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Abstract 

Background  Many clinical pathways for the diagnosis of disease are based on diagnostic tests that are performed 
in sequence. The performance of the full diagnostic sequence is dictated by the diagnostic performance of each test 
in the sequence as well as the conditional dependence between them, given true disease status. Resulting estimates 
of performance, such as the sensitivity and specificity of the test sequence, are key parameters in health-economic 
evaluations. We conducted a methodological review of statistical methods for assessing the performance of diag-
nostic tests performed in sequence, with the aim of guiding data analysts towards classes of methods that may be 
suitable given the design and objectives of the testing sequence.

Methods  We searched PubMed, Scopus and Web of Science for relevant papers describing methodology for analys-
ing sequences of diagnostic tests. Papers were classified by the characteristics of the method used, and these were 
used to group methods into themes. We illustrate some of the methods using data from a cohort study of repeat fae-
cal immunochemical testing for colorectal cancer in symptomatic patients, to highlight the importance of allowing 
for conditional dependence in test sequences and adjustment for an imperfect reference standard.

Results  Five overall themes were identified, detailing methods for combining multiple tests in sequence, estimating 
conditional dependence, analysing sequences of diagnostic tests used for risk assessment, analysing test sequences 
in conjunction with an imperfect or incomplete reference standard, and meta-analysis of test sequences.

Conclusions  This methodological review can be used to help researchers identify suitable analytic methods for stud-
ies that use diagnostic tests performed in sequence.

Keywords  Sequential diagnostic testing, Diagnostic accuracy, Conditional dependence, Diagnosis

Background
Statistical methods for summarising the results of single 
diagnostic tests are well established, with guidelines for 
performing and reporting diagnostic studies available 
[1, 2]. Clinical diagnostic pathways consist of a num-
ber of investigatory tests or procedures with the aim of 
determining a diagnosis. In practice, most such pathways 
require more than one diagnostic test to be performed 

before a diagnosis can be made [3]. For example, labora-
tory testing to identify patients at highest risk of cancer 
may be followed by imaging to visualise likely cancer, 
then biopsy to provide a tissue diagnosis of suspicious 
lesions. A review found that 16 out of the 22 diagnostic 
pathways in diagnostic Health Technology Assessments 
published between 2009 and 2015 contained multiple 
diagnostic tests [4].

If the diagnostic pathway is considered fixed and 
known in advance, and a diagnostic accuracy study can 
be performed to test the pathway in its entirety, the ana-
lytical steps required may be similar to those for a single 
diagnostic test. However, in practice model development 
is often required to develop a strategy for assigning 
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positive and negative diagnoses within a pathway, and the 
resources needed to conduct a study of the full pathway 
may be prohibitive. Often, only partial information about 
each of the component tests is available, sometimes from 
different studies conducted in different settings. In this 
scenario, constructing and assessing the full diagnostic 
pathway requires the dependence between the results 
of the tests to be incorporated, using either additional 
assumptions or published estimates [5].

In some studies, several different diagnostic tests are 
performed at the same time, and the results may be com-
bined to reach a diagnostic decision. These may pre-
sented in the form of a clinical risk score, such as when 
using blood test results in combination to assess cancer 
risk [6]. Previous methodological papers have suggested 
ways for creating optimal diagnostic combinations, using 
a variety of methods including forms of regression, dis-
crimination analysis and methods based around max-
imising the area underneath the Receiver Operating 
Characteristic (ROC) curve [7–14].

In other scenarios, diagnostic tests are performed in 
sequence, separated in time, such that the result of one 
test is known before subsequent tests are performed. 
An example is in repeat point-of-care testing for SARS-
CoV-2 [15]. Another example is in developing criteria 
for diagnosing latent tuberculosis in which two tests are 
available (tuberculin skin test and an interferon gamma 
release assay); one strategy is to offer the skin test first, 
then perform the array only for individuals who have 
a positive result from the skin test [16]. In such cases, 
the decision to perform diagnostic tests that fall later 
in the sequence depends on the results of those already 

observed. Typically, the diagnostic decision would be 
based on the final test performed in the sequence, but 
whether the final test is conducted will depend on the 
results of the preceding tests (Fig. 1).

This pattern of tests being performed in sequence 
is known as ‘conditional testing’ or ‘serial testing’, and 
contrasts with ‘parallel testing’, when all tests are per-
formed on all participants irrespective of their results 
[17, 18]. In Fig. 1, if Test 1 gives a negative test result, 
an outright negative diagnosis is made without Test 2 
being performed, which may be desirable in terms of 
minimising the burden of testing on the patient and 
reducing costs. However, a false negative result from 
a Test 1 that had poor sensitivity for the target condi-
tion would prevent Test 2 being used in patients with 
the target condition, and this would adversely affect the 
performance of the sequence even if Test 2 had high 
sensitivity. This conditional design, which has previ-
ously also been termed the ‘paired’ diagnostic study 
design [19], is easily extended to encompass additional 
tests or more complicated decision rules.

Although many methods for analysing diagnostic test 
sequences have been proposed, a review of these meth-
ods is lacking. The objective of this paper is to provide 
such a review, where the aim is generally to estimate 
the overall diagnostic performance of the test sequence. 
The majority of the paper consists of an overview of 
available methods, grouped into themes. An analysis 
of a dataset consisting of a diagnostic test sequence for 
colorectal cancer illustrates some of the methodological 
considerations. A concluding discussion summarises 
our findings and describes future research priorities.

Fig. 1  Illustration of conditional diagnostic test sequence
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Methods
We followed a three-stage process for identifying papers 
for inclusion in this review. In the first stage, we identified 
18 papers that were known to us and thought relevant to 
the topic of interest. In the second stage, we performed 
a literature search using the PubMed database, with the 
search restricted to five journals that had previously pub-
lished papers in this area and which we considered to be 
likely sources of additional eligible publications: Biomet‑
rics, Biostatistics, Journal of Biopharmaceutical Statistics, 
Statistical Methods in Medical Research and Statistics in 
Medicine.

In the third stage, we took all eligible papers from the 
first two stages and used Scopus and Web of Science to 
perform a one generation forwards and backwards cita-
tion search (i.e. extracting their reference lists, and all 
publications that had subsequently cited papers identi-
fied in the first and second stage) [20]. In this final stage 
there was no restriction on journal.

