 true positives out of nc COVID patients (see step 3 
in the “Simulation structure” section). The remaining 32% 
of the simulated samples were discarded due to pessimis-
tic lab results, and hence did not contribute to the assur-
ance calculations; these proportions are shown along the 
top of the plots for each lab sample size.

When the prevalence of COVID in the target popula-
tion increases, fewer patients are needed to obtain the 
adequate sensitivity, and thus there is a decrease in the 
required sample size for the diagnostic accuracy study. 
This is consistent across all lab sample sizes, but most 
prominent for the smaller lab sizes. For example, when 
nc = 10 in Fig.  3 (top plot), the possible sample sizes 

Fig. 3 Required sample sizes for different lab sample sizes and prevalences based on the BAM for sensitivity. The top and bottom plots correspond 
to a target assurance of 0.8 and 0.9, respectively
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(stated above) for a prevalence of 0.3 are more than 87% 
smaller than those for a prevalence of 0.05.

For each lab sample size in the specificity plots (Fig. 4), 
the opposite relationship between the required sample size 
and prevalence is observed (compared to sensitivity). Spe-
cifically, as the prevalence of COVID increases from 0.05 to 
0.3, the proportion of “non-COVID” individuals in the tar-
get population decreases, and thus the sample size required 

to obtain adequate precision around the specificity estimate 
increases to compensate for this. Moreover, the required 
sample sizes are much smaller than for the sensitivity case 
because each sample taken from the target population will 
contain a larger proportion of non-COVID patients. The 
proportion of pessimistic samples that are discarded after 
the initial lab study is higher than in the sensitivity case to 
reflect the stricter specificity target.

Fig. 4 Required sample sizes for different lab sample sizes and prevalences based on the BAM for specificity. The top and bottom plots correspond 
to a target assurance of 0.8 and 0.9, respectively
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When assuring both sensitivity and specificity 
together in Fig.  5, the sample sizes obtained via the 
BAM are similar to those for the sensitivity alone case 
in Fig.  3. However, there are important differences. 
Most notably, for larger lab sample sizes and higher 
prevalences, there is an increase in the range of possible 
sample sizes required. If we had chosen to only assure 
the sensitivity, assuming that this would be the most 
stringent target, then there is a risk that the sample size 

would not have been large enough to assure the speci-
ficity. In addition, approximately twice as many samples 
are rejected for being too pessimistic than in the sen-
sitivity case because they now have to meet the targets 
on two accuracy measures.

For all cases, similar patterns hold when the target 
assurance is raised to 90% . The main difference is that the 
required sample sizes are shifted upwards, most notably for 
the smallest prevalence, and the range of possible sample 

Fig. 5 Required sample sizes for different lab sample sizes and prevalences based on the BAM for sensitivity and specificity together. The top 
and bottom plots correspond to a target assurance of 0.8 and 0.9, respectively
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sizes is generally increased. The minimum and maximum 
sample sizes required to obtain a sensitivity with the 
required precision for a target assurance of 80% and 90% 
are shown in Table  5. Some scenarios return a minimum 
sample size of 10, i.e. the initial value used in the sample size 
search. This means that, for some of the lab studies in these 
scenarios, the desired assurance has already been attained. 
This is more common for the larger lab sizes because the 
resulting prior distributions tend to have smaller variances, 
decreasing the credible interval width.

Common to all cases is that as the size of the lab study 
increases, the proportion of samples that are rejected for 
being too pessimistic decreases and the required sam-
ple size, on average, also decreases for each prevalence; 
markedly so for the smaller prevalences when assuring 
sensitivity. For example, taking the first plot in Fig. 3 (sen-
sitivity), if the prevalence is 0.05 and nc increases from 20 
to 30 (equivalent to the total lab size increasing from 40 
to 60), then the median size of the diagnostic accuracy 
study reduces from 1080 to 858. In this case, for an extra 
20 samples in the lab study, the median size of the diag-
nostic accuracy study could be reduced by 184 to achieve 
the desired precision around the sensitivity estimate.

Comparison to alternative methods
We now compare the sample sizes obtained via the BAM 
to those from the alternative methods described in the 
“Alternative methods” section, namely, Clopper-Pearson 
(CP), Agresti-Coull (AC), Wald, Jeffreys and Wilson.

