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Abstract 

Background Random forests have become popular for clinical risk prediction modeling. In a case study on pre-
dicting ovarian malignancy, we observed training AUCs close to 1. Although this suggests overfitting, performance 
was competitive on test data. We aimed to understand the behavior of random forests for probability estimation 
by (1) visualizing data space in three real-world case studies and (2) a simulation study.

Methods For the case studies, multinomial risk estimates were visualized using heatmaps in a 2-dimensional sub-
space. The simulation study included 48 logistic data-generating mechanisms (DGM), varying the predictor distribu-
tion, the number of predictors, the correlation between predictors, the true AUC, and the strength of true predictors. 
For each DGM, 1000 training datasets of size 200 or 4000 with binary outcomes were simulated, and random forest 
models were trained with minimum node size 2 or 20 using the ranger R package, resulting in 192 scenarios in total. 
Model performance was evaluated on large test datasets (N = 100,000).

Results The visualizations suggested that the model learned “spikes of probability” around events in the training 
set. A cluster of events created a bigger peak or plateau (signal), isolated events local peaks (noise). In the simulation 
study, median training AUCs were between 0.97 and 1 unless there were 4 binary predictors or 16 binary predictors 
with a minimum node size of 20. The median discrimination loss, i.e., the difference between the median test AUC 
and the true AUC, was 0.025 (range 0.00 to 0.13). Median training AUCs had Spearman correlations of around 0.70 
with discrimination loss. Median test AUCs were higher with higher events per variable, higher minimum node size, 
and binary predictors. Median training calibration slopes were always above 1 and were not correlated with median 
test slopes across scenarios (Spearman correlation − 0.11). Median test slopes were higher with higher true AUC, 
higher minimum node size, and higher sample size.

Conclusions Random forests learn local probability peaks that often yield near perfect training AUCs with-
out strongly affecting AUCs on test data. When the aim is probability estimation, the simulation results go 
against the common recommendation to use fully grown trees in random forest models.
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Background
Random Forests (RF) is an ensemble learning method 
introduced by Leo Breiman in 2001 [1]. The difference 
between RF and other tree ensemble methods such as 
bagging or boosting is that the trees in RF are independ-
ent. A bootstrap sample is selected at each tree and  at 
each node of each tree a random subset of predictors is 
considered for the best split. This reduces the correlation 
between trees.

RF is used across a variety of clinical problems [2] and 
in recent years it has become very popular for clinical 
prediction modeling [3–6]. Its popularity has risen due 
to its good reported performance in applied studies, 
and its claimed robustness against overfitting in com-
bination with the limited need for hyperparameter tun-
ing [7]. It has been reported that RF models have better 
performance when the individual trees in the ensemble 
are overfitted [8–10]. Although RF has been widely inves-
tigated as a “classifier”, the literature about their perfor-
mance as probability estimation trees (PET) is scarce.

In a recent study of women with an ovarian tumor, we 
compared the performance of different machine learn-
ing algorithms to estimate the probability of five tumor 
types (benign, borderline malignant, stage I primary 
invasive, stage II–IV primary invasive, and second-
ary metastatic) [11]. We developed prediction models 
on training data (n = 5909) using multinomial logistic 
regression (MLR), ridge multinomial logistic regres-
sion, RF, XGBoost, neural networks, and support vector 
machines with Gaussian kernel. We evaluated discrimi-
nation performance using the Polytomous Discrimina-
tion Index (PDI) as a multiclass area under the receiver 
operating characteristic curve (AUC) [12, 13]. The PDI 
is the probability that, when presented with a random 
patient from each category, the model can correctly 
identify the patient from a randomly selected category. 
With five outcome categories, the PDI is 1/5 for an 
uninformative or random model and 1 for a model with 
perfect discrimination. We observed that RF had near-
perfect discrimination on the training data (PDI 0.93 
for RF vs 0.47–0.70 for other models), and was com-
petitive on the external validation data (PDI 0.54 for RF 
vs 0.41–0.55 for other models; n = 3199) (Table S1). The 
observation that the RF model had near-perfect (i.e., 
highly suspicious) discrimination on training data, yet 
performed competitively during external validation, 
may be somewhat counterintuitive. Such high training 
set performance suggests strong overfitting by mod-
eling considerable amounts of noise, which would lead 
to reduced performance on new data [14, 15]. This was 
an interesting observation for us: the training results 
suggest a suspiciously high degree of overfitting by RF 
compared to other models, such that we would have 

expected a stronger reduction in performance on new 
data for RF. In this study, we aimed to understand the 
behavior of random forests for probability estimation 
by (1) visualizing data space in three real world case 
studies and (2) conducting a simulation study.

