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Abstract 

Background Osteoporosis poses a growing healthcare challenge owing to its rising prevalence and a significant 
treatment gap, as patients are widely underdiagnosed and consequently undertreated, leaving them at high risk 
of osteoporotic fracture. Several tools aim to improve case-finding in osteoporosis. One such tool is the Fracture 
Risk Evaluation Model (FREM), which in contrast to other tools focuses on imminent fracture risk and holds potential 
for automation as it relies solely on data that is routinely collected via the Danish healthcare registers. The present arti-
cle is an analysis protocol for a prediction model that is to be used as a modified version of FREM, with the intention 
of improving the identification of subjects at high imminent risk of fracture by including pharmacological exposures 
and using more advanced statistical methods compared to the original FREM. Its main purposes are to document 
and motivate various aspects and choices of data management and statistical analyses.

Methods The model will be developed by employing logistic regression with grouped LASSO regularization 
as the primary statistical approach and gradient-boosted classification trees as a secondary statistical modal-
ity. Hyperparameter choices as well as computational considerations on these two approaches are investigated 
by an unsupervised data review (i.e., blinded to the outcome), which also investigates and handles multicollinarity 
among the included exposures. Further, we present an unsupervised review of the data and testing of analysis code 
with respect to speed and robustness on a remote analysis environment. The data review and code tests are used 
to adjust the analysis plans in a blinded manner, so as not to increase the risk of overfitting in the proposed methods.

Discussion This protocol specifies the planned tool development to ensure transparency in the modeling approach, 
hence improving the validity of the enhanced tool to be developed. Through an unsupervised data review, it is fur-
ther documented that the planned statistical approaches are feasible and compatible with the data employed.
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Background
Osteoporosis is a prevalent disease which represents a 
considerable and growing public health problem. The 
number of patients with osteoporosis in Europe is pro-
jected to rise from 27.5 million in 2010 to 33.9 million in 
2025, corresponding to an increase of 23%, as a result of 
the increasing number of elderly in the population [1].

Furthermore, osteoporosis causes debilitating fragil-
ity fractures which are significant causes of mortality 
and morbidity for patients [2–4]. It is estimated that the 
annual number of osteoporotic fractures in Europe will 
rise from 4.28 million fractures in 2019 to 5.34 million 
fractures in 2034, corresponding to an expected increase 
of 24.8% [5]. Even though osteoporosis represents a sig-
nificant healthcare burden on both patients and society, 
patients at risk of fracture do not receive appropriate 
treatment, resulting in a large treatment gap [6]. Results 
from the ICUROS study showed that among patients 
who sustained a low-energy hip fracture in 10 countries 
(Australia, Austria, Estonia, France, Italy, Lithuania, Mex-
ico, Russia, Spain, and the UK), only 27% were prescribed 
fracture prevention treatment following the fracture, 
even though prior fracture is a known risk factor of sub-
sequent fracture [7], showing that even secondary pre-
vention is lacking [8]. Insufficient case-finding strategies 
cause osteoporosis to remain underdiagnosed and under-
treated [1]. The treatment gap in osteoporosis therefore 
calls for improved detection of high-risk individuals.

Several fracture risk assessment tools have been devel-
oped to provide risk stratification of patients [9]. Such 
tools integrate known risk factors of osteoporosis and 
fracture into an estimate of fracture risk for patients. 
Some of the most commonly used tools include the frac-
ture risk assessment tool (FRAX) [10] and the Garvan 
Institute of Medical Research—Bone Fracture Risk Cal-
culator [11]. FRAX and Garvan use a set of cross-sec-
tional clinical risk factors to estimate fracture risk, which 
typically requires manual data entry from physicians to 
retrieve fracture risk predictions. Furthermore, these 
tools predict long-term fracture risk, thus excluding 
patients with high imminent fracture risk.