When implementing the alternative methods, we ini-
tially assume that the true values of sensitivity or speci-
ficity are known. This gives rise to the sample sizes 
displayed on Fig.  6 as horizontal lines for comparison 
with the sample sizes obtained from the BAM (repre-
sented by black dots). Each sub-figure corresponds to a 
different prevalence and shows the range of sample sizes 
required for a diagnostic accuracy study to achieve the 
desired precision for the sensitivity with a target power/
assurance of 0.8. The analogous plots for specificity are 

shown in Fig.  11 of the Appendix. Note that, for the 
BAM, the pessimistic lab data has been excluded from 
the sample size calculations (as described in the “Simula-
tion study: application to COVID-19” section). In con-
trast, Fig. 12 in the Appendix  shows the corresponding 
plots when the pessimistic lab data is included in the 
sample size calculations for the diagnostic accuracy 
study. We see that, by proceeding with tests that do not 
look like they will satisfy the desired criteria, we can 
require very large diagnostic accuracy studies, which are 
unlikely to return a successful test.

For the smallest prevalence of 0.05 in Fig. 6a, all sample 
sizes from the BAM lie below the sample sizes obtained 
from each alternative method when nc = 40 and 50. For 
smaller lab sizes, some of the alternative methods yield 
smaller sample sizes. For example, when nc = 20 , the 
sample size from AC is smaller than 75% of the BAM 
sample sizes. When nc = 10 , each alternative method — 
except CP — gives smaller sample sizes than the majority 
returned by the BAM.

As the prevalence increases, so does the proportion of 
the BAM sample sizes below the alternative sample sizes. 
For prevalences of 0.1 and above (Fig.  6b–d), AC and 
Wald give smaller sample sizes than approximately 45% 
of the BAM sample sizes for nc = 10 . However, for the 
other lab sizes considered, all of the BAM sample sizes 
are smaller than the alternatives.

In practice, since the true values of sensitivity and 
specificity will not be known, we use their maximum 
likelihood estimates from the lab study in the sample 
size calculations for the alternative methods. The dis-
tribution of sample sizes obtained for sensitivity in a 
low and high prevalence setting is shown in Fig.  7. 
Corresponding plots for specificity and both sensitivity 
and specificity together are provided in Figs. 13 and 14, 
respectively, of the Appendix. In contrast to previous 
plots, these results include the pessimistic lab samples.

Within each of the three panels in these plots (corre-
sponding to different lab sample sizes), the methods are 

Table 5 (Min, max) sample sizes required to achieve the desired precision for sensitivity. N.B. The initial sample size is set to 10 

Number with COVID in lab study, nc

COVID prevalence Target assurance 10 20 30 40 50

0.05 0.8 (783, 1630) (66, 1393) (10, 1080) (10, 745) (10, 403)

0.9 (1142, 2233) (196, 1901) (10, 1476) (10, 1022) (10, 558)

0.1 0.8 (317, 605) (22, 511) (10, 396) (10, 275) (10, 152)

0.9 (416, 708) (90, 596) (10, 463) (10, 324) (10, 182)

0.2 0.8 (152, 278) (10, 232) (10, 180) (10, 125) (10, 70)

0.9 (194, 307) (44, 256) (10, 200) (10, 141) (10, 80)

0.3 0.8 (101, 182) (10, 151) (10, 117) (10, 82) (10, 45)

0.9 (128, 198) (29, 165) (10, 128) (10, 90) (10, 51)
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ordered according to their median sample size over the 
I = 10, 000 simulations. For example, when ρT = 0.05 
and nc = nc̄ = 10 in the first panel of Fig. 7a, the alterna-
tive methods give smaller median sample sizes than the 
BAM. When ρT = 0.3 in Fig. 7b, only AC and Wald have 
smaller median sample sizes than the BAM. For larger lab 
study sizes, the BAM has the smallest median sample size 
across all prevalences.

To determine whether the resulting sensitivity and/
or specificity intervals are sufficiently precise, we cal-
culate the proportion of times that they attain the tar-
get width. These are summarised in Table 6 for the case 
when the pessimistic lab data has been excluded from 
the assurance calculation and the target assurance is 0.8. 
Analogous results for when the target assurance is 0.9 
are shown in Table  7. The results demonstrate that the 

Fig. 6 Sample sizes obtained via the BAM with pessimistic lab data excluded (black dots) vs. alternative methods (coloured horizontal lines) 
for sensitivity when assurance/power is 0.8
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Fig. 7 Sample sizes obtained via the BAM (with pessimistic lab data included) vs. alternative methods for sensitivity when assurance/power is 0.8
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sample sizes determined using the BAM lead to cred-
ible interval widths which successfully attain their target 
widths with a high probability. Similar results are shown 
when the pessimistic lab data is instead included.