The paper outline is as follows. In the “Random forest 
for probability estimation” section, we summarize the RF 
algorithm for probability estimation, in the “Case stud-
ies” section, we visualize the predictions for the ovarian 
tumor data, and present two additional case studies. In 
the “Simulation study” section, we present a simulation 
study to explore the effect of tree depth and training sam-
ple size and the data generation mechanism (DGM) to 
better understand the behavior of the RF algorithm. In 
the “Overall discussion” section, we discuss our findings.

Random forest for probability estimation
When the outcome is categorical, RF can be used for 
classification or probability estimation. In this work we 
will use random forest for probability estimation [16, 17]. 
RF is a tree-based ensemble method, and when used for 
probability estimation it works as follows:

1. Draw ntree bootstrap samples from the original 
training dataset, where ntree denotes the number of 
trees in the forest.

2. On each bootstrap sample, construct a tree using 
recursive binary splits. To reduce the correlation 
between trees, a number of predictors (mtry) are 
chosen randomly at each split. mtry is a hyperpa-
rameter and can be tuned, but often a default value 
equal to the square root of the total predictors (P) is 
used. A split on one of these predictors is chosen so 
that the selected splitting criterion (e.g., Gini index) 
is optimized.

3. Splits are consecutively created as long as all child 
nodes contain a specific minimum number of obser-
vations (min.node.size). When a node cannot be split 
without violating this condition, the node becomes a 
final leaf node. Other stopping criteria can be defined 
[18]. For each leaf node, the proportion of cases from 
each outcome class can be calculated. Alternatively, 
the majority vote can be determined: the outcome 
class that has the most cases in the leaf.

4. To obtain a probability estimate for each outcome 
class i for a new case, we first determine the new 
case’s appropriate leaf node for each of the ntree 
trees. Then, two basic approaches are possible. The 
first uses the proportion of the ntree majority votes 
(cf step 3) that equal i. The second averages the pro-
portion of cases from class i (cf step 3) across the 
ntree trees [16].
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In the seminal books “The Elements of Statistical 
Learning” and “An Introduction to Statistical Learn-
ing”, the authors highlight the simplicity of training RF 
models [14, 19]. Regarding the commonly encountered 
claim that RF cannot overfit, the authors indicate that 
increasing ntree does not cause overfitting. It has been 
suggested that ntree does not need to be tuned, but that 
too low values lead to suboptimal performance [7, 20]. 
A value of 500 or even 250 has shown to be sufficient in 
most applications [7]. A typical value for mtry is 

√
P , as 

recommended by Breiman, or lower values to maximize 
decorrelation [14]. Hastie and colleagues suggest that 
min.node.size can be set to a very low value, even 1 and 
that mtry is a more important tuning parameter: “when 
the number of variables is large, but the fraction of rele-
vant variables small, random forests are likely to perform 
poorly with small mtry. … Our experience is that using 
full-grown trees seldom costs much, and results in one 
less tuning parameter” [14].

Case studies
Methods
We aimed to visualize the estimated probabilities in data 
space to obtain a better understanding of the phenom-
enon where RF models with near-perfect discrimination 
also performed competitively during external valida-
tion. We followed a typical random train-test split used 
in machine learning procedures. We developed RF and 
MLR prediction models on the training set using two 
continuous and a number of categorical predictors. We 
use only two continuous predictors because if we set the 
categorical predictors to a fixed value, e.g., the most com-
mon one, we can show a two-dimensional subset of the 
complete data space by showing the two continuous pre-
dictors on the x-axis and y-axis. We can show estimated 
probabilities in this subset as a heatmap, and show indi-
vidual cases (from training or test set) as a scatter plot. 
This allows us to visualize how RF and MLR transform 
predictor values into probability estimates, for example 
in terms of smoothness. Obviously, only cases for which 
the categorical values equal the chosen fixed value can be 
shown. By choosing different fixed values for categorical 
variables, we can visualize different subsets of data space. 
We noticed that the range of estimated probabilities was 
larger for RF than MLR. Therefore, to ensure a proper 
visualization of the high- and low-risk estimates, the 
greyscale in the heatmaps is bounded to the minimum 
and maximum predicted probabilities by each model in 
each panel. We also include figures using the same scale 
for all heatmaps in Additional file 1.

