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Abstract 

Background Community‑acquired lower respiratory tract infections (LRTI) are common in primary care and patients 
at particular risk of adverse outcomes, e.g., hospitalisation and mortality, are challenging to identify. LRTIs are 
also linked to an increased incidence of cardiovascular diseases (CVD) following the initial infection, whereas con‑
current CVD might negatively impact overall prognosis in LRTI patients. Accurate risk prediction of adverse out‑
comes in LRTI patients, while considering the interplay with CVD, can aid general practitioners (GP) in the clinical 
decision‑making process, and may allow for early detection of deterioration. This paper therefore presents the design 
of the development and external validation of two models for predicting individual risk of all‑cause hospitalisation 
or mortality (model 1) and short‑term incidence of CVD (model 2) in adults presenting to primary care with LRTI.

Methods Both models will be developed using linked routine electronic health records (EHR) data from Dutch pri‑
mary and secondary care, and the mortality registry. Adults aged ≥ 40 years with a GP‑diagnosis of LRTI between 2016 
and 2019 are eligible for inclusion. Relevant patient demographics, medical history, medication use, presenting 
signs and symptoms, and vital and laboratory measurements will be considered as candidate predictors. Outcomes 
of interest include 30‑day all‑cause hospitalisation or mortality (model 1) and 90‑day CVD (model 2). Multivariable 
elastic net regression techniques will be used for model development. During the modelling process, the incremental 
predictive value of CVD for hospitalisation or all‑cause mortality (model 1) will also be assessed. The models will be 
validated through internal‑external cross‑validation and external validation in an equivalent cohort of primary care 
LRTI patients.
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Discussion Implementation of currently available prediction models for primary care LRTI patients is hampered 
by limited assessment of model performance. While considering the role of CVD in LRTI prognosis, we aim to develop 
and externally validate two models that predict clinically relevant outcomes to aid GPs in clinical decision‑making. 
Challenges that we anticipate include the possibility of low event rates and common problems related to the use 
of EHR data, such as candidate predictor measurement and missingness, how best to retrieve information from free 
text fields, and potential misclassification of outcome events.

Keywords Lower respiratory tract infection, Cardiovascular disease, Primary care, Electronic Health Record, Prognosis, 
Prediction model, Hospitalisation, Mortality

Background
Community-acquired lower respiratory tract infections 
(LRTI), such as acute bronchitis and pneumonia, are 
common reasons for primary care consultations. Prog-
nosis is generally favourable, allowing the majority of 
patients to be managed in primary care with or with-
out antibiotic treatment depending on disease severity 
and suspected pathogen [1–3]. Adverse outcomes such 
as hospitalisation or mortality occur in less than 1% of 
patients with uncomplicated LRTI, i.e. not suggestive 
of pneumonia, and antibiotics seem not to reduce the 
occurrence of these outcomes [4]. The risk of complica-
tions is far more pronounced in patients with commu-
nity-acquired pneumonia (CAP) [5], but identifying these 
patients in primary care can be challenging [6, 7]. In 
addition, concurrent cardiovascular diseases (CVD) have 
also been linked to poor prognosis in patients with LRTI, 
which is supported by recent literature on coronavirus 
disease 2019 (COVID-19) [8–10].

On the other hand, LRTIs may increase the risk or trig-
ger the occurrence of CVD—and thromboembolic events 
in particular—such as acute myocardial infarction (AMI), 
stroke, pulmonary embolism, and deep venous throm-
bosis for several months after the acute phase of the dis-
ease [11, 12]. Activation of the immune system by acute 
infection is thought to trigger the interaction between 
inflammatory and prothrombotic pathways (i.e. immu-
nothrombosis) [13]. Infections with respiratory patho-
gens such as influenza and SARS-CoV-2 have particularly 
been associated with increased CVD incidence, even in 
mildly affected patients managed in primary care [14, 15]. 
For example, the incidence of AMI was found to increase 
sixfold during the first week after influenza infection [16].

Accurate prediction of the risk of adverse outcomes 
can aid general practitioners (GP) in identifying LRTI 
patients in whom close follow-up or (antibiotic) treat-
ment is warranted. Well-known prediction models—such 
as the Pneumonia Severity Index (PSI) and CURB-65—
have been developed in hospitalised patients and primary 
care validation of these models is hampered by the inclu-
sion of advanced laboratory and radiographic variables 
[17, 18]. The CRB-65, including confusion, respiratory 

rate, blood pressure, and age, is proposed as a primary 
care alternative to predict mortality but has been incom-
pletely validated hampering implementation in primary 
care [19–22]. Another primary care-derived model 
including diagnosis, age, heart failure, diabetes, use of 
oral glucocorticoids, number of hospitalisations in the 
previous year, and antibiotic use in the previous month 
to predict hospitalisation and mortality also suffers from 
limited validation and prediction modelling methods 
have advanced since the development of both models 
[8]. A model suitable for routine use in primary care is 
therefore currently lacking. Here we present the design 
of the development and external validation of two pre-
diction models aimed at estimating the individual risk 
of all-cause hospitalisation or mortality (model 1), and 
short-term incidence of CVD (model 2) in adult primary 
care LRTI patients using linked routine electronic health 
records (EHR) data from Dutch primary and secondary 
care, and the mortality registry.

