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Abstract 

Background  There is urgent clinical need to identify reliable prognostic biomarkers that predict the progres-
sion of dementia symptoms in individuals with early-phase Alzheimer’s disease (AD) especially given the research 
on and predicted applications of amyloid-beta (Aβ)-directed immunotherapies to remove Aβ from the brain. Cross-
sectional studies have reported higher levels of cerebrospinal fluid and blood glial fibrillary acidic protein (GFAP) 
in individuals with AD-associated dementia than in cognitively unimpaired individuals. Further, recent longitudinal 
studies have assessed the prognostic potential of baseline blood GFAP levels as a predictor of future cognitive decline 
in cognitively unimpaired individuals and in those with mild cognitive impairment (MCI) due to AD. In this systematic 
review and meta-analysis, we propose analyzing longitudinal studies on blood GFAP levels to predict future cognitive 
decline.

Methods  This study will include prospective and retrospective cohort studies that assessed blood GFAP levels 
as a prognostic factor and any prediction models that incorporated blood GFAP levels in cognitively unimpaired indi-
viduals or those with MCI. The primary outcome will be conversion to MCI or AD in cognitively unimpaired individuals 
or conversion to AD in individuals with MCI. Articles from PubMed and Embase will be extracted up to December 
31, 2023, without language restrictions. An independent dual screening of abstracts and potentially eligible full-
text reports will be conducted. Data will be dual-extracted using the CHeck list for critical appraisal, data extraction 
for systematic Reviews of prediction Modeling Studies (CHARMS)-prognostic factor, and CHARMS checklists, and we 
will dual-rate the risk of bias and applicability using the Quality In Prognosis Studies and Prediction Study Risk-of-Bias 
Assessment tools. We will qualitatively synthesize the study data, participants, index biomarkers, predictive model 
characteristics, and clinical outcomes. If appropriate, random-effects meta-analyses will be performed to obtain 
summary estimates. Finally, we will assess the body of evidence using the Grading of Recommendation, Assessment, 
Development, and Evaluation Approach.

Discussion  This systematic review and meta-analysis will comprehensively evaluate and synthesize existing evidence 
on blood GFAP levels for prognosticating presymptomatic individuals and those with MCI to help advance risk-strati-
fied treatment strategies for early-phase AD.
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Background
Alzheimer’s disease (AD) is the most common type of 
dementia, accounting for approximately 60–80% of all 
dementia cases [1, 2]. In 2019, the “Global Burden of Dis-
eases, Injuries, and Risk Factors Study” reported that an 
estimated 57 million people worldwide were living with 
dementia, and this number is projected to increase to 
more than 150 million by 2050 [3]. Although the patho-
genesis of AD is not fully elucidated, the accumulation of 
amyloid β (Aβ) peptides coupled with the spread of tau 
pathology is believed to play an integral role in disease 
progression [1, 2]. The current diagnostic criteria neces-
sitate confirmation of brain accumulation of both Aβ and 
tau through positron emission tomography (PET) or cen-
tral spinal fluid (CSF) testing [4].

Recent advances have added newly developed immu-
notherapies for Aβ to the conventional standard of care 
treatment which include cholinesterase inhibitors and 
memantine, an N-methyl-D-aspartate receptor antagonist. 
The current clinically available immunotherapy drugs for 
Aβ include aducanumab, an Aβ fibril-directed antibody 
(approved in the USA only), and lecanemab, an Aβ protofi-
bril-directed antibody (approved in the USA and Japan), 
and while they have proven to reduce Aβ in the brain, only 
lecanemab has been demonstrated to slow cognitive and 
functional decline in patients with mild cognitive impair-
ment (MCI) or mild dementia due to AD [5, 6]. However, 
Aβ-directed immunotherapies are costly and can cause 
potentially serious and non-negligible adverse effects, 
including amyloid-related cerebral hemorrhage and edema 
in addition to infusion-related reactions [7]. Although 
accumulation of amyloid and tau in the brain is commonly 
observed in older populations, a significant proportion of 
individuals with normal cognitive function exhibit these 
biomarkers and do not progress to AD [8]. Therefore, it is 
necessary to predict cognitive and functional decline and 
to support treatment decisions and accurate prediction of 
the risk of future progression to AD among pre- or early 
symptomatic, biomarker-positive individuals. Moreover, 
it is imperative to identify the groups for whom these test 
and treatment strategies should be pursued.