However, new minimal physician–effort strategies 
are needed to systematically detect high-risk indi-
viduals. The Fracture Risk Evaluation Model (FREM) 
is a fracture risk assessment model that was devel-
oped to identify individuals at high imminent (1  year) 
risk of fracture, using hospital diagnoses from Danish 

registries and age as predictors. Predictors were cho-
sen solely on the basis of their statistical predictive 
performance, without any assumptions on causality 
or biological relationship between predictor and out-
come. Further, the model was developed for each sex, 
separately, to account for sex differences in fracture 
risk [12]. FREM exclusively utilizes routinely collected 
administrative health data from the Danish national 
registers, and the model therefore lends itself towards 
automatic risk predictions. FREM identified 38 and 43 
hospital diagnoses in women and men, respectively, 
as risk factors for major osteoporotic fracture (MOF). 
Further, FREM identified 32 hospital diagnoses in 
both women and men as risk factors of hip fracture 
(HF). FREM showed good accuracy in prediction of 
MOF resulting in AUC = 0.750 (95% CI 0.741; 0.795) 
and AUC = 0.752 (95% CI 0.743; 0.761) for women and 
men, respectively. FREM showed even higher accu-
racy in prediction of HF resulting in AUC = 0.874 
(95%CI 0.869; 0.879) and AUC = 0.851 (95% CI 0.841; 
0.861) for women and men, respectively [12]. A vali-
dation study of FREM was recently performed in an 
updated extraction of Danish registry data which still 
proved good accuracy of FREM in prediction of MOF 
and HF [13]. Additionally, FREM has been externally 
validated in Canadian hospitalization and physician 
claims data proving significant fracture risk stratifica-
tion [14]. FREM has the potential to be integrated into 
the primary health care system and can—without any 
manual data entry required by the general practition-
ers—provide a single easy-to-interpret estimate for 
each patients’ risk of MOF and HF. FREM has recently 
been suggested in international publications as a prac-
ticable future code of practice to identify patients at 
very high risk of osteoporotic fractures [15].

However, FREM holds the potential for further 
improvements in fracture risk prediction through the 
inclusion of data from additional health registries and 
the utilization of more advanced statistical methods 
including approaches from machine learning in model 
development. In particular, positive predictive values 
of the original FREM are fairly low [13], which is in 
accordance with an algorithm predicting a low preva-
lence outcome but also indicates a potential for reduc-
ing the number of false positives implied by FREM. 
Moreover, the original development utilized stepwise 
selection methods for identifying risk factors and 



Page 3 of 10Kristensen et al. Diagnostic and Prognostic Research            (2023) 7:19  

employed data-splitting for assessing model perfor-
mance, both techniques for which more modern equiv-
alents have been developed [16].

Therefore, the aim of this article is to describe the 
development of an enhanced version of FREM and the 
evaluation of its performance in a Danish context.

The article follows the reporting guidelines set forth in 
the TRIPOD statement [17].

Design and methods
Data and data management
Data currently consists of the entire Danish popula-
tion aged 45 or older on January 1, 2018, coupled with a 
15-year look-back (2003–2017) in the Danish national reg-
istries, and these data are used in the analyses reported in 
the current article. We intend to update the data to include 
later years, before performing the analyses outlined in this 
protocol. Included individuals are observed for a period of 
1  year from the index date, during which outcomes may 
occur. The 15-year look-back is used to collect information 
on personal characteristics and exposures, and we refer to 
these collectively as predictors. Other fracture prediction 
studies employ cohorts that are slightly younger (40 years 
and older [18–20]) or older [21–23]. Trémollieres and col-
leagues argue that a cutoff at 45 years allows for the inclu-
sion of early menopausal women, who may be at increased 
risk of osteoporotic fracture [24]. The sample size is dic-
tated by the study design and the data obtained from 
the Danish national registries. The original FREM study 
included a sample of 2,495,339 individuals [12].

Data sources largely coincide with those used for the 
original FREM tool [12], except that the present model 
also utilizes information on medicine redemptions and 
uses an updated data extraction from the registries. 
All data management and analyses are performed on a 
secure server at the Danish Health Data Authority.

Data sources
Data is extracted from a collection of Danish health reg-
istries. The Danish health registries cover all citizens of 
Denmark and offer long-term data on the entire popula-
tion and may generally be characterized as having a high 
degree of validity and completeness [25]. Data from the 
following three national registries are used in this study:

• The Danish Civil Registration System (CRS) includes 
all individuals residing in Denmark [26]. Upon birth 
or immigration, an individual is assigned a unique 
person identification number which may be used to 
identify the individual across registries [27]. The CRS 
is used to identify the study population and to deter-
mine age and sex.