At each stage, papers were screened independently 
by two researchers for appropriateness, first by title/
abstract, then using the full text if required. Included 
papers are those that describe statistical methods for 
assessing the diagnostic accuracy (i.e. the diagnostic per-
formance, typically measured by parameters representing 
the sensitivity, specificity or predictive values) of any of 
the following:

•	 Two or more distinct tests performed in sequence or 
as part of a pathway

•	 A series of repeated tests, i.e. the same test per-
formed on two or more occasions in sequence

•	 Test sequences carried out as part of a screening pro-
gramme

Papers that incorporate issues relating both to sequential 
testing and other important methodological issues, such 
as allowing for an imperfect or partial reference standard, 
were also included.

The following were excluded:

•	 Primary studies that evaluate particular diagnostic 
tests

•	 Systematic reviews of particular diagnostic tests
•	 Methods for sequential hypothesis tests used for pur-

poses other than diagnostic accuracy evaluation
•	 Papers that solely aim to estimate prevalence rather 

than evaluate diagnostic accuracy
•	 Methods for comparing the performance of two or 

more diagnostic tests against each other with the aim 
of determining which test has superior performance 
(discussed elsewhere [21]) rather than incorporating 
them into a single pathway

Given the difficulty in searching for suitable papers 
in this field, the search strategy was not designed to be 
systematic but rather to enable us to identify the most 
prominent classes of methods that have been proposed 
for analysing sequences of diagnostic tests, for the pur-
pose of creating a methodological overview. From eligible 
papers, we extracted information about the objective of 
the analysis and the type of statistical method described, 
and used this information to group papers sharing simi-
lar methodology into themes. We illustrate one of the 
key methodological issues - the potential effects of con-
ditional dependence between tests - with an example that 
considers repeat use of the Faecal Immunochemical Test 
for colorectal cancer in symptomatic patients. The pri-
mary focus of the paper is on cases where the index test 
results and the true disease status are binary, as this is the 
scenario that has arisen the most often in the clinical set-
tings in which these methods have been applied, but we 
also refer to methods for continuous index tests where 
appropriate.

Results
This section contains the five groups of methodologies 
that we created following the literature review. Table  1 
summarises the key features of these groups. A further 
overview that can guide users to the most appropriate 
subsection of the results for a particular study design or 
objective appears as Supplementary Material.

Combining the results of index tests performed 
in sequence
Combining two index tests

The AND and OR rules  In the simplest case, two binary 
index tests are performed on all participants, yielding 
results X1 and X2 respectively. We use T to denote true 
disease status. Two simple combination rules are possi-
ble. The first is the ‘OR’ rule, also known as ‘believe the 
positive’ or ‘Any+’, in which a positive diagnosis is made 
if either X1 or X2 is positive. The second is the ‘AND’ rule, 
also known as ‘believe the negative’ or ‘Both+’. In these 
cases, X2 can also be viewed as an ‘add-on’ test to an 
established test X1 , or X1 as a new triage test to an estab-
lished test X2 [22]. In a third rule, ‘believe the extreme’, X2 
is performed only among participants who have an inde-
terminate result for X1 , and a positive diagnosis is made if 
either result is positive [23].

Under these rules, algebraic expressions are available 
for the sensitivity and specificity of the combination in 
terms of the sensitivity and specificity of the individual 
tests and the conditional dependence between them. 
These are shown in the Appendix. The presence of 
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conditional terms such as P(X2|X1,T ) in these expres-
sions highlights the direct influence of conditional 
dependence between the index tests on the diagnostic 
performance of the sequence.

Understanding the effects of conditional depend‑
ence  Estimating conditional probability terms 
that include both X1 and X2 can be problematic if 
data are available only from studies that have evalu-
ated the diagnostic performance of each of the tests 
in isolation. The simplest approach is to assume that 
P(X2 = 0|X1 = 0,T = 1) = P(X2 = 0|T = 1) , making 
the strong assumption that X1 and X2 are conditionally 
independent given disease status [24]. More generally, it 
can be shown that the combined sensitivity and specific-
ity can be re-expressed in terms of the measure known as 
the phi coefficient (or conditional correlations ρ+ and ρ− 
between the index test results, given positive or negative 
true disease status) for measuring association between 
binary variables (see Appendix) [25].

The possible range of the conditional covariance 
between X1 and X2 is constrained by the marginal sen-
sitivity and specificity of each test within the sequence 
[26]. In an extreme case, if X1 and X2 are conditionally 
perfectly negatively correlated, they would always give 
discordant results. In this case, the sensitivities of the OR 
and AND rules would become one and zero respectively, 
while their specificities would become zero and one 
respectively.

Under the OR rule, the combined sensitivity is 
increased when the two index tests are conditionally neg-
atively correlated, given disease positivity (see formula 
(1), Appendix). Analogously, the combined specificity 

under the OR rule is increased when the two index tests 
are conditionally positively correlated, given disease neg-
ativity [27, 28]. The opposite conclusions apply under the 
AND rule [29]. The relationship between the strength of 
the conditional correlations and the overall performance 
of OR and AND rules has been explored numerically 
[30].

The effects of the OR and AND rules on positive and 
negative predictive values have also been examined. In 
most realistic scenarios, the OR rule tends to decrease 
the PPV and increase the NPV, and the AND rule tends 
to increase the PPV and decrease the NPV, although 
this tendency is not guaranteed and may not occur if the 
index tests are conditionally highly correlated, with dif-
ferential strength of correlation among disease-positive 
and disease-negative cases [31]. These effects have also 
been demonstrated in experimental examples [32].