Glial fibrillary acidic protein (GFAP) is a high-profile 
astrocyte-derived biomarker that reflects astrocyte activa-
tion and neuroinflammation [9]. Several imaging, CSF, and 
blood biomarker studies have demonstrated that GFAP lev-
els are higher in patients with MCI and/or AD than in cog-
nitively unimpaired individuals, suggesting the potential for 

GFAP to complement existing AD biomarkers as a possible 
indicator of the neuroinflammatory aspects of neurodegen-
erative progression [10–12]. Additionally, a longitudinal 
biomarker study assessing the association between GFAP 
and phosphorylated tau levels in the plasma also proposed 
astrocyte reactivity as an upstream event, linking Aβ with 
initial tau pathology [13]. This has led to the proposal of 
adding neuroinflammatory biomarkers as “I” to the con-
ventional classification system based on amyloid, tau, and 
neurodegeneration to describe the progression of AD 
(amyloid, tau, neurodegeneration (ATN) classification) [14] 
to the proposed ATN(I) classification [15].

Based on the studies discussed above and recently pro-
posed expert recommendations on the appropriate use of 
blood biomarkers, including phosphorylated tau (p-tau), 
in clinical practice [16, 17], this systematic review has 
two specific objectives focused on GFAP as an important 
upstream factor during AD development. The first objec-
tive is to summarize the prognostic value of blood GFAP 
levels in predicting the future progression of cognitive 
decline in cognitively unimpaired individuals or those 
with MCI. The second objective is to identify and sum-
marize all the prediction models that incorporated blood 
GFAP levels as a predictor of the future progression of 
cognitive impairment in the same two target populations.

Methods
This systematic review and meta-analysis protocol will 
follow the Preferred Reporting Items for the Systematic 
Review and Meta-Analysis Protocols 2015 statement 
[18]. In the event of protocol amendments, the date of 
each amendment will be accompanied by a description of 
the change and rationale.

Two key questions (KQs) were developed based on the 
PROGnosis REsearch Strategy (PROGRESS) framework 
for prognostic research [19–22].

•	 KQ1 (PROGRESS type II, prognostic factor research 
[20]): Can blood GFAP levels predict the risk of 
progression of cognitive dysfunction in cognitively 
unimpaired individuals or in those with MCI?

•	 KQ2 (PROGRESS type III, prognostic model research 
[21]): Can risk assessment models (RAMs) incorporat-
ing blood GFAP levels predict the future risk of cogni-
tive dysfunction progression in cognitively unimpaired 
individuals or those with MCI?



Page 3 of 8Nihashi et al. Diagnostic and Prognostic Research             (2024) 8:4 	

Information sources and search strategies
We will search the PubMed and Embase databases from 
database inception through December 31, 2023, using 
both subject indexing (i.e., MeSH and Emtree, respec-
tively) and free-text terms. The covered terms will include 
“preclinical dementia,” “mild cognitive impairment,” 
“Alzheimer disease,” and “glial fibrillary acidic protein,” 
as well as their synonyms. The complete search strategy 
and list of databases are available in the Supplementary 
file (Appendix 1). The electronic search results will be 
imported into EndNote 21 (Clarivate Analytics, Phila-
delphia, USA), and duplicate results will be removed. For 
additional searches, we will screen the reference lists of 
eligible studies as well as the reference lists of systematic 
reviews and meta-analyses related to this topic, which 
will be identified through this database search. No lan-
guage restrictions will be imposed.