• The Danish National Patient Register (NPR) is an 
administrative register containing all inpatient, out-
patient, and emergency department contacts from 
Danish hospitals, since 1977 (outpatient and emer-
gency departments since 1995) for both public and 
private hospitals (private hospitals since 2003) [28]. 
Records contain information on clinical character-
istics along with procedures and treatment, in par-
ticular the diagnosis (-es) associated to the contact. 
The NPR is used to identify the outcomes of interest 
along with predictors using ICD-10 (International 
Classification of Diseases 10th Revision)-coding.

• The Danish National Prescription Registry (DNPR) 
contains individual-level data on all dispensed pre-
scription pharmaceuticals sold in Danish community 
pharmacies [29]. Data comprises information on ATC 
(Anatomical Therapeutic Chemical Classification Sys-
tem)—codes, price reimbursement, etc., at the redemp-
tion level. The DNPR is used to define predictors.

Outcome definitions
Two outcomes will be considered, a major osteoporotic 
fracture (MOF) or a hip fracture (HF). The primary out-
come is MOF, defined as fracture of hip, clinical vertebral, 
wrist, or humerus (given as a primary or secondary ICD-
10 code in the NPR: S120, S121, S122, S220, S221, S320, 
T08, S422, S423, S720, S721, S722, S525, or S526) [12] 
(Table 1). The secondary outcome is HF, which is given as 
a primary or secondary ICD-10 code in the NPR (S720, 
S721, or S722) [12] in combination with a surgical code 
(KNFB, or one of its sub-codes, or KNFJ4x-9x) [30]. Both 
definitions of MOF and hip fractures will be evaluated in 
a forthcoming medical record review and will potentially 
be updated following the results of this review.

Diagnoses as predictors
Information is collected on all non-administrative level 3 
ICD-10 codes. We record both the occurrence and date of 
each ICD-10 code. If more than one instance of the same 
diagnosis occurs in the look-back period, the first record 
is used. Note that previous experiences of an osteoporotic 
fracture thus enter as predictors through the ICD10 codes 
and that those with previous fractures are not excluded. 
The diagnosis exposure is defined as the time from the 
first diagnosis to the end of the look-back period.

Rare diagnoses are excluded based on the unsupervised 
review as described below.

Pharmacological exposures from redemptions
Redemptions (i.e., prescriptions filled) are perceived as 
relevant risk predictors in two ways. First, the redemption 
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may act as a proxy for a diagnosis that is not recorded 
through the administrative health registers under con-
sideration. This may occur since the NPR contains infor-
mation on diagnoses from hospital contacts only and not 
from general practice consultations. Diagnosis registra-
tions from general practice are difficult to retrieve for 
research purposes as they are not registered in a national 
database but in systems provided by privately owned 
software providers. However, data on redemptions of 
prescription drugs prescribed by general practitioners 
can be retrieved from the DNPR and redemptions may 
therefore act as proxies for diagnoses from general prac-
tice. Secondly, the redemption may signify exposure to a 
pharmaceutical with effects on fracture risk, which may 
influence the risk of outcome by e.g., affecting the indi-
vidual’s bone density or by altering the risk of experienc-
ing a serious fall. The second class of pharmaceuticals 
with effects on fracture risk are further subsets depend-
ing on their assumed type of effect. We record whether 
the ATC code was redeemed during the look-back period 
and further record a measure of the extent of exposure. 
The following pharmaceutical exposures are used:

1. Medications associated with risk of developing oste-
oporosis: Defined by the ATC codes in Table 2 (taken 
from [31]). Exposure is coded as time (in days) from 
the earliest redemption in the look-back period and 
defined as zero if no redemption occurred.

2. Fall-specific: Table  3 gives an overview of pharma-
ceuticals related to fall risk and the associated ATC 
codes. Their exposure is coded as 15 times 365.25 
(i.e., the number of days in the lookback period) 
minus the number of days from the last redemption 

during the look-back period and is defined to be zero 
if no redemption occurred. Thus, a high exposure 
signifies a very recent redemption.