Other measures of diagnostic performance  The addi-
tional benefit of adding a new index test to an existing 
index test or test sequence can also be quantified using 
positive and negative likelihood ratios, allowing the 
incremental gain in performance to be assessed [33], by 
tests based on the difference or proportion of additional 
correct diagnoses [34], or by measures such as the rela-
tive true or false positive rates and relative ROC curve 
[35]. The same principle can be extended from evaluation 
of diagnostic accuracy to the evaluation of cost in health-
economic terms [36], if the aim is to minimise the over-
all cost associated with the test sequence and the relative 
costs of correct/incorrect positive/negative diagnoses can 
be quantified [23, 37]. This can be used to test whether 
the diagnostic benefit of implementing subsequent tests, 

Table 1  Summary of analytical considerations in each group of methodologies

Section Examples of applicable situations

1. Combining the results of index tests performed in sequence • Incorporate the results of two or more tests to create an overall diagnostic decision

• Assess the effect of adding a new index test to a test sequence

• Most suitable if all index tests are performed on all participants

2. Estimating conditional dependence between index tests 
performed in sequence, and conditional testing

• Assess the conditional correlation between index test results

• Suitable when there is conditional testing, with the decision to perform later tests 
in the sequence dependent on earlier test results

• Suitable if some index tests are not performed on all participants

3. Analysing test sequences used for risk assessment • Assess the performance of a repeating sequence of the same index test

• Typically arises in the context of diagnostic testing for screening or monitoring

4. Analysing test sequences in conjunction with an imperfect 
or incomplete reference standard

• Adjust the performance of a test sequence for a reference standard that is imperfect

• Assess a test sequence if the reference standard is missing or performed 
on only some participants

5. Meta-analysis • Synthesise test sequence performance data from multiple studies
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based on OR or AND decision rules, justifies the addi-
tional cost [38].

Some authors have examined the effect of adding an 
index test on the weighted kappa statistic for agree-
ment between test results, although this measure can 
be difficult to interpret as a measure of clinical perfor-
mance [18, 39]. An alternative method, which aims to 
control false positive and/or false negative error rates 
within prescribed limits, stochastically designates a 
proportion of those with discordant index test results 
as positive and the remainder as negative, although this 
has the disadvantage that two individuals with identical 
test results may as a consequence be assigned different 
diagnoses [40].

Expressions for the combined sensitivity and specificity 
of a test sequence when either index test is continuous, 
with test positivity defined based on exceeding a specified 
threshold, are available elsewhere [41]. Thresholds can be 
either fixed or adaptive - changing over time, depending 
on the ordering of the test sequence. The latter scenario 
is particularly relevant to the analysis of diagnostic test 
sequences, because the expressions for sensitivity above 
show that the sensitivity of the overall test sequence can 
be expressed in terms of the sensitivity of the first test 
result and the conditional sensitivity of the second test 
result given the first. If the unconditional and conditional 
diagnostic performance parameters of all tests in the 
sequence are known, an optimisation search can be per-
formed to identify the thresholds that achieve a specified 
target diagnostic performance of the full sequence [41].

Combining more than two index tests
These ideas can be extended to situations in which 
more than two index tests are available. Even when test 
results are binary, the number of possible test combina-
tions and test sequences increases exponentially with the 
number of tests, and most of these combinations cannot 
be expressed as simple OR or AND rules. Some named 
general rules suitable for more than two tests include 
the ‘majority’ rule (in which a positive diagnosis is made 
if more than half of the individual test results in the 
sequence are positive) and the ‘unanimity’ rule (a gener-
alisation of the AND rule in which a positive diagnosis 
is made only if every test result in the sequence is posi-
tive) [39, 42]. If there are many index tests, selecting an 
optimal combination can be viewed as an optimisation 
problem akin to the combinatorial ‘knapsack problem’, 
well-known in operations research [43], although this 
fails to allow for sampling variability in the index tests 
[44, 45].

If suitable data are available for modelling, methods 
for combining multiple tests can be generalised to con-
tinuous time, for example by monitoring whether a 
longitudinally-modelled biomarker exceeds a (possibly 
time-varying) threshold for disease positivity at any point 
during follow-up [46].

Some methods assume that a mechanism for defining 
the diagnostic decision from a sequence of index tests has 
been pre-defined. These methods often also assume that 
the performance of the individual index tests, and the 
conditional correlation between them, are known. This 
can inform decisions about, for example, the choice of 
the number of repeated screening tests [47], or the opti-
mal ordering of tests to minimise costs while controlling 
specified rates of misdiagnosis [42]. With similar objec-
tives, a ‘probability-modifying plot’ has been proposed to 
illustrate graphically how the conditional probability of 
disease changes after index test results are added sequen-
tially [48].

Creating a new rule for combining results from a test 
sequence  In the situation when a mechanism for defin-
ing the diagnostic decision from a sequence of index tests 
has not been pre-defined, existing multiple variable anal-
ysis methods have been adopted. These methods include 
logistic regression (which is suitable for both binary and 
continuous index tests), discriminant analysis and ‘dis-
tribution-free’ methods that are based on maximising 
quantities such as the Mann-Whitney U-statistic esti-
mator of the area under the ROC curve [49, 50]. In their 
usual form, these methods are generally only applicable 
if results are available for index tests on all participants.

Estimating conditional dependence between index tests 
performed in sequence, and conditional testing
In contrast with the previous section, scenarios often 
arise in which not all diagnostic tests forming the test 
sequence are performed on all participants. Typically, the 
decision to perform subsequent tests may depend on the 
test results seen so far (‘conditional testing’). In these sce-
narios, estimating the dependence between index tests 
results, conditional on true disease status, becomes more 
important, as this affects the diagnostic performance of 
the sequence as a whole. This section outlines general 
principles that are illustrated in the later case study.

Formulating a test sequence with known parame‑
ters  Hershey et  al. were among the first to consider a 
mathematical formulation of diagnostic test sequences 
and their effect on clinical utility (i.e. a quantifiable 
impact on health outcomes) [17, 51]. They did this by 
deriving algebraic expressions for the clinical utility of 
test sequences allowing for the possibility of conditional 



Page 6 of 17Fanshawe et al. Diagnostic and Prognostic Research             (2024) 8:8 

testing, and considering changes in the ordering of tests 
within the sequence. This is the scenario illustrated in 
Fig. 1. These expressions allow the utility of different diag-
nostic testing strategies to be compared. Their approach 
assumes that all relevant parameters are already known 
- not only the disease prevalence and the diagnostic per-
formance estimates, but also the conditional dependence 
between test results and measures of clinical utility. Their 
results suggest that these parameters in combination dic-
tate the optimal diagnostic test sequence, and that this is 
context-specific, to the extent that for some parameter 
combinations, additional diagnostic testing may be det-
rimental to the overall performance of the sequence [51].

Levy and Kass derived maximum likelihood estima-
tors for disease prevalence and test specificity, assuming 
known test sensitivity, in a conditional testing sequence 
with three stages, with further testing performed only on 
those who tested positive at a given stage, in the context 
of screening for bacteriuria [52].