Eligibility criteria
Table  1 presents the detailed inclusion criteria based 
on the populations, interventions, comparator inter-
ventions, outcomes, timings, and setting frameworks 
modified for prognostic factor reviews [23]. We will 
include any prospective or retrospective cohort study 
that includes at least 15 adult individuals in whom base-
line blood GFAP levels and the progression of cognitive 
impairment were assessed at least 1 year after baseline. 
We will target two specific adult populations of clinical 
interest: (i) individuals aged 50  years or older without 
cognitive impairment and (ii) individuals aged 50 years 
or older with MCI [24, 25], regardless of modifiable risk 
factors (e.g., diabetes, hypertension, obesity, smoking, 
high alcohol consumption, sedentary lifestyle, and low 
educational attainment). In addition, we will target a 

third population of clinical interest: (iii) high-risk indi-
viduals aged ≥ 18 years. Here, “high risk” for developing 
dementia is defined as individuals with ≥ 1 unmodifiable 
risk factor, such as genetic variants (e.g., apolipoprotein 
ε4 [APOE4] copy numbers) or chromosomal abnormali-
ties (e.g., Down syndrome).

Two independent reviewers will double-screen the 
abstracts using Abstrackr, a web-based software for cita-
tion screening (Center for Evidence Synthesis in Health, 
Brown University, Province, USA) [26]. All potentially 
eligible full-text articles selected by at least one reviewer 
will pass the screening process. All non-English publica-
tions will be translated into English using Google Trans-
late (Google, Mountain View, CA, USA) before full-text 
evaluation. We will then review the full texts for eligibil-
ity. Any discrepancies in the full-text assessment will be 
resolved via consensus.

Data extraction
Two reviewers will extract data items recommended 
by the CHeck list for critical Appraisal, data extraction 
for systematic Reviews of prediction Modeling Stud-
ies (CHARMS) [27] and the CHARMS prognostic factor 
(PF) checklist [28]. The developed and piloted extraction 
form is available in the Supplementary file (Appendix 2). 
One primary reviewer will extract descriptive data, and 
another will verify all the extracted data. Two independ-
ent reviewers will double-extract quantitative data for 
outcomes of interest. A consensus will be used to resolve 
discrepancies. We will contact the study authors via email 
for missing or unresolved quantitative data. We will send 
two additional email correspondences if no response 
is received 2  weeks after the previous correspondence 
attempt.

Table 1  Inclusion criteria based on the PICOTS framework modified for prognostic factor and model studies

Abbreviations: Aβ Amyloid β, AD Alzheimer disease, APOE4 Apolipoprotein ε4, GFAP Glial fibrillary acidic protein, KQ Key question, MCI Mild cognitive impairment, 
PICOTS Populations, interventions, comparator interventions, outcomes, timings, and settings, p-tau Phosphorylated tau, RAM Risk assessment model

PICOTS Specific details

Population (i) Adults (aged ≥ 50 years) without cognitive impairment at baseline

(ii) Adults (aged ≥ 50 years) with MCI at baseline

(iii) High-risk individuals aged ≥ 18 years. Here, “high risk” for developing dementia is defined 
as individuals with ≥ 1 unmodifiable risk factor, such as genetic variants (e.g., APOE4 copy 
numbers) or chromosomal abnormalities (e.g., Down syndrome)

Index prognostic factor (KQ1) Blood GFAP levels sampled and assessed at baseline

Comparator prognostic factors (KQ1) Age, sex, APOE4, Aβ, and other biomarkers including p-tau

Index and comparator RAMs (KQ2) Any RAMs incorporating blood GFAP levels and other prognostic factors

Outcomes Clinical conversion of cognitive impairment as the binary outcomes

(i) From no cognitive impairment to MCI or AD

(ii) From MCI to AD

Timing At least 1 year from baseline

Setting Blood sampling (for GFAP level measurement) performed in both primary and secondary care
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Source data characteristics
We will include the study identification (first author 
and publication year), study design (cohort, case–con-
trol, randomized trial, or registry data), and cohort or 
registry names.