3. Diagnosis proxies: ATC codes to be used as proxies 
for diagnoses are all non-osteoporosis-specific codes 
included on the therapeutic level of the ATC hierar-
chy (level 3), meant to reflect the same therapeutic 
areas as the ICD-10 codes. For these ATC codes, we 
follow the principle described above for diagnoses 
and record the time of the first redemption. Exposure 
is the time from the first redemption to the index 

Table 1 Outcome definition of MOF with ICD-10 coding

Fracture site ICD-10 ICD-10 explanation

MOF

Hip fracture S720 Fracture of neck of femur

S721 Pertrochanteric fracture

S722 Subtrochanteric fracture

Clinical vertebral fracture S120 Fracture of first cervical vertebra

S121 Fracture of second cervical vertebra

S122 Fracture of other specified cervical vertebra

S220 Fracture of thoracic verbetra

S221 Multiple fractures of the thoracic spine

S320 Fracture of lumbar vertebra

T08 Fracture of the spine, level unspecified

Wrist fracture S525 Fracture of lower end of radius

S526 Fracture of the lower end of both ulna and radius

Humerus fracture S422 Fracture of the upper end of the humerus

S423 Fracture of shaft of humerus

Table 2 Osteoporosis-specific medications

ATC 

Thiazolidinediones A10BG

PPI A02BC

Warfarin B01AA03

Heparin B01AB01

Glucocorticoids H02AB

Cyclophosphamide L01AA01

Methotrexate L01BA01

Gonadotropin-releasing hormone (GNRH) agonists L02AE

Aromatase inhibitors L02BG

Calcineurin inhibitors L04AD

Phenobarbital N03AA02

Phenytoin N03AB02

Carbamazepine N03AF01

Valproate N03AG01

SSRI N06AB

Venlafaxine N06AX16

Duloxetine N06AX21
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date (January 1, 2018). Note that a single redemption 
of an osteoporosis-specific drug may contribute both 
to the ATC-specific variable and to a diagnosis proxy. 
In the unsupervised review, we investigate any poten-
tially ensuing problems of collinearity.

We retain all pharmaceutical exposures regardless of 
their prevalence of redemption.

Loss to follow-up
We record loss to follow-up due to emigration prior to an 
outcome. This is expected to occur in only a very small 
fraction of the over-45-year-old population within a year, 
and we assume that any censoring of the outcome is the 
same as no fracture. Death before the outcome is treated 
as no fracture.

Incomplete look-back
Not all included individuals have a full 15-year record 
in the registries, most commonly due to immigration. 
We record whether the look-back period is complete 
along with the number of years for which records 
could be obtained from the most recent immigra-
tion in the look-back period. An incomplete lookback 
period is likely to cause misclassification of risk fac-
tors as being absent, and we attempt to address this by 
including an incomplete lookback period as a predictor 
as detailed below.

Prediction models
Analogous to the data management steps, analyses are 
performed on a secure server using R (version ≥ 4.1 ) [32].

Models
Let YMOF

i  and YHF
i  be indicators for subject i experienc-

ing a MOF or HF, respectively, in 2018 and let

be a row vector with predictors (age, sex, indicator for 
an incomplete look-back period (ILB), diagnoses, and 
redemptions in the look-back period) for subject i . Here,  
diagnoses and redemptions are themselves vectors. For a 
vector vi we denote by vi,k its k’th entry.

We consider two types of prediction models, the pri-
mary model being LASSO-regularized logistic regression 
and the secondary-boosted decision trees. The purpose 
of both is to predict the 1-year fracture risks.

using the predictors in Xi.
The main analysis may be characterized as an instance 

of refining a “strong learner” as represented by the full 
model. In the secondary analysis, we apply a different 
principle by combining many “weak” learners (decision 
trees) by using boosting, an approach that is often con-
sidered a type of machine learning. For both models, 
hyperparameters controlling complexity and flexibility 
(e.g. spline knots, number, and depth of boosted trees) 