The RF models were trained with ranger package, with 
ntree = 500, mtry = ⌈

√
P⌉ , and min.node.size = 2. Ranger 

estimates the probabilities with Malley’s probability 
machine methods which averages the proportion of cases 
from each class over the terminal nodes from each of 
the trees [16, 21]. In MLR models, we modeled continu-
ous predictors using restricted cubic splines (rcs) with 3 
knots to allow nonlinear associations [22, 23]. For each 
model, we calculated the train and test PDI and multino-
mial calibration plots. The code for training the models 
and generating the plots is available in the OSF reposi-
tory (https:// osf. io/ y5tqv/).

Ovarian cancer diagnosis
This prospective study collected data on patients between 
1999 and 2012. All patients had at least one adnexal 
(ovarian, para-ovarian, or tubal) mass that was judged 
not to be a physiological cyst, provided consent for trans-
vaginal ultrasound examination, were not pregnant, and 
underwent surgical removal of the adnexal mass within 
120 days after the ultrasound examination. We randomly 
split the data (N = 8398) into training (n = 5900, 70%) and 
test parts (n = 2498, 30%), and developed models on the 
training data using patient age (in years) and CA125 (in 
IU/L) as continuous variables, and five ultrasound based 
categorical variables (proportion of solid tissue, number 
of papillary projections, if the mass has more than 10 loc-
ules, if the mass has shadows and if the mass has ascites). 
Note that the proportion of solid tissue is a continuous 
variable that can be seen as a semi-categorical variable 
with 75% of observations having values 0 or 1. The distri-
bution of classes in the dataset was 66% (5524) for benign 
tumors, 6% (531) for a borderline ovarian tumor, 6% 
(529) for stage I ovarian cancer, 17% (1434) for stage II–
IV ovarian cancer, and 5% (380) for metastatic cancer to 
the ovaries (detailed information in Table S2). The appar-
ent PDI was 0.97 for RF and 0.52 for MLR. In the test set 
the PDI decreased to 0.56 for the RF model and remained 
0.52 for the MLR.

Figure  1 shows heatmaps for the estimated prob-
abilities of a benign, borderline, stage I invasive, stage 
II–IV invasive, and secondary metastatic tumor, with 
training data cases superimposed (see Figures S1–2 for 
extended visualizations). Cases belonging to the class 
to which the probabilities refer are shown in red, and 
other cases in green. One set of heatmaps refers to the 
fitted RF model, and the other to the fitted MLR model. 
Whereas estimated probabilities from the regression 
model change smoothly according to the values of 
the continuous predictors, the estimated probabilities 
from the RF model peak where events from the train-
ing data were located. Where many events were found 
in proximity, these peaks combined into a larger area 
with increased probability. For events in less densely 

https://osf.io/y5tqv/
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populated areas of data space, these peaks were idi-
osyncratic: in test data, events in these areas of data 
space tend to be located in different places (Fig. 2 and 
Figures S3–S4). The calibration performance of the RF 
model was very poor in the training set: high probabili-
ties were underestimated and low probabilities were 
overestimated (Fig.  3). Calibration in the test set was 
much better.

CRASH3: traumatic brain injury prognosis
CRASH-3 data was collected between 2012 and 2019 
for a multicenter, randomized, placebo-controlled trial 
to measure the effects of tranexamic acid on death, dis-
ability, vascular occlusive events, and other morbidi-
ties in 12,660 patients with acute traumatic brain injury 
(TBI) [24]. We used age (years) and systolic blood pres-
sure (mmHg) as continuous variables and sex, Glasgow 

Fig. 1 Random Forest and logistic regression probability estimation in data space for 4 subtypes of ovarian malignancy diagnosis with cases 
in training set superimposed. CA125 bounded to 500
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Coma Scale (GCS) eye-opening (4 levels), and pupillary 
reaction (4 levels) as categorical variables. We performed 
a complete case analysis (CCA) removing patients for 
which one or more values were missing obtaining a com-
plete dataset of 12,548 patients. CCA was used for sim-
plicity and because the phenomenon under study should 
not be affected importantly by this. The outcome was 

measured 28 days after randomization: alive (n = 10,022, 
80%), death due to head injury (n = 2309, 18%), or death 
of other cause (n = 217, 2%) (detailed information in 
Table S3). The training set included 8783 patients (70%), 
and the test set was 3765 (30%).