Parameter estimation in the presence of conditional test‑
ing  Estimators of diagnostic performance that are 
derived from a study that uses conditional testing, but 
do not account for the conditional testing, are in general 
biased, with the size of the bias depending on several fac-
tors, including the disease prevalence and the conditional 
dependence between the index test results. This has been 
demonstrated both theoretically [27, 53] and empirically 
through simulation studies [54].

For this reason, methods have been developed to test 
for the presence of conditional dependence between 
index tests within a test sequence. One such method 
for binary test results is a likelihood-based test of the 
hypothesis that the conditional correlation parameter 
ρ+ = 0 (and/or ρ− = 0 ) [55]. The level of conditional 
dependence between different index tests has been pro-
posed as a way of deciding an ordering of them as a test 
sequence through the repeated use of Bayes’s theorem 
[56]. This idea has been developed further using Bayes-
ian network methodology to model the interdependence 
between several index tests and a reference standard [57].

One approach to modelling data from a test sequence 
while allowing for conditional dependence between test 
results models the data as a realisation of a multinomial 
distribution whose parameters are determined by the 
outcome prevalence π and the sensitivities and specifici-
ties of the test sequence (see Appendix for expression of 
likelihood function) [58]. In some cases it may be possi-
ble to estimate the required conditional probability terms 
from the available data, but this model can also be used 

when reference standard information is not available or is 
incomplete, so is described further in the section Analys-
ing test sequences in conjunction with an imperfect or 
incomplete reference standard.

The conditional dependence can also be conceptualised 
by regarding a binary test result as being derived from 
a measure exceeding a particular positivity value c on 
an underlying, or latent, continuous trait scale U. Here 
the conditional dependence is governed by the correla-
tion parameters on this latent scale [59]. In this case, the 
expressions Cov(X1,X2|U ≥ c) and Cov(X1,X2|U < c) 
provide the conditional covariances between the index 
tests, given the true diagnosis and the positivity thresh-
old, which can in turn be used to derived the analogues 
of the conditional correlations ρ+ and ρ− . Assuming a 
distributional form for U, with a particular measurement 
error variance, induces a conditional correlation between 
the index test results even if these measurement errors 
are themselves independent [59].

These ideas can be extended to two latent variables, 
U1 and U2 , linked to X1 and X2 respectively, by inducing 
a correlation between X1 and X2 via specifying a copula 
function - a joint distribution function whose univariate 
marginal distribution functions are the distribution func-
tions of U1 and U2 [60]. In most scenarios, this model is 
not identifiable, and so parameters must either be speci-
fied in advance or assigned informative priors, and the 
copula approach has not gained widespread adoption 
ahead of other latent variable methods or methods in 
which dependence between index tests is specified or 
estimated directly.

Sequences of diagnostic tests used for risk assessment
A particular form of conditional sequential testing may 
arise when assessing the risk of future ill health. For 
example, such a sequence may occur when adults are 
routinely screened for raised blood pressure, or when 
patients with diabetes are monitored to assess their risk 
of developing sight-threatening retinopathy.

Although conceptually similar to sequential testing for 
other purposes, test sequences for risk assessment may 
differ in at least two respects. Firstly, the criteria for pro-
gression may differ in that high sensitivity during early 
phases is often desirable [61]. Secondly, many screen-
ing and monitoring strategies allow for the possibility of 
repeated testing using the same diagnostic test, whether 
as part of a conditional sequence of tests or because 
check-ups are routinely performed at intervals over 
time [62]. The testing patterns used in risk assessment 
may therefore differ from those used in other diagnostic 
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settings, and consequently alternative methods have been 
developed with these considerations in mind.

Developing a diagnostic strategy from multiple repeated 
test results  The particular scenario in which all individ-
uals are screened on n occasions, and a screen-positive 
result is declared if they test positive on at least k occa-
sions, has been examined in two related papers by Lau 
[63, 64], following much earlier work by Nissen-Meyer 
[65]. In these papers, it is assumed that estimates of diag-
nostic performance of a single test are known, and the 
objective is to determine values of n and k such that the 
performance of the test sequence meets a given crite-
rion, such as a particular false positive and false negative 
detection rate, as shown in Fig. 2.

This procedure is first developed for sequences in 
which test results in an individual are considered con-
ditionally independent [63], and then, via canonical 
moments, for sequences that allow for dependence 
between results [64]. Similarly, methods for estimat-
ing the probability that a false positive diagnostic test 
result will occur at some stage within a sequence of test 
results have been developed both assuming non-condi-
tional testing [62] and assuming conditional testing [66]. 
Sequences in which participants receive further tests 
only if they have received positive results at the previ-
ous stage can be modelled using conditional multinomial 
distributions [67], and this approach has been extended 
to allow for heterogeneity across population subgroups 
using participant-level covariates [68].

If the index test is based on a continuous measure-
ment, the shape of the ROC curve of the test sequence 
can be modelled as a function of the between-test corre-
lation and the number of tests performed per participant, 

which may be conditional on the test result. The appar-
ent diagnostic performance of the sequence is affected if 
these factors are not accounted for [69].

Decision‑theoretic methods  Decision-theoretic meth-
ods, based on cost criteria, have been developed for 
the optimal interpretation of the results of a screen-
ing sequence in the case n = 2 using a Bayesian frame-
work [70], and for optimising the choice of k [71]. These 
methods are perhaps more suitable for sequences in 
which the same test is performed on more than one 
occasion, but they can also be applied to sequences 
in which different index tests are used within the 
sequence, provided the diagnostic performance of each 
test is known.

More general questions of how a risk assessment pro-
gramme should be organised, considering factors such as 
the optimal scheduling of tests, or replacing one screen-
ing test with another, are beyond the scope of this article 
but have been examined from a methodological perspec-
tive elsewhere [72, 73].

Analysing test sequences in conjunction with an imperfect 
or incomplete reference standard
A common problem in the analysis of sequences of diag-
nostic tests, especially those that incorporate conditional 
testing, is misclassification of test results by the reference 
standard. This may arise either if all subjects receive the 
reference standard but some are diagnosed incorrectly 
(usually termed an ‘imperfect’ reference standard), or if 
some or all subjects do not undergo the reference stand-
ard test. The last of these situations is often called ‘partial 
verification’.