Participant characteristics
We will include the eligibility criteria (inclusion and 
exclusion criteria), enrollment methods (consecutive or 
random vs. non-consecutive), study location (country 
and city), number of centers, clinical setting, participant 
descriptions including average age (mean with stand-
ard deviation and/or median and interquartile or mini-
mum–maximum range), percentage of male sex, and 
enrollment date.

Predictor characteristics
We will include the number, type, definition, measure-
ment time, and methods of any predictors used in (i) 
multivariable models that examined how well GFAP 
could predict the outcome of interest as an independ-
ent variable (KQ1) or (ii) reported RAMs that included 
GFAP as a predictor and predicted the outcome of inter-
est (KQ2). We will also examine whether the predictors 
were assessed blinded to the outcome of interest and how 
the data type of the results was handled or transformed 
in statistical modeling. Regarding the measurement of 
blood GFAP levels, we will include the source of blood 
(whole blood, plasma, or serum), timing of measurement 
after blood drawing, storage-related parameters (temper-
ature and duration), types of assays and platforms, and 
cutoff values if specified. For additional candidate predic-
tor characteristics, we will include patient characteristics 
(demographics, participant history, and physical exami-
nation, including cognitive function tests and comorbidi-
ties) and biomarkers employed in the GFAP-incorporated 
RAMs. For any blood or CSF biomarker other than 
GFAP, we will extract information on the sample sources, 
timing of the measurement after sample collection, stor-
age-related parameters (temperature and duration), and 
types of assays and platforms used. For imaging biomark-
ers using PET, the technical specifications and interpreta-
tion methods regarding the PET will be extracted.

Outcome characteristics
The primary outcome of interest will be clinical conver-
sion to cognitive impairment (binary outcome). We will 
define clinical conversion as (i) conversion to MCI or 
AD in cognitively unimpaired individuals and (ii) con-
version to AD in individuals with MCI. We will use the 
Petersen criteria for the definition of MCI [24]. AD will 
be defined according to the criteria from the National 
Institute of Neurological and Communicative Disorders 

and Stroke and the Alzheimer’s Disease and Related 
Disorders Association [29] or the National Institute on 
Aging-Alzheimer’s Association [30]. We will addition-
ally retrieve information on the timing of outcome events 
and/or overall follow-up duration after baseline, when 
predictors were evaluated. We will also ascertain whether 
the assessment of outcomes was conducted in a blinded 
manner with respect to the predictors. In cases where a 
study analyzed AD alongside other forms of dementia 
and the data specific to AD alone cannot be indepen-
dently extracted, the information will be utilized in the 
sensitivity analysis.

Sample size and missing data
We will extract the number of participants, outcome 
events, and events per candidate predictor (i.e., the num-
ber of outcome events divided by the number of pre-
dictive variables) employed in the multivariate models 
(to assess GFAP’s prognostic ability of GFAP; KQ1) or 
GFAP-incorporated RAMs (KQ2). For missing predic-
tors, we will extract the number of participants with any 
missing values and the number of participants with miss-
ing data for each predictor. In addition, we will record 
how the missing data were handled. We will assess attri-
tion (i.e., loss to follow-up) by extracting the number of 
censored observations in each category for GFAP levels 
or other categorical PFs.

Model development and evaluation
We will extract the modeling method, the method for 
selecting predictors for inclusion in multivariate mod-
eling, and the criteria used. Any evidence of nonpropor-
tional hazards of blood GFAP and other predictors, if 
reported, will be recorded. We will also record whether 
the shrinkage of the predictor weights or regression 
coefficients was adjusted for overfitting (KQ2 only). For 
model evaluation, we will extract how the model per-
formance was tested (e.g., development dataset only or 
separate external validation) and whether the model was 
adjusted or updated (KQ2 only).