For RF, the PDI was 0.96 in train data and 0.54 in test 
data. For MLR, the PDI was 0.61 and 0.60, respectively. 

Fig. 2 Random forest and logistic regression probability estimation in data space for 4 subtypes of ovarian malignancy diagnosis with cases in test 
set superimposed. CA125 bounded to 500



Page 6 of 14Barreñada et al. Diagnostic and Prognostic Research            (2024) 8:14 

The heatmaps drew a similar picture compared with the 
previous case study: RF had clear probability peaks whilst 
MLR had smoothly changing probabilities (Figures  S5–
S8). The calibration plots for RF were also similar: poor 
calibration in training data but decent in the test data for 
the 2 most common outcomes (Figure S9).

IST: type of stroke diagnosis
The International Stroke Trial (IST) database was 
designed with the aim of establishing whether early 
administration of aspirin, heparin, or both or neither 
influenced the clinical course of acute ischaemic stroke 
[25]. Data for the 19,435 patients with suspected acute 
ischaemic stroke were recruited between 1992 and 1996. 
We use age (years) and systolic blood pressure (mmHg) 
as continuous variables, and conscious state (fully alert 
vs drowsy), deficit of face (yes vs no), deficit of arm/
hand (yes vs no), deficit of leg/foot (yes vs no), dyspha-
sia (yes vs no), and hemianopia (yes vs no) as categorical 
variables. We again performed a CCA retaining 15,141 
patients. The outcome is the type of stroke: ischaemic 
(n = 13,622, 90%), indeterminate (n = 736, 5%), hemor-
rhagic (n = 439, 3%), or no stroke (n = 344, 2%) (detailed 
information in Table S4). The training set included 10,598 
patients (70%), and the test set 4543 (30%).

The RF model had a training PDI of 0.89 and a test PDI 
of 0.35. For MLR, the training set PDI was 0.39, the test 
set PDI was 0.41. In this dataspace, the phenomenon 
is notorious, with very local peaks around train cases 

(FiguresS10–S13). The calibration plots for training and 
test data showed poor calibration (Figure S14).

Simulation study
Aim
We conducted a simulation study to assess which key fac-
tors of the modeling setup (dataset and minimum node 
size) contribute to the phenomenon of having an exag-
gerated AUC in the training data without strong signs of 
overfitting in test data. We report the simulation study 
using the ADEMP (aims, data-generating mechanisms, 
estimands, methods, and performance measures) struc-
ture [26]. The code for the simulation study can be found 
in the OSF repository (https:// osf. io/ y5tqv/).

Data‑generating mechanism (DGM)
For the simulation study, we generated data by assum-
ing that the true model was in the form of an MLR with 
an outcome event fraction of 0.2 (see Additional file  1: 
Appendix 1: Simulation Algorithm for details).

The 48 DGMs differed according to the following 
parameters:

 i. Predictor distribution: predictors were either all 
continuous with multivariate normal distribution 
or all binary with 50% prevalence.

 ii. Number of predictors: there were either 4 true 
predictors (0 noise predictors), 16 true predic-
tors (0 noise predictors), or 16 predictors of which 

Fig. 3 Calibration plots for random forest model in ovarian cancer data. Observed proportion is estimated with a LOESS model. The plots only show 
observed proportions for predicted probabilities between quantiles 5th and 95th

https://osf.io/y5tqv/


Page 7 of 14Barreñada et al. Diagnostic and Prognostic Research            (2024) 8:14  

12 noise predictors. Noise predictors had a true 
regression coefficient of 0.

 iii. Correlation between predictors: Pearson correla-
tions between all predictors were either 0 or 0.4.

 iv. True AUC : this was either 0.75 or 0.90.
 v. Balance of regression coefficients: the true model 

coefficients that were not 0 were either all the same 
(balanced) or not (imbalanced). When imbalanced, 
one-fourth of the predictors have a coefficient that 
is 4 times larger than the others.