Method
Study design and setting
This prognostic model development and validation study 
will make use of pseudonymised routine EHR data. 
The model development cohort will be derived from 
the Julius General Practitioners’ Network (JGPN) [23], 
which covers approximately 450,000 Dutch inhabit-
ants, representative of the Dutch population, enlisted in 
both urban and rural practices in the region of Utrecht. 
It contains data on patient demographics, consultations 
(free text including anamnesis, physical examination, 
and prescribed treatments), coded disease episodes and 
medical history (using the International Classification of 
Primary Care (ICPC) [24]), coded prescriptions (using 
Anatomical Therapeutic Chemical (ATC) codes [25]), 
data on influenza and pneumococcal vaccinations, coded 
measurements, and laboratory results. The primary care 
EHR data will be enriched with linked data on emer-
gency department visits and hospital admissions (from 
Dutch Hospital Data (DHD) [26]) and mortality (from 
the National Mortality Registry of Statistics Netherlands 
(CBS)), resulting in a comprehensive database that covers 
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relevant individual disease trajectories. Details on the 
various data sources and their coverage are presented in 
Table 1.

Participants
All patients aged 40 years and older who presented to 
a GP affiliated to JGPN with an LRTI between 1 Janu-
ary 2016 and 31 December 2019 will be included in the 
model development cohort. A GP-diagnosed LRTI is 
defined as the registration of an ICPC code for either 
pneumonia (R81) or acute bronchitis (R78). Only the first 
episode of individual patients within the study period will 
be included. An LRTI-related consultation after a period 
of 28  days without such consultations is considered a 
new episode. For external validation, a similarly defined 
but more recent (i.e. 2022-2023) cohort of primary care 
LRTI patients will be derived from the Academic Net-
work of General Practitioners from the region of Amster-
dam (ANHA) which has a data structure and coverage of 
healthcare domains similar to JGPN [27].

Outcomes of interest
We will develop and validate two prediction models 
that estimate individual risk of 30-day all-cause hospi-
talisation or mortality (yes/no; model 1) and CVD within 
90 days (yes/no; model 2) (Fig. 1).

For model 1, registration of hospitalisation (DHD) 
and mortality (CBS) within 30 days after LRTI diagnosis 
will be extracted, irrespective of diagnosis or cause. For 
model 2, the composite outcome consists of CVD-related 
mortality and acute (arterial and venous) thromboem-
bolic events within 90 days after LRTI diagnosis: data on 
CVD-related mortality, acute coronary syndrome, cer-
ebrovascular accident and pulmonary embolism will be 
extracted from CBS and DHD data using ICD-10 diagno-
sis codes [28]. Additionally, data on transient ischaemic 
attack and deep venous thrombosis will be retrieved from 
DHD (using ICD-10 coding) and JGPN (based on ICPC 
coding and free text fields of consultations), as these 
events can be managed in both primary and secondary 
care. We will additionally explore the option of including 
exacerbations of heart failure in the outcome for model 
2, depending on the feasibility and validity of retrieving 
such events from primary carefree text data. Since out-
come events will be collected from a national registry 
and follow-up time will be short, the number of missing 
outcome events will likely be minimal and a non-survival 
model will be used in our analysis.

Candidate predictors
Initial candidate predictor selection will be based on a 
review of the literature and clinical expertise. Candidate 
predictors will be measured at GP diagnosis of LRTI (i.e. 

moment of prediction). We will consider the following 
categories as candidate predictors: demographics (e.g. 
age, sex), patient history (e.g. smoking status, comorbidi-
ties) and chronic medication use (e.g. immunosuppres-
sants, inhalation medication). In addition, we will explore 
the feasibility of retrieving and—where relevant—the 
added predictive value of candidate predictor data on 
signs and symptoms (e.g. shortness of breath, fever), 
measurements (e.g. oxygen saturation, respiratory rate), 
and laboratory tests (e.g. point-of-care C-reactive protein 
(CRP) measured at diagnosis) from free text fields. An 
overview of all variables that will be considered as candi-
date predictors can be found in Additional file 1.