Xi = sexi, agei, ILBi, diagi, redempti

P

(
YMOF
i = 1 | Xi

)
, and P

(
YHF
i = 1 | Xi

)
,

Table 3 Fall risk medications and associated ATC codes

Medications ATC 

Antiepileptics N03 (all antiepileptics, including benzodiazepine derivate clonazepam)

Antidepressants N06A

Antihypertensives C02 (anti-adrenergic, alpha-blockers, vasodilators), C03 (thiazides, loop, potassium-
sparring), C04 (peripheral vaso-dilators), C07 (beta-blockers), C08 (calcium-antago-
nists), C09 (RAAS-inhibitors)

Antipsychotics N05A (all antipsychotics)

Antispasmodics M03BX (baclofen, tizanidin)

Benzodiazepines and benzodiazepine-related drugs N05BA (diazepam and related), N05CD, N05CF

Sedative hypnotics N05C (all hypnotics)

Diuretics C03, C07B, C07C, C09BA, C09DA

Sedative antihistamines N07CA02 + N07CA52 (cinnarizin), R06AA02 (diphenhydramine), R06AA04 (clemastine), 
R06AE03 (cyclizin), R06AD02 (promethazine), R06AE05 (meclozin)

Vasodilators (used in cardiac disease), including alpha-blockers C01DA, C01DX, C02

Overactive bladder and incontinence G04BD12 (mirabegron), G04BD07 (tolterodin), G04BD10 (darifenacin), G04BD08 (solif-
enacin), G04BD11 (fesoterodin), G04BD09 (trospiumchlorid), G04CA

Anti-arrythmics C01AA05, C01B

Anti-cholinergics A03AB05, A03BA01, A03BA03, A03BB01, G04BD02, G04BD04, G04BD07, G04BD08, 
G04BD09, G04BD10, G04BD11, M03BC01, N04AA, N04AB, N04AC, N05AA01, N05AA03, 
N05AB03, N05AC02, N05AH03, N05AH04, N05BB, N06AA, N06AB05, R06AA
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were chosen with a view to computation time informed 
by the outcome-blinded code tests.

Primary: logistic regression with grouped LASSO 
regularization
We describe our proposed model for MOFs, but the same 
approach is used for HFs. Note that in accordance with 
the original FREM model, sex is considered an effect 
modifier for all predictor effects.

The logistic regression model originally planned is,

where f0 , fk , and gk are natural cubic splines (i.e., piece-
wise polynomial functions that are twice continuously 
differential, the polynomial being linear outside the outer 
knots and cubic inside). The spline function does not 
include an intercept and is determined by a number of 
parameters equal to the number of knots plus one. Due 
to the lack of intercept, whenever the exposure argument 
is zero, the spline is zero and consequently the intercept 
αsex may be interpreted as the log-odds of MOF for an 
individual of sex sex , who is 45 years old, and has a com-
plete look-back period in which no relevant diagnoses or 
redemptions were recorded.

It was realized a priori that most diagnoses and 
redemption exposures have high proportions of observa-
tions at zero (i.e., unexposed individuals). While this does 
not constitute a computational problem for the spline 
regression (as it would eg for fractional polynomials), it 
influences the choice of knots and perhaps the interpre-
tation of the spline effect [33]. The choice of knots was 
informed from the unsupervised data review. Due to 
low prevalences of most diagnoses and redemptions, it 
was decided to use no inner spline knots (thus modeling 
the effects as linear due to the boundary constraint). We 
retain the spline on age using four knots.

The spline is estimated by expanding the function in its 
basis functions. We originally planned to apply grouped 
LASSO-regularization when estimating the logistic 
model, so that every basis function belonging to a spe-
cific spline was grouped together. This means that the 
effect of an exposure to a diagnosis or pharmaceutical 
is either selected or not in the sparse solution provided 
by the LASSO. However, numerical experimentation in 
the unsupervised data showed that the group-regulariza-
tion was infeasible due to the size of the data set. Since 
there is only the age spline in the model, we instead apply 
ungrouped LASSO regularization. The amount of regu-
larization is controlled by the parameter �.

logitP
(
YMOF
i = 1 | Xi

)
= αsexi + βsexi ILBi

+f0,sexi
(
agei − 45

)
+

Kdiagn∑

k=1

fk ,sexi
(
diagni,k

)