Quantitative data
We will extract point estimates and their variances or 
95% confidence intervals (CIs). We will also extract the 
unadjusted and adjusted hazard ratios (HRs) for blood 
GFAP levels, with the set of adjustment factors used for 
the adjusted estimates (KQ1). When relevant data is not 
directly extractable, we will use the standard approach 
[31, 32] or the ratio of the logarithms of event-free pro-
portions [33] to obtain the unadjusted HR estimates and 
their variances. To standardize the sets of adjustment 
factors, we will predefine the following hierarchy based 
on the minimum set of adjustment factors [28].
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•	 Level 0: Unadjusted (no covariates)
•	 Level 1: Age and sex
•	 Level 2: Age, sex, and APOE4
•	 Level 3: Age, sex, and amyloid (± APOE4)
•	 Level 4: Age, sex, amyloid (± APOE4), and other bio-

markers including p-tau

For GFAP-incorporated RAMs, we will extract the 
calibration slope, calibration-in-the-large (CITL), and 
expected/observed or observed/expected outcome event 
ratios (E/O or O/E, respectively) as measures of calibra-
tion. Additionally, we will gather information on the 
C-statistic and D-statistics as measures of discrimination 
(KQ2 only).

Risk‑of‑bias assessment
Two independent reviewers will assess the risk of bias in 
the primary studies using established risk-of-bias assess-
ment tools, the Quality In Prognosis Studies (QUIPS) 
[34], and the Prediction Study Risk-of-Bias Assessment 
Tool (PROBAST) [35], and any discrepant results will be 
resolved by consensus.

For studies that assessed the prognostic ability of blood 
GFAP levels as an independent PF (KQ1), we will use the 
QUIPS [34]. We will first assess the signaling items as 
yes, no, or no information and then rate the risk of bias 
as high, moderate, or low for (i) study participation, (ii) 
study attrition, (iii) PF measurement, (iv) outcome meas-
urement, (v) adjustment for other factors, and (vi) statis-
tical analysis and reporting.

For studies that assessed GFAP-incorporated RAMs 
(KQ2), we will use the PROBAST [35]. First, we will 
address the signaling questions as yes, no, or no infor-
mation and then rate the risk of bias and concerns about 
applicability (except for analysis) as high, low, or unclear 
for (i) participation, (ii) predictors, (iii) outcomes, and 
(iv) analyses.

Data synthesis
For studies involving blood GFAP levels as an independ-
ent PF (KQ1), the results will be sorted by (i) whether 
they were unadjusted or adjusted (based on the hierar-
chical levels described above), (ii) sample collection and 
measurement methods, and (iii) cutoff points if analyzed 
as binary or ordinary variables. Results will then be visu-
ally assessed using forest plots. If a group of results is rea-
sonably similar after sorting the abovementioned three 
attributes, we will perform a meta-analysis.

For studies pertaining to GFAP-incorporated RAMs 
(KQ2), this systematic review will encompass models 
at various stages, including development and valida-
tion studies. Consequently, we expect significant clinical 
heterogeneity across studies exploring the use of blood 

GFAP levels as a predictive factor. Therefore, we will first 
sort the results by the sets of included predictors and 
descriptively examine the similarities and discrepancies 
using graphs and tables. We will perform a meta-analysis 
only if a reasonable number of studies validating an iden-
tical RAM are available.

If the data are amenable to quantitative synthesis, we 
will perform an aggregate study-level random-effects 
meta-analysis using the standard approximate normal-
normal model based on the restricted maximum likeli-
hood estimator [23]. For calibration slopes, CITLs, and 
D-statistics, the summary estimates will be combined in 
the original scale; E/Os or O/Es and HRs will be trans-
formed to a log scale, and C-statistics will be transformed 
to a logit scale before performing the meta-analysis [23]. 
We will estimate corrected 95% CIs and prediction inter-
vals (PIs) based on the Hartung-Knapp-Sidik-Jonkman 
method [36] and the Higgins-Thompson-Spiegelhalter 
method [37], respectively. Statistical heterogeneity will 
be visually assessed using forest plots and quantitatively 
using the random-effect standard deviation parameter, 
tau, and PIs of the effect size [38].

We will analyze the data of cognitively unimpaired 
populations and populations with MCI separately. In the 
main analysis, we will jointly analyze populations with 
subjective cognitive decline [39] alongside cognitively 
unimpaired populations. In the sensitivity analysis, these 
two categories will be analyzed separately as subgroups.