Table 6 also shows the impact on these results when the 
data generation process between the lab study population 
and diagnostic accuracy study population differs. More 
precisely, we simulate the diagnostic accuracy study 
population (step 7 of the “Simulation structure” section) 
from a binomial distribution with values of sensitivity 
and specificity that are 1%, 5% and 10% smaller than the 
original values of �T = 0.8 and θT = 0.95 used to gen-
erate the lab study samples in step 3 of the “Simulation 
structure” section. The greater the discrepancy between 
the two populations, the smaller the proportion of inter-
vals that fall within the target width. A small difference of 
1% has little impact on the performance of BAM. A dif-
ference of 5% still gives rise to sufficiently narrow cred-
ible intervals more often than not. When the difference 
reaches 10%, we begin to see the success probabilities 
drop below 50%. A similar trend is shown when the tar-
get assurance is raised to 0.9 in Table 7 of the Appendix.

Software implementation
To facilitate sample size calculations for diagnostic accuracy 
studies using the BAM, we have developed an online, inter-
active application using R Shiny (Version 1.6.0) [7], which 
is hosted permanently at https:// micnc ltools. shiny apps. io/ 
bayes iansa mples ize. This application is designed for non-
specialists to be able to implement the BAM.

The implementation of the BAM involves three steps, 
and is located under the “Assurance” menu. The first step 
is to define prior distributions for sensitivity and/or spec-
ificity. The second step is to define the prior distribution 

for the prevalence. The third step involves inputting the 
target sensitivity and/or specificity values and running 
the sample size calculator.

For ease of use, we have designed the application to 
allow input of the relevant prior distributions in a num-
ber of ways. For the sensitivity, specificity and prevalence 
priors, the user can directly input the beta distribution 
parameters.

Alternatively, for the sensitivity � and specificity θ 
priors, users can input a 2× 2 table, similar to that 
provided in Table  2. Given the values in the table, the 
prior distributions are given by � ∼ Beta(n11, n21) and 
θ ∼ Beta(n22, n12) . To ensure the prior distributions are 
sensible and computationally feasible, the minimum value 
of each beta distribution parameter has been set to one. 
For the prevalence, users can instead enter an estimate of 
the prevalence ( ρ̂T ) and the sample size from which the 
estimate came ( nρ̂T ). The prior distribution for the preva-
lence is then given by ρT ∼ Beta(ρ̂Tnρ̂T , (1− ρ̂T )nρ̂T ).

The final method for specifying the prior distributions is 
a simple expert elicitation exercise where the user is asked a 
range of questions to establish (i) an interval for the param-
eter of interest, (ii) a probability that the parameter lies 
within the interval, and (iii) a best estimate of the param-
eter. These values are taken to correspond to (i) a pair of 
quantile values, (ii) the probability between the two quan-
tile values, and (iii) the median. A beta distribution is then 
fitted to these values using the least-squares method [23].

Density plots of the fitted prior distributions, the median, 
a symmetric 95% credible interval, and the prior distribu-
tion parameters are provided to the user. Users can choose 
how to input sensitivity, specificity, and prevalence sepa-
rately, allowing for different combinations of approaches 
where the availability of prior information varies.

Table 6 Proportion of times the posterior credible interval widths attain the target widths when the target assurance is 0.8

Same 1% smaller 5% smaller 10% smaller

ρT 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3

nc  Sensitivity

10 0.94 0.84 0.79 0.78 0.94 0.83 0.77 0.75 0.90 0.75 0.67 0.65 0.87 0.65 0.53 0.5

30 0.96 0.88 0.83 0.83 0.95 0.86 0.81 0.80 0.93 0.80 0.73 0.71 0.89 0.69 0.60 0.58

50 0.96 0.93 0.92 0.92 0.96 0.93 0.91 0.92 0.95 0.91 0.89 0.89 0.93 0.88 0.86 0.86

nc Specificity

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.94 0.93 0.92 0.37 0.37 0.37 0.36

30 0.90 0.90 0.89 0.89 0.86 0.85 0.84 0.84 0.57 0.57 0.56 0.55 0.17 0.17 0.17 0.18