Fig. 2  Illustration of screening sequence with n = 4 and k = 3 . In this example, it is assumed that the ordering of test results within each diagnostic 
sequence does not affect the diagnostic decision
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This topic is not specific to evaluating test sequences, 
and reviews of methods to allow for imperfect reference 
standards [74], missing reference standards [75] and par-
tial verification [76] have been published previously. Nev-
ertheless, it often arises in sequential test scenarios and 
the use of a reference standard is sometimes itself condi-
tional on index test results, for example in screening pro-
grammes in which individuals testing positive initially are 
more likely to undergo subsequent confirmatory testing 
than those whose initial test result was negative (Fig. 3) 
[77–79]. Unadjusted estimates of diagnostic accuracy are 
biased when there is incomplete disease status ascertain-
ment [53], and adjusted maximum likelihood estimators 
have been derived [80]. Methods relating to the role of 
imperfect or partial verification that are likely to be of 
most use in analysing test sequences are summarised 
here.

The multinomial latent variable model for reference 
standard adjustment  Some methods that attempt to 
allow for both between-test dependence and an imper-
fect or missing reference standard are based on the 
multinomial model. This model can be parameterised 
in various ways to capture the between-test correlation. 
One suggested parameterisation arises from the obser-
vation that joint probabilities of test results, such as the 
expression for the sensitivity of the AND rule, can be re-
expressed using conditional covariance parameters (see 
Appendix for equation). The values of these covariance 
parameters are constrained within a particular range 
given the diagnostic performance of each index test, and 

this can be used to obtain upper and lower bounds for 
diagnostic accuracy estimates if there is an imperfect ref-
erence standard [28, 81].

This parameterisation was introduced by Vacek [28] 
and has been used frequently since [26, 58, 82–85]. In a 
Bayesian framework, the choice of parameterisation can 
be guided by the ability to specify plausible priors for the 
parameters. This is important as the fully-parameterised 
model is not identifiable, and so some of the parameters 
require either fixing deterministically or being assigned 
an informative prior [58]. The model has been extended 
to allow individual-level covariates to be incorporated 
[82, 83] and adapted for the specific scenario of multi-
stage diagnosis to allow combined diagnostic criteria to 
be compared with those based on a single test [86]. The 
approach of Vacek, which is suitable for two index tests, 
has been generalised to allow for multiple (three or more) 
index tests [85]. If multiple index tests are separated in 
time, as might often occur in sequential diagnostic test-
ing, the covariance between them can additionally be 
modelled as a function of the time between them [87].

An alternative formulation allows the conditional 
dependence between test results to be modelled in terms 
of individual-level random effects, which have been 
interpreted as a latent measure of disease ‘intensity’ [26, 
88]. The individual-level random effect induces a corre-
lation between tests performed on the same individual 
without needing to specify separate covariance param-
eters. Again, inference will often require the specification 

Fig. 3  Illustration of screening sequence that is typical of partial verification. In this case, only individuals who test positive on one of the two index 
tests receive the reference standard test
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of informative priors. A comparative study of several 
latent variable methods for modelling the joint depend-
ence between index tests has been performed [89].

Latent class models for a missing reference stand‑
ard  Latent class models may be attractive in situations 
when the reference standard is entirely missing. In this 
case, the latent variable U is a measure of true disease 
status, which may also be modelled on the continuous 
scale (for example, as an unobserved N(0, 1) variable), 
and diagnostic accuracy parameters are expressed con-
ditional on U. With suitable constraints on parameters, 
estimation may use either the EM algorithm [90] or a 
Bayesian framework [91]. In its basic form, this model 
does not account for the ordering or timing of the test 
results that might occur as part of a test sequence; one 
way of extending it is to replace U with a latent process 
that evolves over time, such as via a Markov process 
[92]. Latent variable methods have been described both 
assuming conditional independence between index tests 
[93] and more generally, relaxing this assumption [94].

Because of identifiability concerns, latent variable 
models may be especially useful in cases where there 
are many index test results, including cases when there 
is multiple rater assessment using a large number of 
raters [95, 96]. One constraint has been described as a 
‘rule of three’, by which identifiability is assured in the 
sequential testing case provided at least three index test 
results are observed on each participant [97], and more 
general identifiability issues are discussed in detail else-
where [98].

Although latent variable models have been used most 
often in the diagnostic test literature for binary index test 
results, a similar model can be used if index tests give a 
continuous measurement [99]. Continuous index tests 
can also be modelled as arising from a mixture distribu-
tion, governed by separate parameters for disease-pos-
itive and disease-negative individuals, even if the true 
disease status is unknown (under weak assumptions), and 
the results of this model have been used to try to con-
struct an optimal sequence of index tests [100].

Partial verification  Various methods have been pro-
posed to analyse test sequences in conjunction with 
partial verification, dictated by the nature of the data 
available. The common challenge that underpins these 
methods is the non-identifiability of standard models 
that is caused by incomplete reference standard data. For 
example, in a study in which disease verification is only 
available for participants who test positive for either of 
two index tests, two of the eight cells of the 2x2x2 results 

table would be unobserved (sometimes called a ‘struc-
tural zero’), the negative predictive value of the OR rule 
could not be estimated directly, and models that implic-
itly or explicitly contain parameters that correspond to 
related statistics would not be identifiable.

One solution is to impose constraints over some of the 
parameters governing the multinomial model. Two such 
‘capture-recapture’ estimators have been termed ‘homo-
geneous dependence’ ( P(X1 = 1|X2 = 1)/P(X1 = 1) is 
constant irrespective of T) and ‘homogeneous odds ratio’ 
(the odds ratio of two index test results is constant irre-
spective of T) [101]. These constraints are extended to 
‘homogeneous relative risk’, ‘homogeneous gamma’ and 
‘homogeneous Kappa coefficient’, all similarly defined 
in terms of other common measures of association [79]. 
Direct estimators for the rate ratio have also been consid-
ered [102].

Meta‑analysis
Methods for performing meta-analysis of diagnostic 
accuracy data in the case of single index tests are widely 
used [103]. Less attention has been paid to the meta-anal-
ysis of diagnostic test sequences, except in the scenario in 
which a test sequence can be regarded as comprising a 
single index test in its own right, in which case standard 
methods can be used, provided all individuals in all con-
tributing studies have undergone each of the index tests 
that constitute the test sequence.