Additional analyses
To assess small-study effects and publication biases, we 
will use funnel plot asymmetry only when at least 10 
studies assess similar results [40]. To assess certainty in 
the body of evidence, we will use the Grading of Recom-
mendations Assessment, Development, and Evaluation 
approach designed for prognostic studies [41, 42] and 
rate each outcome based on the validity, inconsistency, 
imprecision, and indirectness of each study.

Statistical software
All statistical analyses will be performed using the Stata 
V.18.0/SE software (Stata Corp., College Station, TX, 
USA). All tests will be two-sided, and statistical signifi-
cance will be defined as p < 0.05.

Ethics and dissemination
An ethics review is not necessary, as this is a systematic 
review of publicly available data. The reviewed findings 
will be reported according to the transparent reporting of 
multivariable prediction models for individual prognosis 
or diagnosis checklist for systematic reviews and meta-
analyses guidelines [43] and disseminated through publi-
cations in peer-reviewed journals.
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Discussion
Interpretation
GFAP is a promising biomarker for predicting cognitive 
impairment in individuals with early AD [16, 17]. With 
multiple treatment options expected to become avail-
able in the near future, precise and efficient identification 
of progressor groups for improved treatment selection 
during early disease phases will be of paramount impor-
tance. When multiple costly therapeutic interventions 
are actively administered to a large number of individu-
als, there is a pressing need for an objective and rigorous 
evaluation of the efficacy of these therapies. However, 
cognitive function inevitably declines with age, regard-
less of AD pathology; thus, effectively differentiating 
pathological cognitive decline from physiological decline 
due to aging is not straightforward and may be further 
complicated by environmental factors such as patients’ 
lifestyles, available support networks, and preexisting 
diseases [8]. In this complex and diverse context, reliable 
biomarkers that can assist in the accurate and objective 
diagnosis and predict cognitive decline and other inter-
mediate outcomes are urgently needed.

Efforts to establish clinical evidence for these blood 
biomarkers are currently underway, primarily in the 
research context with their application in clinical practice 
expected in the near future. Compared to PET and CSF 
testing, blood biomarkers are less invasive, easier to sam-
ple, and less costly; therefore, they potentially provide a 
reasonable and realistic option for repeated longitudi-
nal evaluation and should be widely applied. Thus, our 
intention to perform a systematic review that rigorously 
assesses and summarizes emerging evidence on the prog-
nostic ability of blood GFAP levels is timely and fruitful.

Strengths and limitations of this study
A strength of this study is that it is the first formally 
planned systematic review and meta-analysis to com-
prehensively evaluate the existing evidence on the blood 
biomarker GFAP based on longitudinal cohort studies for 
prognosticating presymptomatic individuals and those 
with early AD. Existing systematic reviews have only 
focused on cross-sectional studies that compared blood 
GFAP levels between patients with established MCI and/
or AD and presymptomatic cognitively unimpaired indi-
viduals [10–12]. This type of study, with a cross-sectional 
design, is easy to conduct and is an important source of 
data for testing the hypothesis that biomarker levels are 
associated with disease progression. However, this asso-
ciation must be validated through longitudinal studies. 
Another strength is that we will utilize a comprehensive 
literature search and the recommended up-to-date sys-
tematic review methodologies on prognostic factors and 

prognostic model studies to clarify the strengths and lim-
itations of the current evidence [23].

An important limitation of this study is the heterogene-
ous design adopted in the primary prognostic or predic-
tion model studies. Meta-analyses may not be feasible if 
similar types of data on the three attributes of a prognos-
tic factor (i.e., covariates used for statistical adjustment, 
sample collection and measurement methods, and cutoff 
values) or data on identical RAMs are sparse.

In conclusion, this systematic review and meta-analysis 
will comprehensively evaluate and synthesize the exist-
ing evidence on blood GFAP levels for prognosticating 
presymptomatic individuals and those with MCI to help 
advance risk-stratified treatment strategies for early-
phase AD.
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