50 0.90 0.90 0.89 0.88 0.86 0.85 0.84 0.84 0.59 0.58 0.57 0.57 0.24 0.23 0.22 0.23

nc Both

10 0.94 0.84 0.89 1.00 0.93 0.82 0.87 0.99 0.90 0.74 0.76 0.95 0.87 0.64 0.61 0.50

30 0.96 0.89 0.92 0.94 0.95 0.87 0.90 0.91 0.93 0.80 0.78 0.63 0.88 0.67 0.45 0.20

50 0.93 0.91 0.91 0.89 0.91 0.88 0.87 0.85 0.77 0.69 0.60 0.57 0.58 0.38 0.22 0.22

https://micncltools.shinyapps.io/bayesiansamplesize
https://micncltools.shinyapps.io/bayesiansamplesize


Page 15 of 24Williamson et al. Diagnostic and Prognostic Research            (2023) 7:17  

Following the specification of the prior distributions, 
the user specifies target values for the assurance cal-
culation, including: target sensitivity and/or specificity 
interval widths and the required assurance level. Upon 
calculation, users are provided with the required sample 
size and an assurance curve showing how the assurance 
varies with sample size.

Discussion
In this paper, we have shown how and why novel meth-
ods, such as the BAM, can improve efficiency of diagnos-
tic accuracy study designs for COVID diagnostic tests. 
Overall, we found that the BAM generally outperforms 
the sample size calculation methods routinely used in 
practice. However, as we have demonstrated, this will not 
always be the case. For example, if the prior distributions 
have larger variances or are centred on different values 
compared to power calculation inputs, this may result in 
greater differences between assurance and power calcu-
lations. Even when assurance calculations lead to higher 
sample sizes, the increased granularity in the information 
from the prior distribution still better reflects the state 
of knowledge of the diagnostic test than a single point 
estimate, and thus the larger sample size is more realistic 
and robust. Increasing the lab sample size can provide a 
reduction in the total number of samples required in the 
diagnostic accuracy study. Care should be taken, how-
ever, if there are large discrepancies between the samples 
taken for the lab study and diagnostic accuracy study.

A limitation of the BAM is the assumption that the lab 
study results are appropriate for use in developing the 
prior distribution for the subsequent diagnostic accu-
racy study. It may be the case that the lab results are not 
expected to reflect those in later studies, such as when 
there are differences in the type of biological sample used. 
This is particularly pertinent to clinical areas such as stroke 
where the analyte is not present at all in samples from 
healthy controls so the lab samples may have to be spiked. 
In clinical areas such as cancer, where disease course can 
be long and complicated, it can also be difficult to acquire 
lab samples from the correct phase of the disease (e.g. early 
diagnosis). However, this is less likely to pose an issue in 
the COVID setting, and for infectious respiratory diseases 
more generally, where the lab samples are required by reg-
ulation to represent a broad range of viral loads, and thus 
are typically representative of a similar, or slightly broader, 
population than in hospital or community settings. Nev-
ertheless, assessing prior-data conflict should be an inte-
gral part of any Bayesian analysis and if inconsistencies 
exist, various approaches can be taken to incorporate the 
information in a more appropriate way. One approach is 
to use a power prior [18], which involves raising the prior 
distribution based on the lab study results to some power. 

This increases the variance of the distribution to reflect a 
greater level of uncertainty about how the lab and diagnos-
tic accuracy studies differ, but keeps it centred on the same 
value to reflect the best available knowledge. Another 
approach is to use commensurate priors [16] or hierar-
chical models which borrow information between groups 
(development stages) based on the correlation between 
results in the different groups.

Typically, in diagnostic accuracy studies, the data is 
only analysed at the end of the study. Future work could 
implement the BAM in a group sequential framework 
so that the data can be monitored sequentially and 
used to update the posterior credible intervals adap-
tively at interim analyses. This would allow the study 
to be stopped early for success or futility based on pre-
defined stopping rules. Stopping the study early for 
success would allow dissemination of the findings and 
deployment of the test earlier. Stopping early for futility 
would prevent wasting resources and allow attention to 
be turned to other competing tests. This could further 
improve the efficiency of the procedure, which may be 
very important in a public health emergency like COVID 
where rapid response is key.