Sample size
Calculations of the required sample sizes for model 
development are based on estimated event fractions of 
the outcomes of both prediction models. A total of 15 
candidate predictors, interaction terms included, is antic-
ipated. Sample size calculations were performed using 
the ‘pmsampsize’ package [29] in R version 4.2.2 [30], tar-
geting a maximum shrinkage of 10% to minimize poten-
tial overfitting. In the absence of reported R-squared 
values of previously developed models, we aim at devel-
oping models with a minimal anticipated c-statistic (area 
under the ROC curve) of 0.70. For model 1, the minimal 
required sample size is 8,635 LRTI episodes assuming 
a conservative event rate of 3% [1, 22, 31]. For model 2, 
estimation of the expected cardiovascular event rate is 
more difficult due to varying definitions and follow-up 
periods in previous reports [32]. Assuming an event rate 
of 2.5%, the minimal required sample size is 10,231 LRTI 
episodes.

The incidence of LRTI in Dutch primary care is esti-
mated at 27.8 episodes per 1000 person-years [33]. With 
approximately 50% of JGPN participants aged 40 years or 
older [23] and assuming a similar incidence rate in this 
population, we anticipate around 25,000 LRTI episodes 
in our development cohort which would be more than 
sufficient given our sample size calculations.

Missing data
Inherent to the use of EHR data, missing data is antici-
pated. We will consider the absence of registered comor-
bidities and prescriptions as the absence of the condition 
or medication use. For all other candidate predictors, we 
will assess the proportion of cases with missing data and 
its assumed mechanism. Where appropriate, if the miss-
ing at-random assumption is met, missing data will be 
handled using appropriate techniques, such as multiple 
imputations with chained equations [34].
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Statistical analysis
Candidate predictor selection will be based on existing 
literature, clinical expertise, data availability, and a maxi-
mum number of candidate predictors according to the 
sample size calculation. Restricted splines will be consid-
ered for continuous predictors, such as age. Both predic-
tion models will be developed using multivariable elastic 
net regression, accounting for predictor selection during 
the modelling process.

Model 1 will be developed using an incremental predic-
tive value approach. First, a baseline model (i.e. includ-
ing age, sex, and an interaction term) will be fitted. Next, 
the incremental predictive information captured by CVD 
comorbidity is explored by forcing CVD comorbidities 
into the model. Finally, a model will be built using all 
candidate predictors. Model performance of these subse-
quent models will be compared based on the difference 
in c-statistics calculated by bootstrapping, change in the 
distribution of risks, and change in R-squared (pseudo-
R-squared), allowing us to choose a final model based 
on model performance and suitability for use in clinical 
practice (e.g. a complex model with only a slight increase 
in performance might not be preferable). For model 2, 
the final model will directly be developed by forcing all 
selected candidate predictors into the model. Model 
performance of the final models will be assessed using 
quantitative measures of discrimination (c-statistic) and 
calibration (intercept, slope, and flexible calibration plot), 
the Cox-Snell R-squared, and decision curve analysis.

The final models will initially be validated through 
internal-external cross-validation—both geographical 
and temporal—to assess the heterogeneity of predictor 
effects by place and time. Subsequently, both final models 
will be externally validated in the ANHA cohort. Meas-
ures of discrimination and calibration will be assessed 
and, if necessary, the models will be updated using the 
validation cohort, which would require additional vali-
dation [35]. All analyses will be performed in R version 

4.2.2 [30], and while reporting we will adhere to the TRI-
POD statement (Additional file 2) [36].

Discussion
In this paper, we present the rationale and design for the 
development and external validation of two prediction 
models that can aid GPs in identifying primary care LRTI 
patients with an increased risk of adverse outcomes. By 
assessing both the predictive value of CVD for adverse 
outcomes and the occurrence of cardiovascular outcome 
events these models specifically address the role of CVD 
in the prognosis of LRTI.

Currently, available models that stratify LRTI patients 
based on the risk of poor prognosis are either designed 
for use in hospitalised patients or suffer from limited 
validation for use in primary care [8, 19–22, 37, 38], and 
predicted outcomes are limited to hospitalisation and 
mortality. In addition, advances in the field of prediction 
research have led to more sophisticated model devel-
opment and validation methods. Rather than updating 
existing models, we therefore aim to include the pre-
dictors of these models as candidate predictors while 
developing new prediction models using state-of-the-art 
development and validation techniques.

The burden of CVD following an LRTI episode has 
received considerable attention in hospitalised patients 
with CAP, and the most frequently observed events 
include exacerbation of heart failure, atrial fibrillation, 
and acute coronary syndrome [32, 39]. Some specific res-
piratory pathogens, such as influenza and SARS-CoV-2, 
are particularly associated with cardiovascular compli-
cations [14, 15, 40]. These observations are not limited 
to hospitalised patients alone, since several primary 
care-based studies on patients with RTI also revealed 
an increased incidence of AMI and stroke up to 90 days 
after initial infection [41]. Regarding individual prog-
nostic factors, a history of hypertension and a QRISK2 
score—a 10-year cardiovascular risk tool—of > 10% were 

Fig. 1 Graphical representation of database structure and anticipated prediction model development process. Abbreviations: JGPN, Julius General 
Practitioners’ Network; LRTI, lower respiratory tract infection; DHD, Dutch Hospital Data; CBS, Statistics Netherlands; ANHA, Academic Network 
of General Practitioners Amsterdam
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found to be associated with an increased risk of cardio-
vascular events following an RTI [42]. However, tools for 
individual risk-stratification of CVD following an LRTI 
episode in primary care are currently lacking.