An exception is the pair of papers by Novielli et al., who 
performed a meta-analysis of two index tests (D-dimer 
and Wells score) performed in combination [104, 105]. 
In some of the contributing studies, a conditional testing 
format occurred, by which test implementation depended 
on a previous test result, and so index test results for 
some participants were incomplete. The authors imple-
mented a meta-analytic model that allows for a variety 
of data types, reflecting different study designs, which 
contain parameters that allow for conditional depend-
ence between test results as well as dependence between 
sensitivity and specificity for each index test [104]. They 
also showed that cost-effectiveness considerations were 
affected by the strength of the dependence between index 
test results, which suggests that allowing for this depend-
ence is an important consideration in future evidence 
syntheses of similar types of test sequence [105]. These 
methods remain under-used and may be easier to imple-
ment in individual patient data meta-analysis than in 
aggregate-level data meta-analysis [106], although recent 
methodological developments have included a proposed 
network meta-analytic model for multiple diagnostic 
tests [107].
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Health‑economic models  Implications for health-eco-
nomic models, which often rely on estimates of test per-
formance from meta-analysis as input parameters to the 
model, are discussed in a recent review [5]. A common 
challenge, as noted in the section Estimating conditional 
dependence between index tests performed in sequence, 
and conditional testing, is obtaining an estimate of the 
conditional correlation parameters (or the correspond-
ing covariance parameters): these are unavailable if the 
meta-analysis relies on data from index tests that have 
been performed separately in different studies, and may 
not always be reported even in primary studies where 
each index test of the sequence is evaluated in the same 
population. In these situations, it is recommended to 
check the extent to which the overall performance of 
the test sequence is affected by the values of the covari-
ance parameters, inside the range within which they 
are constrained to lie, as we illustrate in the subsequent 
example.

Example: repeat faecal immunochemical testing
The FIT (Faecal Immunochemical Test) detects the 
degradation products of human haemoglobin in faeces 
(faecal occult blood). Patients with a positive FIT result 
detected during the investigations of symptoms or dur-
ing asymptomatic screening are referred for further 
investigation by colonoscopy. The Oxford FIT study 
is a retrospective cohort study included consecutive 
FIT samples sent to Oxford University Hospitals Trust 
clinical biochemistry laboratory from primary care for 
symptomatic adults (age ≥ 18 years) between March 
2017 and March 2020 [108]. The data are shown in 
Table 2. Here, a positive index test result is defined as 
a FIT result exceeding a threshold of 10µ g Hb/g faeces. 
Reference test results for a diagnosis of colorectal can-
cer were obtained from linked hospital data reflecting a 
composite of laboratory, endoscopy and histopathology 
records.

Analytic strategy
We can use the results of the previous sections and 
Table  1 to guide the analytic strategy for this dataset. 
Since we will often want to determine the diagnostic 
accuracy for a sequence of tests, but will only be in pos-
session of data from a single test, we start by showing 
how the accuracy of a sequence of tests could be esti-
mated by making certain assumptions about the inter-
dependence between them, acting initially as though we 
only have reference standard data, and index test data 
from the first time point (Estimating conditional depend-
ence between index tests performed in sequence, and 
conditional testing section). We will then use the full 
dataset, which also uses index test data from the second 
time point, to illustrate the performance of the OR rule 
for combining two index test results (Combining two 
index tests section). In this scenario, the reference stand-
ard is likely to misclassify some individuals, making this 
dataset suitable for analysis using latent variable methods 
to adjust for imperfect reference standard bias (Analys-
ing test sequences in conjunction with an imperfect or 
incomplete reference standard section), which allows 
us to assess the impact of this compared with the unad-
justed results.

Estimating the accuracy of a sequence of tests using data 
from a single test
For illustration we use data from only the first, third and 
fourth columns of Table  2 in this section. Based on the 
first FIT, 9 out of 10 colorectal cancer cases and 129 out 
of 1299 individuals without cancer received a positive 
FIT result, giving estimates (95% confidence interval, 
CI) of 0.900 (0.555 to 0.997) for the sensitivity and 0.901 
(0.883 to 0.916) for the specificity.

To estimate the diagnostic performance of a repeat FIT 
in combination with the first FIT, the simplest assump-
tion is that the tests are conditionally independent, given 
true disease status. More plausible estimates could be 
obtained by assuming the tests are positively correlated. 
In the absence of data on the correlation, we think it sen-
sible to try a range of correlations corresponding to low, 
moderate and high levels of dependence. Assuming that 
repeated measurements are conditionally independ-
ent ( ρ+ = ρ− = 0 ), the sensitivity and specificity of a 
sequence of two FITs using the OR rule (equation 1) are:

with 95% CIs 0.643 to 0.995 for the sensitivity and 0.789 
to 0.832 for the specificity, calculated using the Wilson-
score interval method [109]. Table 3 shows the estimated 
sensitivity and specificity under independence, and three 

SeX1∨X2 = 0.900+ (1− 0.900)× 0.900− 0 = 0.990

SpX1∨X2 = 0.901× 0.901+ 0 = 0.811

Table 2  Repeat faecal immunochemical testing data

First FIT result Second FIT 
result

Reference standard 
result

Number of 
participants

+ + + 8

+ + − 63

+ − + 1

+ − − 66

− + + 0

− + − 48

− − + 1

− − − 1122
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scenarios relating to low, moderate and high levels of 
positive correlation between tests.

This illustrates the results presented in  the sec-
tion  Combining two index tests and the Appendix: for 
the OR rule, the dependence between the tests induces 
a decrease in the sensitivity and an increase in the speci-
ficity of the test sequence, compared to the case where 
independence is assumed.

Direct estimation from a sequence of test results
Having access to repeat FIT results in a subset of patients 
allows us to estimate the sensitivity and specificity for dif-
ferent decision rules directly, and also allows us to quan-
tify the dependency between repeat tests. Of the nine 
reference standard-positive cases that had a positive FIT 
on the first test, eight were again positive on the second 
test. The one false negative on the first test was also nega-
tive on the second test (Table 2).

The estimated sensitivity of the OR rule is therefore 
9/10 = 0.900 with 95% confidence interval 0.596 to 0.982. 
The observed correlation between these repeat FIT in 
patients with cancer was estimated to be ρ+ = 0.667 . 
Of the 1299 patients without cancer, 1122 were negative 
on both tests (Table 2) so the specificity of the OR rule 
is estimated to be 1122/1299 = 0.864 , with 95% confi-
dence interval 0.844 to 0.881. The correlation between 
repeat FIT in the non-cancer patients was estimated to 
be ρ− = 0.479 , lower than the correlation between repeat 
tests in patients with cancer.