The fact that standard statistical software does not 
have the embedded functions to implement novel meth-
ods such as the BAM is a major barrier to its widespread 
use across diagnostic study designs. However, the user-
friendly interactive web application developed alongside 
this work can encourage increased uptake and ameliorate 
reluctance to try unfamiliar methods.

Conclusions
The BAM presents a Bayesian method of sample size 
calculation which incorporates prior information from 
previous studies. Using the case study of rapid diagnos-
tic tests for COVID-19, we have illustrated how the BAM 
can be applied to determine the required sample size for 
a diagnostic accuracy study investigating sensitivity and 
specificity simultaneously or separately.

Applying this approach can often result in smaller 
sample sizes than those produced using conventional 
methods. Increasing the size of the lab study can further 
reduce the required sample size for future diagnostic 
accuracy studies. This suggests that investing more time 
and effort in the lab study, to ensure there are sufficient 
samples available, can bring worthwhile gains. Therefore, 
the trade-off between lab study sample size and subse-
quent diagnostic accuracy study sample size is an impor-
tant consideration.

This work has focused on the application of BAM to 
the COVID-19 pandemic setting, but the conclusions of 
this study are also important for the future development 
of tests in other areas.
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Appendix
Performance of the BAM for the desirable TPPs
Figures 8, 9 and 10 show the required sample sizes corre-
sponding to the desirable TPPs (provided in Table 1).

Fig. 8 Required sample sizes for different lab sample sizes and prevalences based on the BAM for sensitivity. The top and bottom plots correspond 
to a target assurance of 0.8 and 0.9, respectively
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Fig. 9 Required sample sizes for different lab sample sizes and prevalences based on the BAM for specificity. The top and bottom plots correspond 
to a target assurance of 0.8 and 0.9, respectively
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Fig. 10 Required sample sizes for different lab sample sizes and prevalences based on the BAM for sensitivity and specificity together. The top 

and bottom plots correspond to a target assurance of 0.8 and 0.9, respectively
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BAM vs. alternatives
Figure 11 is the analogue to Fig. 6 in the main paper but 
for specificity.

Fig. 11 Sample sizes obtained via the BAM with pessimistic lab data excluded (black dots) vs. alternative methods (coloured horizontal lines) 
for specificity when assurance/power is 0.8
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Figure 12 includes the full set of lab results (including 
the pessimistic samples).

Fig. 12 Sample sizes obtained via BAM with pessimistic lab data included (black dots) vs. alternative methods (coloured horizontal lines) for sensitivity 
when assurance/power is 0.8
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Fig. 13 Sample sizes obtained via BAM (with pessimistic lab data included) vs. alternative methods for specificity when assurance/power is 0.8
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Fig. 14 Sample sizes obtained via BAM (with pessimistic lab data included) vs. alternative methods for both sensitivity and specificity 

when assurance/power is 0.8
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Performance of the BAM: interval widths
 

Table 7 Proportion of times the posterior credible interval widths attain the target widths when the target assurance is 0.9

Same 1% smaller 5% smaller 10% smaller

ρT 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3

nc Sensitivity

10 1.00 0.95 0.92 0.91 1.00 0.94 0.90 0.89 0.99 0.91 0.84 0.82 0.98 0.86 0.74 0.71

30 0.99 0.96 0.93 0.92 0.99 0.95 0.92 0.90 0.98 0.91 0.86 0.84 0.97 0.85 0.77 0.74

50 0.99 0.97 0.96 0.96 0.98 0.96 0.95 0.96 0.98 0.95 0.94 0.94 0.97 0.93 0.92 0.92

nc Specificity

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.94 0.93 0.93

30 0.96 0.96 0.96 0.96 0.94 0.94 0.94 0.94 0.75 0.76 0.76 0.75 0.38 0.38 0.38 0.38

50 0.96 0.96 0.96 0.96 0.94 0.94 0.93 0.93 0.75 0.75 0.75 0.74 0.37 0.37 0.37 0.37

nc Both

10 1.00 0.95 0.97 1.00 1.00 0.94 0.96 1.00 0.99 0.90 0.92 1.00 0.98 0.85 0.84 0.94

30 0.99 0.96 0.98 0.99 0.99 0.95 0.97 0.97 0.98 0.92 0.91 0.82 0.96 0.85 0.70 0.41

50 0.98 0.97 0.96 0.96 0.96 0.95 0.95 0.94 0.88 0.84 0.77 0.74 0.70 0.55 0.37 0.36
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