+

Kredempt∑

k=1

gk ,sexi
(
redempti,k

)
,

Tuning the shrinkage parameter
The choice of the regularization parameter � is often 
referred to as “tuning” the model. We tune the LASSO 
model using the cross-entropy loss,

for a class y and predicted class probability π̂ . This is the 
negative log-likelihood of a binomial variable or, up to a 
constant, the deviance. Tuning is based on estimates of 
the loss function on a �-grid. We use the default grid cho-
sen by the software. To ameliorate overfitting, estimates 
are obtained from 10-fold cross-validation. The shrinkage 
parameter is then taken to be the � which minimizes the 
loss on the grid.

Secondary: gradient-boosted classification trees
As above, we focus on the MOF outcome. The basic 
model is,

where h is a prediction rule that is to be determined by 
gradient-boosting classification trees [34]. A sequential 
method, boosting focuses on the part of the data that is 
not well-classified by the rule and adds a learner to bet-
ter target this. Specifically, in gradient boosting, the new 
learner is chosen to predict the loss function’s gradient 
(corresponding intuitively to the part of the data that is 
not well predicted) and the rule is updated by weighting 
the new learner using a weight (the “step size”) estimated 
from the data. The learning rate may be dampened by 
introducing a multiplier for the step size.

As a loss function, we use the cross-entropy defined in 
[35]. Each learner is a classification tree of fixed depth 
(i.e., the number of terminal nodes). Since the primary 
analysis model includes no interactions, we take the 
tree depth to be 2, thus allowing each tree to contribute 
with up to two-factor interactions between predictors. 
The learning rate is chosen to be 0.1 with considerations 
of computational speed as investigated in the outcome-
blinded code tests. Similarly, the number of trees is ini-
tially taken to be 1000, a choice which is updated using 
out-of-bag samples to estimate the loss function as a 
function of the number of trees. Aside from predictions 
from the model, we calculate the relative importance of 
the predictors in X (as described in [34]).

Evaluation of model performance
For both models, we consider measures of discrimina-
tive ability (how well does the algorithm separate those 
with fracture from those without fracture) as well as 
their ability to perform absolute risk prediction (how 

−ylog
(
π̂
)
−

(
1− y

)
log

(
1− π̂

)
,

P

(
YMOF
i = 1 | Xi

)
= h(Xi),



Page 7 of 10Kristensen et al. Diagnostic and Prognostic Research            (2023) 7:19  

precisely does the model predict the fracture risks), 
i.e., the model’s calibration.

As a measure of discriminative ability, we use the 
area under the receiver operating characteristic curve 
(AUC), which may be interpreted as the probability 
that an individual with a fracture is assigned higher 
risk by the model than an individual with no fracture.

To assess calibration, we inspect calibration plots 
that arise by plotting observations against predicted 
probabilities and smoothing the relationship using a 
LOWESS smoother (e.g., [36]). Plots are constructed 
for the primary and secondary models and for both 
MOF and HF. As a measure of calibration, we further 
calculate the measure [16, 36],

where π̂ and π̂c are the model-predicted risk probabili-
ties and the corresponding value of the calibration curve, 
respectively. Thus, Emax(0, b) is a measure of the largest 
discrepancy between the predicted and “true” risks in 
the range 0 to b . Varying b shows calibration in different 
ranges of risks (where lower risks are presumed much 
more prevalent in the population). We plot the measure 
for increasing b and report Emax(0, 1) as the primary sta-
tistic for calibration. As a supplementary measure of cali-
bration, we use the integrated calibration index, which is 
the expected absolute discrepancy over the distribution 
of risk probabilities [36].

Internal validation by bootstrapping
Non-parametric bootstrapping is used to perform 
interval validation [16, 37]. For both the AUC and 
Emax(0, 1) measure, the optimism due to overfitting is 
estimated: A bootstrap sample is formed from the data 
set by sampling with replacement, and the outlined 
analysis procedures are performed using the boot-
strap sample as a training set and the original data as 
a test set. The performance measure in the training set 
minus that on the test set is the observed optimism, 
which is then estimated by averaging over the boot-
strap samples. The apparent performance measure 
may then be corrected by subtracting the optimism.