Choosing the optimal strategy
As discussed in  the section  Combining two index tests, 
choosing the optimal strategy will often involve a trade-
off between sensitivity and specificity, and careful con-
sideration of both the prevalence of the condition and 
the consequences of the false-positive and false-negative 
decisions. In this context, the desire to avoid false nega-
tive diagnoses suggests that OR rule is likely to be more 
appropriate than the AND rule, as the latter cannot 
increase the sensitivity compared to using a single test.

Repeating the FIT and using an OR rule could improve 
the sensitivity over and above a single FIT but it would 
be at the expense of the specificity. The empirical analysis 
suggests that the repeat strategy would increase the num-
ber of false positives by 48/1299 or ∼ 37 per 1000 (3.7%). 
For sensitivity, the approach based on single test data and 
assuming a moderate correlation ( ρ+ = 0.5 ) appeared to 
indicate that sensitivity could hypothetically be increased 
from 0.900 for a single test to 0.945 using a repeat strat-
egy. This corresponds to one fewer false negative per 
2250 patients investigated with FIT (assuming a simi-
lar prevalence). The empirical analysis did not show any 
change in sensitivity, but due to the low number of cases 
in this data set ( n = 10 ) there is considerable uncertainty 
around these estimates. Similar to the challenges of esti-
mating single test diagnostic accuracy in low prevalence 
settings [110], obtaining precise estimates of the sensitiv-
ity of sequential test strategies can be challenging empiri-
cally. Further, the hypothetical approach assumes no 
change in disease status or in test performance over time, 
and this assumption may not always hold.

Adjusting for imperfect reference standard bias
In this scenario we have complete but imperfect reference 
standard verification, and so can use Bayesian latent vari-
able methods as described in  the section  Analysing test 
sequences in conjunction with an imperfect or incomplete 
reference standard, where the latent variable represents 
the true colorectal cancer status T. We follow the param-
eterisation adopted by other authors [26, 28, 88].

Generally, the latent variable model might include a 
disease prevalence parameter, sensitivity and specific-
ity parameters for both index tests and the reference 
test, and two conditional covariance parameters for 
each pair of index and/or reference tests. As there are 
only eight possible combinations of index/reference test 
results, the full parameterisation would make the model 
non-identifiable.

We therefore assume that the two uses of the index test 
share the same sensitivity parameter and share the same 
specificity parameter, since this is the same test used 
twice rather than two different index tests. For the same 
reason, we allow two conditional covariance parameters 
(conditional on disease-positive and disease-negative 
cases, respectively) to model the association between the 
two index test results, but assume that the reference test 
result is independent of the index test result, given true 
disease status.

As reference standard records of a cancer diagno-
sis are unlikely to be false positives, we assume that the 
reference standard has 100% specificity and high (but 
sub-100%) sensitivity. The full specification of the mul-
tinomial model, and prior distributions for the reference 

Table 3  Estimates of sensitivity and specificity of the OR 
decision rule for a sequence of two tests under four different 
scenarios corresponding to no, low, moderate and high 
correlation between tests

Assumed correlation Sensitivity (SeX1∨X2
) Specificity 

( SpX1∨X2
)

ρ+ = ρ− = 0 0.990 0.811

ρ+ = ρ− = 0.25 0.968 0.834

ρ+ = ρ− = 0.50 0.945 0.856

ρ+ = ρ− = 0.75 0.922 0.878
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standard sensitivity and the other parameters, are 
described in full in Supplementary Material.

Table 4 and Fig. 4 shows parameter estimates from the 
latent variable model. Compared to the results from the 
previous sections, in this example adjusting for imperfect 
reference standard bias in conjunction with modelling 
the conditional dependence between index test results 
tends to reduce the estimated sensitivity of the diagnostic 

test, while having a lesser effect on its estimated specific-
ity. These results are illustrative and are influenced by the 
reference standard priors.

Discussion
This paper has presented a methodological review of sta-
tistical methods that can be used to analyse data from 
studies of the accuracy of diagnostic tests performed in 
sequence. Our aim in writing this paper was to guide 
analysts towards the class of methods that are likely to 
be of most benefit when deciding on a suitable analytic 
strategy for data of this type. We have classified meth-
ods by the purpose for which they are most likely to be 
used, resulting in the five groupings of methods we have 
described.

Methodological research in this field lacks a com-
mon vocabulary, which made the literature search chal-
lenging and a fully systematic search implausible. Even 
the term ‘sequential testing’ is easily confused with 
the separate practice of performing repeated statisti-
cal hypothesis testing such as might be used in adap-
tive clinical trials. In writing our review we have tried 
to draw attention to terminology that has been used 
interchangeably, in the hope that this will help other 

Table 4  Parameter estimates from latent variable model 
adjusting for imperfect reference standard bias

Parameter Median of posterior 
distribution (95% credible 
interval)

Sensitivity of FIT 0.817 (0.565, 0.959)

Specificity of FIT 0.907 (0.893, 0.920)

Sensitivity of OR rule 0.890 (0.658, 0.987)

Specificity of OR rule 0.864 (0.844, 0.882)

Sensitivity of reference standard 0.955 (0.895, 0.986)

ρ+ 0.562 (0.071, 0.925)

ρ− 0.477 (0.395, 0.560)

Prevalence (π) 0.00860 (0.00431, 0.0148)

Fig. 4  Posterior distributions for selected parameters, from latent variable model adjusting for imperfect reference standard bias
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researchers to navigate the relevant research literature, 
and propose the term ‘sequential diagnostic testing’ as 
the most appropriate descriptor.

Another characteristic of work in this field is the 
tendency for analytical requirements to span differ-
ent methodological areas. For example, studies from 
screening programmes might require an assessment of 
the diagnostic accuracy, number and order of several 
screening tests in combination, while simultaneously 
making allowance for a reference test that is only par-
tially performed and may itself be imperfect. The fre-
quency of designs of this type may explain why many 
papers related to sequential diagnostic tests also seek 
to address reference standard classification issues, even 
though the latter may be regarded as a separate meth-
odological area in its own right. Understandably, many 
methodological developments have been made with 
the idiosyncrasies of a particular study application in 
mind, which presents a challenge when trying to iden-
tify commonalities between methods and in providing 
general methodological recommendations. For this 
reasons, the groupings of methods that we have identi-
fied should not be interpreted in isolation, but rather 
in conjunction with one another. Likewise, our review 
complements other methodological reviews in related 
areas [74–76, 111].