The true model coefficients for generating the data 
were obtained by trial error and are available in Table S5.

Estimands
For both training and test data, we estimate model dis-
crimination, whether risk estimates have too high (over-
confidence) or too low (underconfidence) spread and the 
prediction error. Underconfidence reflects the situation 
in Fig.  3 (Train): high probabilities are underestimated, 
and low probabilities are overestimated. Overconfidence 
is the opposite: high probabilities are overestimated, and 
low probabilities are underestimated. For test data, we 
also calculate discrimination loss vs the true model and 
the relative contribution of bias and variance to the pre-
diction error. As the training and test samples are based 
on the same DGM, the test results reflect internal rather 
than external validation.

Methods
We fitted models on training datasets of size 200 (small) 
or 4000 (large), and for RF models we used values for min.
node.size of 2 or 20 and ranger package for training. As a 
result, there were 2 × 2 × 3 × 2 × 2 × 2 × 2 = 192 scenarios. 
For each scenario, 1000 simulation runs were performed 
(i.e., 1000 different training datasets). For RF, ntree was 
fixed at 500, and mtry at the square root of the number 
of predictors (default value). Models were validated on a 
single large test dataset per DGM (N = 100,000) to avoid 
sampling variability.

Performance
For discrimination we calculated the AUC and for con-
fidence of risk estimates the calibration slope (slope < 1 
means overconfidence, slope > 1 underconfidence). The 
calibration slope is calculated as the slope of a logistic 
regression (LR) model fitting the outcome to the logit of 
the estimated probabilities as the only predictor. Cali-
bration intercept is calculated fitting the same model 
for a slope of 1 by setting the predicted probabilities as 
an offset term. Discrimination loss was calculated as 
the difference between true AUC and median test AUC. 
Finally, the mean squared error (MSE) of the predicted 

probabilities was calculated according to [27] as the 
sum of squared bias and variance (see Additional file 1: 
Appendix 2: Simulation metrics for details).

Results
The aggregated simulation results using median and 
interquartile range for discrimination and calibration 
and mean and standard deviation for mean squared error 
are available in Additional file 1 (Table S6). The complete 
simulation including the code and 1000 simulations for 
each of the 192 scenarios is available in the OSF reposi-
tory (https:// osf. io/ y5tqv/).

Discrimination
In the simulation study, the median training AUCs were 
close to 1 in most of the cases. The median training 
AUC was between 0.97 and 1 unless there were 4 binary 
predictors, or 16 binary predictors combined with a 
minimum node size of 20 (Fig. 4). Higher min.node.size 
resulted in less extreme training AUCs.

In general, median test AUCs were higher when there 
was a large vs small training dataset, high vs low min.
node.size, high vs low correlation between predictors, 
binary versus continuous predictors, and 4 versus 16 pre-
dictors (except with correlated continuous predictors) 
(Fig. 5). All other simulation factors being equal, the sce-
narios with 4 true and 12 noise predictors had results for 
the AUC that was identical to scenarios with 16 predic-
tors (Figs. 4 and 5 and S15–16).

The Spearman correlation between median training 
AUC and discrimination loss was 0.72 for scenarios with 
a true AUC of 0.9, and 0.69 for scenarios with a true AUC 
of 0.75 (Figure S17). The median discrimination loss was 
0.025 (range 0.00 to 0.13). In the 114 scenarios where the 
median training AUC was ≥ 0.99, the median discrimina-
tion loss was 0.036 (range 0.003 to 0.13). In the other sce-
narios, the median discrimination loss was 0.013 (0.00 to 
0.069).