Note that for the LASSO regression, the choice of 
lambda grid is also performed in each bootstrap sample.

Unsupervised data review (i.e., blinded to the outcome)
The data management steps described above were per-
formed on the raw data from the Danish Health Data 
Authority. Several considerations emerging from the 
review have already been reported above in their appro-
priate context.

Emax(0, b) = max
0≤π̂≤b

|π̂ − π̂c|,

Diagnosis exposures and diagnosis proxies from redemp-
tion data were formed. We excluded rare diagnoses and 
proxy diagnoses that had a prevalence below 0.1%. Gener-
ally, predictor prevalences were low, and consequently, it 
was decided to omit inner knots from splines (leading to 
a linear effect due to the boundary condition for the nat-
ural spline) to avoid overfitting the exposure effects. As 
described above, we modeled the age effect using 4 knots.

Investigations of collinearity revealed 11 predictors (6 
medications and 5 diagnoses), which were highly col-
linear with other predictors and hence were removed 
from the selection procedure.

Following the blinded review of predictors, 785 poten-
tial predictors remained (including age and sex).

To guide the choice of hyperparameters, the primary and 
secondary analyses described above were implemented, and 
the code was tested in an approach blinded to the outcome 
by simulating an outcome independently from all predictors 
with an overall prevalence of 1%. Figure 1 includes diagnos-
tic plots for the primary and secondary analyses. Although 
based upon a single simulation, the results are promising 
as they show that there is no tendency of the methods to 
overfit the data: Both methods correctly identify no relevant 
predictors as they should since the outcomes have been 
simulated independently from risk factors.

The code was implemented in R version 4.1 using the 
glmnet ([38], version 4.1–4) package to fit the primary 
analysis and the gbm package ([34], version 2.1.8.1) for 
the secondary analysis. The mock analysis differed from 
those described above in that it was implemented on the 
entire data set, not stratified by sex.

Discussion
In this protocol paper, we described the planned enhance-
ment of the FREM tool by including additional data 
sources and applying a more advanced statistical method-
ology. Furthermore, the exposures and statistical method-
ology were investigated in an unsupervised data review.

The main strength of the planned study is building 
on top of an existing tool, which has already been vali-
dated in multiple settings [13, 14], hence ensuring that 
the resulting enhanced version of FREM will poten-
tially improve on top of an already applicable tool. The 
enhanced FREM has the potential to be integrated into 
the primary health care system as a decision support tool 
to optimize the identification of individuals at high risk 
of MOF. Moreover, the use of administrative registry data 
including a complete population ensures a limited risk of 
selection bias in the tool development.

The main limitations of the planned study are the valid-
ity of exposures and outcomes obtained from administra-
tive registries. While some exposures have been shown to 
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be valid in the literature [28], this has not been investigated 
for all included exposures. The validity of outcomes will 
be investigated in a forthcoming medical record review, 
which will be concluded before the planned study is per-
formed. Furthermore, the statistical methods planned 
and applied in the unsupervised data review make some 
assumptions on association structure, and misspecifica-
tion of these models could influence the validity of the 
results. The planned approach of using two separate sta-
tistical approaches (LASSO and gradient-boosted classifi-
cation trees) will ensure that model misspecification will 
be detectable as a discrepancy between those two strate-
gies. Following the development of an updated version of 
FREM, external validations will be performed in future 
studies, both in different populations outside of Denmark, 
as well as temporal validations to investigate a possible 
drift in the model performance. These external validations 
are not part of the current protocol.

Results of the planned study will be reported in one 
or multiple scientific papers in international peer-
reviewed journals, and deviations from this protocol, if 
any occur, will be pointed out in detail and substanti-
ated in these publications.

In this paper, we have described the forthcoming 
development of an updated version of the FREM tool 
including additional data sources and more advanced 
statistical methods. We find that our approach will 
take into account 785 possible predictors after select-
ing against collinearity and sparsity. Moreover, our 
unblinded review has identified appropriate choices for 
the hyperparameters to be used in the development of 
an enhanced version of FREM.
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