Our models will be developed in a period prior to the 
COVID-19 pandemic. During the first years of the pan-
demic, aetiology of RTIs was largely reduced to SARS-
CoV-2 infection, and circulation of this virus in a naïve 
population resulted in a wave of severely ill patients 
[43]. Consequently, hospitalisation and mortality rates 
among LRTI patients have been relatively high during 
this period, whereas cardiovascular complications are 
also more frequent with increasing COVID-19 disease 
severity [15]. The burden of COVID-19 in the Nether-
lands has declined ever since as a result of vaccination 
strategies, natural immunisation after infection and the 
shift towards the predominance of the less severe Omi-
cron variant. We therefore expect that the epidemiology 
of primary care LRTIs in the current (post-pandemic) 
era largely resembles that of the pre-pandemic years in 
which our models will be developed, which would lead 
to a stable model performance. This, however, warrants 
confirmation by our intended external validation in a 
post-pandemic cohort of primary care LRTI patients.

Strengths, challenges and limitations
Strengths of the design of our study include the large 
cohorts used for model development and external valida-
tion that derive from a population that is representative 
of Dutch primary care, the enrichment with linked data 
on hospitalisation and mortality, and the state-of-the-art 
assessment of model performance on internal-external 
and external validation.

Nevertheless, we do anticipate several challenges dur-
ing the study process. First, the use of routine EHR data 
requires proper handling of missing data, which in turn 
depends on the assumed mechanism of missingness 
[44]. JGPN-affiliated practices receive education on the 
proper coding of medical history and prescriptions using 
the ICPC and ATC coding systems, resulting in a rich 
database. It seems therefore appropriate to consider the 
absence of such registrations as negative values. Han-
dling of missing data might however be more complex 
for candidate predictors that will potentially be retrieved 
from free text fields of index consultations, such as signs, 
symptoms, measurements, and laboratory test results. 
We aim to explore the registration of free text-derived 
parameters and the challenges this introduces in a ran-
dom sample of the study population prior to embarking 
on the process of model development with candidate 
predictors retrieved from free text fields.

A second possible challenge that we consider is 
a low outcome event rate for model 2 (predicting 

cardiovascular outcomes), for which we estimated an 
event rate of 2.5%. If the actual occurrence of CVD fol-
lowing an LRTI episode proves to be lower we may 
refrain from developing a prediction model, since it is 
challenging to maintain a high predictive performance 
in case of rare outcome events [45]. In such an event, we 
will consider an alternative approach to identify patient 
and disease characteristics that are associated with an 
increased risk of CVD following an LRTI by comparing 
CVD incidence rates among subgroups based on various 
characteristics, such as patient demographics, comorbid-
ities, and medication use.

Lastly, the use of routine EHR data potentially intro-
duces misclassification on the level of candidate pre-
dictors (e.g. medical history), study population (i.e. 
definition of LRTI episode), and outcome events (e.g. 
CVD-related mortality). To mitigate potential valid-
ity problems due to misclassification, the models should 
ideally be implemented in a context with similarly struc-
tured input data from EHRs. If the models prove to be a 
safe and valuable addition to the clinical decision-making 
process, this ultimately results in real-time predicted 
risks of adverse outcomes in primary care LRTI patients. 
The potential for developing and implementing such pre-
diction models for LRTI patients is also addressed in the 
pneumonia guidelines of the American Thoracic Society 
and Infectious Diseases Society of America [46].

Conclusion
Community-acquired LRTIs are common in primary 
care, and patients with increased risk of adverse out-
comes are challenging to identify. Currently, existing 
prediction models for adverse outcomes only focus on 
hospitalisation and mortality and suffer from incomplete 
model validation, hampering implementation in clini-
cal practice. The importance of CVD for the prognosis 
of LRTIs is proposed by both its association with overall 
poor prognosis and the observed increased incidence of 
CVD following the initial infection. While considering 
the interplay between LRTI and CVD, we aim to develop 
and externally validate two prediction models that pre-
dict clinically relevant outcomes such as cardiovascular 
events, hospitalisation, and mortality. These models can 
aid GPs in stratifying the risk of poor prognosis in pri-
mary care LRTI patients, which may ultimately allow for 
early detection and prevention of deterioration.
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