Many of the methods identified aim to address what 
might be described as a missing data problem - whether 
because of conditional index testing, partial verifica-
tion, an imperfect reference standard, or a combination 
of these. Some of the methods in common use, such as 
latent variable methods, reflect this. It should be empha-
sised though that there is ‘no free lunch’ when imple-
menting these methods: in diagnostic studies, there is 
often a low limit to the number of parameters that can 
be estimated without making simplifying assumptions, 
no matter how complex the method appears to be. For 
this reason, methods that aim to synthesise information 
from multiple studies are likely to be of value in future 
research.

Our case study highlights the importance of allow-
ing for conditional dependence between diagnostic tests 
when they are used as part of a sequence. This issue is of 
particular importance when testing diagnostic pathways 
for which there is limited data about the relevant depend-
ence parameters [4, 5, 22]. Analysts should therefore be 
aware that model outputs should provide this informa-
tion, or that data should be presented in a suitable way to 
calculate them directly. In simpler examples, this might 
require no more than to present multidimensional con-
tingency tables that cross-tabulate index test and refer-
ence test results. This requirement is likely to grow in 
importance as meta-analytic methods develop.

Our paper has some limitations. As we did not intend 
the review to be fully systematic, it is possible that some 
relevant papers were not captured by our search strat-
egy. The overlap between methodological concepts 
means that it has not been possible to provide a tool, 
such as a flowchart, which might more clearly signpost 
the preferred method for a given design, although the 
supplementary table may be used as a guide to the key 
methodological issues to be considered. An appropriate 
choice of method is likely to be highly context-depend-
ent, and our paper may act as a reference to help locate 
where the most useful previous publications are likely to 
be found.

Except for the case study described, the review has 
not provided details of computational routines, which 
are burdensome for many of the more advanced meth-
ods described, or of software implementation. We found 
that, despite their complexity, only a small number of the 
suggested methods have user-friendly software routines 
available, and we suggest that the provision of software 
should also be a priority for improving access to existing 
methods.

Conclusion
Our review has described a variety of methodological 
approaches for sequential diagnostic testing. We have 
outlined five themes that link these methods, depending 
on the objectives at hand, and suggest that these be used 
as a way to guide future methodological development in 
this field.

Appendix
Notation and additional formulae
In a population with disease prevalence π , we write the 
true disease status Ti for individual i as Ti = 1 for dis-
ease positives, and Ti = 0 for disease negatives. Let X1i 
denote the outcome of the first test for individual i, such 
as in Fig.  1, and X2i denote the outcome of the second 
test, although for simplicity we suppress the i subscripts 
below.

Following the notation of Thompson [41], we define 
X1 ∧ X2 as ( X1 = 1 and X2 = 1 ), and X1 ∨ X2 as ( X1 = 1 
or X2 = 1 ). Therefore, X1 ∧ X2 produces a positive diag-
nosis if and only if X1 and X2 are both positive, while 
X1 ∨ X2 produces a positive diagnosis if at least one of X1 
and X2 is positive. We use Se(·) and Sp(·) for the sensitiv-
ity and specificity, respectively, for a test or combination 
of tests, and PPV(·) and NPV(·) for the positive and nega-
tive predictive values. The symbol ¬ represents negation.

The conditional correlations between two index test 
results given positive and negative disease status, are 
respectively defined as
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and

The OR rule has sensitivity

and specificity

while the AND rule has sensitivity

and specificity

It can further be shown that:

The expressions for Se(X1 ∨ X2) and Sp(X1 ∨ X2) can 
be written in terms of the phi coefficient for measuring 
association [29]:

where

and

where

Here, ρ+ and ρ− (as defined previously) are equivalent to the 
measure sometimes known as the phi coefficient for measur-
ing association between binary variables, calculated among 
disease positive and disease negative cases respectively [25].

The likelihood function referred to in the Results “Esti-
mating conditional dependence between index tests per-
formed in sequence, and conditional testing” section, for 

ρ+ = Corr(X1,X2|T = 1)

ρ− = Corr(X1,X2|T = 0).

Se(X1 ∨ X2) = P(¬(X1 = 0,X2 = 0)|T = 1)

= 1− P((X1 = 0,X2 = 0)|T = 1)

= 1− P(X2 = 0|X1 = 0,T = 1)(1− Se(X1))

Sp(X1 ∨ X2) = P(X1 = 0,X2 = 0|T = 0)

= P(X2 = 0|X1 = 0,T = 0)Sp(X1)

Se(X1 ∧ X2) = P(X1 = 1,X2 = 1|T = 1)

= P(X2 = 1|X1 = 1,T = 1)Se(X1)

Sp(X1 ∧ X2) = P(¬(X1 = 1,X2 = 1)|T = 0)

= 1− P(X2 = 1|X1 = 1,T = 0)(1− Sp(X1)).

Se(X1 ∨ X2) ≥ max{Se(X1), Se(X2)}

Sp(X1 ∨ X2) ≤ min{Sp(X1), Sp(X2)}

Se(X1 ∧ X2) ≤ min{Se(X1), Se(X2)}

Sp(X1 ∧ X2) ≥ max{Sp(X1), Sp(X2)}.

(1)
Se(X1 ∨ X2) = Se(X1)+ (1− Se(X1))Se(X2)− τ+

τ+ = ρ+[Se(X1)Se(X2)(1− Se(X1))(1− Se(X2))]
0.5,

Sp(X1 ∨ X2) = Sp(X1)Sp(X2)+ τ−

τ− = ρ+[Sp(X1)Sp(X2)(1− Sp(X1))(1− Sp(X2))]
0.5.

modelling test sequence data as a realisation of a multi-
nomial distribution with prevalence π , in the case of two 
binary tests, is

where the xij are the observed number of individuals for 
each possible combination of index test results [58].

The reparameterisation of the multinomial model 
referred to in  the Results “Analysing test sequences in 
conjunction with an imperfect or incomplete reference 
standard” section uses terms of the form

similarly to equation (1). Here c1 = Cov(X1,X2|T = 1) 
is a conditional covariance term, given the true disease 
status is positive, and that the joint probability terms for 
other possible index test result pairs can be expressed 
similarly in terms of either c1 or c0 = Cov(X1,X2|T = 0).
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