Calibration
Median training calibration slopes ranged between 1.10 
and 19.4 (Fig.  6 and Figure  S18): the probability esti-
mates were always underconfident where high prob-
abilities were underestimated and low probabilities 
overestimated. This is the consequence of perfect sepa-
ration between events and non-events in training data 
(i.e., AUC = 1) which means that any estimation above 0 
or below 1 is underconfident (Figure  S19). The median 
slope was lowest in scenarios with few binary predictors 
or higher min.node.size. Median test calibration slopes 
ranged between 0.45 and 2.34. Across all scenarios, the 
Spearman correlation between the median training 

https://osf.io/y5tqv/
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slope and median test slope was − 0.11 (Figure  S17). 
Median test slopes were mainly higher when the true 
AUC or min.node.size was higher. In addition, median 
test slopes tended to be higher with binary predictors, 
uncorrelated predictors, and higher sample sizes (Fig.  7 
and Figure  S18). Calibration slopes were similar in sce-
narios with 16 true predictors, 4 true predictors, and 12 
noise predictors (Figs. 6 and 7 and Figure S20–21). In the 
78 scenarios without perfect training (AUC < 0.99) the 
median test calibration slope was between 0.59 and 2.34 
with a median of 1.10. In the 114 scenarios with almost 
perfect training AUC (≥ 0.99), the median calibration 
slope was 0.92.

Mean squared error (MSE)
Median MSE across scenarios was 0.008 (range 0.000–
0.045) with a median squared bias of 0.002 (range 0.000–
0.038) and median variance of 0.005 (range 0.000–0.017). 
For the 114 scenarios with median training AUC ≥ 0.99, 
we observed a median test MSE of 0.010 with a median 
squared bias of 0.004 (range 0.0004–0.0384) and a 
median variance of 0.006 (range 0.001–0.017). For the 
rest of the scenarios, the median test MSE was 0.006. 

Across all scenarios, the Spearman correlation of mean 
test squared bias and mean test variance with median 
training AUC were 0.47 and 0.43, respectively. The cor-
relation with the discrimination loss was 0.51 for the 
squared bias and 0.70 for the variance. Lower sample size 
in training was associated with higher median test vari-
ance, and with higher median test squared bias in sce-
narios with continuous predictors. Lower min.node.size 
(i.e., deeper trees) was associated with a lower variance 
but higher bias in test data when the training sample size 
was small. More predictors were associated with higher 
bias, whereas the correlation between predictors and 
higher true AUC was associated with lower bias (Fig. 8). 
The models with noise predictors had lower variance and 
higher bias compared to scenarios with 4 true and no 
noise predictors (Figure S22).

Overall discussion
We tried to better understand and visualize the behavior 
of random forests for probability estimation. We make 
three key observations from this work. First, RF models 
learn local probability peaks around training set events, 
in particular when the trees are very deep (i.e., low min.

Fig. 4 Training AUC by simulation factors and modeling hyperparameters in scenarios without noise. Scenarios are aggregated by strength 
because this simulation factor had minimal effect
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node.size) and when there are continuous predictors. 
Where a group of events is located close to one another 
in ‘data space’, the probability peaks are combined into 
a region of increased probability. Where events are iso-
lated in data space, the probability peaks are very local. 
Learning through peaks leads to very optimistic (often 
near perfect) discrimination in training data, but also to 
reduced discrimination in new data compared to mod-
els that rely on less deep trees (cf. simulation settings 
where RF models with min.node.size 2 vs 20 were fitted 
on a set of continuous predictors). Probably, the reduc-
tion in discrimination on new data is modest because the 
local peaks for isolated events are often harmless for new 
data: it is unlikely to see an event in the exact same loca-
tion. Second, RF also suffers from “classical overfitting” 
in which models with higher discrimination on training 
data tend to have lower discrimination on new data than 
models with less optimistic discrimination (cf. simulation 
settings where RF models are learned on 4 binary predic-
tors using 200 vs 4000 training cases). Third, in training 
and test data, calibration performance for RF models is 
different from what we commonly observe for LR mod-
els. Whereas LR based on maximum likelihood leads 
by definition to calibration slopes of 1 on training data, 

calibration slopes for RF models were always above 1 on 
training data. Also, as opposed to LR, calibration slopes 
for RF models do not converge to 1 on new data. This dif-
ferent behavior is probably caused by the pragmatic way 
in which probabilities are obtained for RF models, whilst 
LR estimates probabilities in a principled way through 
maximum likelihood.

The simulation results regarding discrimination and 
calibration go against fitting very deep trees when using 
RF for probability estimation. This is in line with recent 
work that illustrated that RF using deeply grown trees 
results in risk estimates that are particularly unstable 
[28]. The heatmaps for our case studies illustrate how 
RF models with deeply grown trees lead to probabilities 
that change non-smoothly with changes in the values of 
predictors. It has been suggested to set min.node.size to 
5% or 10% of the sample size [16, 29]. Alternatively, min.
node.size can be tuned. Although this was not the focus 
of our study, it seems natural to tune with logloss (also 
known as the negative loglikelihood or cross-entropy) or 
Brier score as the loss function since they capture cali-
bration [18]. In their work, Ledger and colleagues tuned 
min.node.size by optimizing logloss based on tenfold 
cross-validation for 30 random values for mtry and min.

Fig. 5 Test AUC by simulation factors and modeling hyperparameters in scenarios without noise. Scenarios are aggregated by strength
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node.size using the trainControl and train functions from 
the caret R package [11]. This resulted in mtry = 3 and 
min.node.size = 15, with competitive results in test data. 
Applying the tuneRanger R package with 200 iterations 
for our case studies based on logloss yielded an optimal 
min.node.size of 8 (0.1% of training set size) for ovarian 
cancer data, 261 (2.1%) for CRASH3 data and 591 (3.9%) 
for IST data [18]. These values are higher than the default 
values in many statistical software programs.

Three comments regarding the interpretation of 
discrimination and calibration results for RF models 
are worth making. First, it is well known that appar-
ent performance, i.e., performance assessment on the 
exact same dataset that was used to train the model, is 
overly optimistic [30, 31]. Our work indicates that this 
is a fortiori case for RF. Unfortunately, some studies 
present their RF models with “excellent” performance 
because they only present discrimination for the train-
ing data [4, 32, 33]. Instead, proper internal and exter-
nal validation results should be reported. Second, from 
a regression modeling perspective, a calibration slope 
that is clearly below 1 on internal validation is a symp-
tom of overfitting. This cannot be applied in the same 

way for RF models. Models based on larger training 
samples had higher calibration slopes in our simula-
tion study, but a calibration slope of 1 does not appear 
to have a special meaning. Models with a calibration 
slope above 1 on test data when trained on 200 train-
ing samples, had an even higher slope when trained 
on 4000 samples. The interpretation of risk estimates 
based on RF requires caution, probably because prob-
abilities are generated in a very ad hoc way. Of course, 
the calibration slope still quantifies in a descriptive 
manner whether the risk estimates are on average too 
confident (slope < 1), not confident enough (slope > 1), 
or fine (slope = 1). Third, despite that RF models had 
high discrimination results in the training data (sugges-
tive of overfitting), the calibration slope in the training 
data was always above 1 (risk estimates show too little 
spread, suggestive of underfitting). This appears to be 
a consequence of the bootstrapping procedure in com-
bination with the low min.node.size. Due to the boot-
strapping, a training set case was part of approximately 
63% of bootstrap samples and therefore was used for 
63% of the trees in the forest. When averaging the pro-
portion of events in the appropriate leaf nodes over 

Fig. 6 Training set calibration log slope by simulation factors and modeling hyperparameters in scenarios without noise. Scenarios are aggregated 
by strength. The ideal value for the log slope is 0
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all ntree trees to get a probability estimate for a given 
training set case, 63% of these proportions are near 
perfect: close to 1 if the training case is an event, close 
to 0 if the training cases is a non-event. The remaining 
37% are more variable and often far less good. The 63% 
near-perfect proportions cause discrimination to be 
very high because most events will end up with an esti-
mated probability of an event that is higher than that 
for most non-events. The remaining 37% of the propor-
tions pull the probability estimates away from 0 (if the 
case is a non-event) or 1 (if the case is an event), lead-
ing to calibration slopes > 1.

Although the aim of our paper was largely educational, 
it links to previous more fundamental work and fills a 
gap in the literature by explicitly studying factors that 
contribute to better discrimination and calibration of 
new data. Wyner and colleagues (2017) argued that RF 
has excellent performance because it is an “interpolating 
classifier”, i.e., it is fitted with little to no error to the train 
data [34]. They argue that the interpolation should not 
be confused with overfitting. Even if the individual trees 
are overfitting, each training set case is not used in about 
37% of the individual trees, such that averaging over trees 

partially solves overfitting. Belkin and colleagues have 
linked this to a double descent curve for highly flexible 
algorithms: when the complexity of the model increases, 
test set performance first improves, then deteriorates, 
and finally improves again once the ‘interpolation thresh-
old’ (where perfect training performance is achieved) is 
exceeded [35]. Recently, however, Buschjäeger and Morik 
opposed the existence of double descent in RF [36]. 
Mentch and Zhou linked the success of RF to the signal-
to-noise ratio (SNR) of the data. In their work, they pre-
sent that the randomness of RF is beneficial in situations 
with low SNR whereas bagging is preferred if SNR is high 
[37]. They explain the success of RF by the low SNR of 
many real-world datasets. This view contradicts the view 
that flexible algorithms work best when the SNR is high 
[38]. Finally, the issue of calibration of estimated prob-
abilities in the context of RF models received little atten-
tion in the literature, although it is key for optimal clinical 
decision making [39]. It has been suggested that using 
fully grown trees in RF leads to suboptimal risk estimates 
[16, 29]. However, this is rarely mentioned and hence it is 
common to see that low minimum node sizes are recom-
mended because the problem is treated as a classification 

Fig. 7 Test set calibration slope by simulation factors and modeling hyperparameters in scenarios without noise. Scenarios are aggregated 
by strength. The ideal value for the slope is 1
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problem instead of a probability estimation problem (e.g., 
see default for randomForest package or scikit-learn). We 
think that the current study sheds further light on prob-
ability estimation in RF. Of course, a generic alternative 
that works for any miscalibrated model is to recalibrate 
the probabilities of the RF afterward using new data [40].

We identified the following limitations of our study. 
Firstly, a simulation study is always limited by the 
included scenarios. It would be of interest to include 
more simulation factors and values per simulation fac-
tor (e.g., for min.node.size) in the simulation study or to 
include scenarios where RF hyperparameters are tuned 
rather than fixed. Tuning could improve the calibration 
of the models [18, 41]. However, the simulation study 
already had 192 scenarios, and adding more factors or 
values would increase the computational cost exponen-
tially and would overcomplicate the interpretation of 
the results. Topics that could be investigated in further 
simulation studies include varying other hyperparam-
eters than min.node.soze (e.g., mtry, sampling fraction, 
splitting rule) and investigating more values for sam-
ple size, number of predictors, the proportion of noise 
predictors, and min.node.size. Secondly, we were using 

logistic DGMs without nonlinear or nonadditive associa-
tions with the outcome. We assumed that the impact of 
this would be limited, because the focus was not on the 
comparison of RF with LR, and any nonlinearity or non-
additivity (including the absence of it) has to be learned 
by the algorithm. Thirdly, the traditional RF algorithm 
selects variables at each split in a way that favors continu-
ous over binary variables [42]. Continuous variables can 
split in many ways, such that there is often a split that, 
perhaps by chance, has a better Gini impurity reduction 
than the Gini impurity reduction for a binary variable. 
The splits for continuous variables may often overfit, 
thereby increasing training discrimination but decreas-
ing test discrimination. It is well documented that this 
affects variable importance measures [42], but it may also 
be relevant for model performance. The problem can be 
addressed by using an adapted RF algorithm such as cfor-
est from the partykit package [43]. These adapted algo-
rithms grow conditional inference trees (CIT) instead 
of classification trees. For the case studies, we observed 
that tuning and using the adapted RF yields a less opti-
mistic training AUC and similar or slightly better test 
performance (see OSF Repository, https:// osf. io/ y5tqv/). 

Fig. 8 Mean squared error across scenarios without noise aggregated by strength

https://osf.io/y5tqv/
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However, our aim was to understand how the charac-
teristics of the data and the modeling process affected 
the models, hence we did not systematically explore the 
effects of tuning or alternative algorithms.

We conclude that RF tends to exhibit local overfitting 
by learning probability peaks, in particular when the RF 
model is based on deeply grown trees. This local overfit-
ting can lead to highly optimistic (near perfect) discrimi-
nation on the training data but to reduced discrimination 
on new data compared to RF models based on less deeply 
grown trees. In line with the work of Kruppa and col-
leagues [41], our results go against the recommendation 
to use fully grown trees when using RF for probability 
estimation.
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