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Abstract

Background: Risk models often perform poorly at external validation in terms of discrimination or calibration.
Updating methods are needed to improve performance of multinomial logistic regression models for risk
prediction.

Methods: We consider simple and more refined updating approaches to extend previously proposed methods
for dichotomous outcomes. These include model recalibration (adjustment of intercept and/or slope), revision
(re-estimation of individual model coefficients), and extension (revision with additional markers). We suggest a
closed testing procedure to assist in deciding on the updating complexity. These methods are demonstrated
on a case study of women with pregnancies of unknown location (PUL). A previously developed risk model
predicts the probability that a PUL is a failed, intra-uterine, or ectopic pregnancy. We validated and updated
this model on more recent patients from the development setting (temporal updating; n = 1422) and on
patients from a different hospital (geographical updating; n = 873). Internal validation of updated models was
performed through bootstrap resampling.

Results: Contrary to dichotomous models, we noted that recalibration can also affect discrimination for
multinomial risk models. If the number of outcome categories is higher than the number of variables, logistic
recalibration is obsolete because straightforward model refitting does not require the estimation of more
parameters. Although recalibration strongly improved performance in the case study, the closed testing
procedure selected model revision. Further, revision of functional form of continuous predictors had a positive
effect on discrimination, whereas penalized estimation of changes in model coefficients was beneficial for calibration.

Conclusions: Methods for updating of multinomial risk models are now available to improve predictions in new
settings. A closed testing procedure is helpful to decide whether revision is preferred over recalibration. Because
multicategory outcomes increase the number of parameters to be estimated, we recommend full model revision only
when the sample size for each outcome category is large.
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Background
Prior to implementing risk prediction models in clinical
practice to assist in patient management, their perform-
ance needs to be rigorously validated. Core elements of
performance include discrimination (i.e., how well the
model discriminates between the different categories)
and calibration (i.e., the reliability of the predicted risks)
[1, 2]. It is of particular importance to externally validate
the model using data collected later in time (temporal
validation) and/or in different locations or hospitals
(geographical validation) [3, 4]. Disappointing validation
results do not necessarily imply that the previously de-
veloped prediction model should be discarded, because
the model contains crucial information such as which
predictors are considered relevant. An attractive alterna-
tive is to perform some form of model updating, where
we combine information from the previously developed
model with new data [5]. This approach has clear prac-
tical relevance, because it is often not realistic to expect
that a single model will work in all settings, due to dif-
ferences in patient management protocols and referral
patterns across centers and regions, and improvements
in care over time. Updating is particularly useful for
model validation in settings with different patient popu-
lations (e.g., primary vs secondary care), sometimes la-
beled “domain validation,” because of likely differences
in case-mix, event rates, predictor definitions, and meas-
urement methods [6].
Methods to update risk models for dichotomous

outcomes focus on recalibration, revision, and exten-
sion [1, 5, 7]. Recalibration merely adjusts the model
intercept and/or overall slope, where an overall slope
adjustment implies a fixed proportional adjustment of
all predictor coefficients. Model revision adjusts the
individual model coefficients, and model extension re-
fits the model while including additional markers.
Van Hoorde and colleagues assessed how dichotom-

ous recalibration and revision techniques could be ex-
tended to multicategory outcomes for which risk
estimation was based on a sequence of dichotomous
logistic regression models (sequential dichotomous
modeling) [8]. The aim of the current paper is to
introduce methods to directly update risk models for
multicategory outcomes based on multinomial logistic
regression, which is the most commonly used method
for nominal outcomes. We present recalibration, revi-
sion, and extension methods and a statistical test to
direct the preferred strategy. We illustrate these
methods on a case study.

Methods
Case study
This case study aims to guide further follow-up for
women with a pregnancy of unknown location (PUL). A
PUL involves a pregnant woman whose pregnancy can-
not be visualized using transvaginal ultrasound [9, 10]. It
is important to estimate the likelihood that the PUL
is a failed PUL (FPUL), an ectopic pregnancy (EP), or
an intra-uterine pregnancy (IUP) [10]. Potential
follow-up strategies are to perform (a) a urinary
pregnancy test after 2 weeks if an FPUL is predicted,
(b) a repeat ultrasound scan after 1 week if an IUP is
predicted, and (c) a repeat ultrasound scan and hu-
man chorionic gonadotropin (hCG) assessment after
2 days if an EP is predicted [11]. M4 is a multinomial
logistic regression model developed for this purpose
that is based on the serum hCG levels at presentation
(hCG0) and 48 h later (hCG48) [12]. M4 was devel-
oped on data from women recruited at St. George’s
Hospital (SGH) in London between March and
November 2002 [12]. Among the 197 patients, 109
(55%) had a FPUL, 76 (39%) an IUP, and 12 (6%) an
EP (Table 1). M4 has the following predictors: the
logarithm of the average of hCG0 and hCG48
(hCGm) and the ratio of hCG48 and hCG0 (hCGr).
A centered version of hCGr was used by subtracting
the median ratio of 1.17 from all values (hCGrc), and
a quadratic effect of hCGrc was included. The linear
predictors for FPUL vs IUP (LPFvsI) and for EP vs
IUP (LPEvsI) are

LPFvsI ¼ log
PFPUL

PIUP

� �
¼ 5:88−1:18� log hCGmð Þ

−5:56� hCGrcþ 2:05� hCGrc2

LPEvsI ¼ log PEP
PIUP

� �
¼ 0:39−0:06� log hCGmð Þ
−0:26� hCGrc−3:93� hCGrc2

8>>>>><
>>>>>:

ð1Þ

The predicted risks for each outcome category are
obtained as

PFPUL ¼ exp LPFvsIð Þ
1 þ exp LPFvsIð Þ þ exp LPEvsIð Þ

PIUP ¼ 1
1 þ exp LPFvsIð Þ þ exp LPEvsIð Þ

PEP ¼ exp LPEvsIð Þ
1 þ exp LPFvsIð Þ þ exp LPEvsIð Þ

8>>>>>>><
>>>>>>>:

ð2Þ

Here, we validate and update the M4 model using more
recent data from the same setting (temporal updating)
and using data from another center (geographical updat-
ing). For temporal updating, data from consecutive pa-
tients recruited between 2002 and 2007 were used. For
geographical updating, data from consecutive patients
recruited between 2009 and 2013 at Queen Charlotte



Table 1 Descriptive statistics for the case study of multicategory outcome prediction: original development data of model M4
(n = 197), the temporal updating data at SGH (n = 1422), and the geographical updating data at QCCH (n = 873)

Original development data (SGH)
n = 197

Temporal updating (SGH)
n = 1422

Geographical updating (QCCH)
n = 873

Age (years) 30 (25–33) 31 (26–35) 32 (27–32)

Initial hCG (IU/L) 265 (76–618) 410 (154–941) 530 (197–1563)

hCG ratio 0.80 (0.33–1.99) 1.04 (0.39–2.10) 0.65 (0.34–1.49)

Initial progesterone (nmol/L) 17 (4–66) 21 (4–61) 9 (3–34)

Outcome, n (%)

Failed 109 (55%) 717 (50%) 502 (58%)

IUP 76 (39%) 577 (41%) 245 (28%)

Ectopic 12 (6%) 128 (9%) 126 (14%)

Data are expressed as median (interquartile range) or as N (%). In the temporal updating data, progesterone was missing in 47 patients (3.3%), and in the
geographical updating data, progesterone was missing in 109 patients (12.5%)
SGH St George’s Hospital, QCCH Queen Charlotte and Chelsea’s Hospital, IUP intra-uterine pregnancy, hCG human chorionic gonadotropin
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and Chelsea’s Hospital (QCCH) in London were used. R
version 3.2.0 (www.r-project.org) was used for the statis-
tical analysis.
After applying the exclusion criteria (see the Appendix),

data from 1422 (88%) patients were available at SGH and
data from 873 (80%) women at QCCH. At SGH, there
were 717 (50%) FPUL, 577 (41%) IUP, and 128 (9%) EP.
The QCCH data contained 502 (58%) FPUL, 245 (28%)
IUP, and 126 (14%) EP.
Updating methods
We implemented seven updating methods (Table 2):
two recalibration, three revision, and two extension
methods.
We denote the number of outcome categories with k.

In our case study, k = 3. Next, we make the distinction
between LPFvsI and LPEvsI on the one hand and LPx,FvsI
and LPx,EvsI on the other. LPFvsI and LPEvsI are the linear
Table 2 Updating methods for multinomial logistic regression mod
updating in general and in the case study

Category Method and description

Original 0—no adjustments

Recalibration 1—intercept recalibration: adjust intercepts

2—logistic recalibration: adjust intercepts and s

3—refitting: re-estimation of individual coefficie

Revision 4—penalized refitting using recalibrated coeffic

5—refitting including functional form: method

Extension 6—extension: similar to method 3 but log(prog

7—penalized extension: similar to method 5 bu

hCGr human chorionic gonadotropin ratio, rcs restricted cubic spline, k number of o
interaction terms, but excluding intercepts) in original model, q ′ number of variable
variables related to added markers
predictors of the original M4 (Eq. 1), whereas LPx,FvsI
and LPx,EvsI are the updated linear predictors for updat-
ing method x, where x = 1, …, 7. Finally, q denotes the
number of variables in the model (i.e., including nonlin-
earity and interaction terms).

Reference method
Method 0 applies the original prediction model without
any adjustments.

Intercept recalibration
The simplest recalibration method (method 1) updates
the intercepts of the two linear predictors LPFvsI and
LPEvsI of M4:

LP1;FvsI ¼ α1 þ LPFvsI ¼ α1 þ 1� LPFvsI þ 0� LPEvsI

LP1;EvsI ¼ α2 þ LPEvsI ¼ α2 þ 0� LPFvsI þ 1� LPEvsI

�

ð3Þ
els with the numbers of parameters that are estimated for

Number of parameters

(General = case study)

0 = 0

(k − 1) = 2

lopes k × (k − 1) = 6

nts (q + 1) × (k − 1) = 8

ients from method 2 as offset (k + q + 1) × (k − 1) = 14

3, but hCGr modeled with rcs (q′ + 1) × (k − 1) = 8

esterone) added (q +m + 1) × (k − 1) = 10

t log(progesterone) added (k + q +m + 1) × (k − 1) = 16

utcome categories, q number of variables (including additional nonlinear and
s when changing functional form of one or more predictors, m number of

http://www.r-project.org/
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Note that multinomial logistic regression models have
k − 1 linear predictors, with k being the number of out-
come categories. Per equation in Eq. 3, only one linear
predictor corresponds to the outcomes that are com-
pared (the “corresponding” linear predictor), with the
other linear predictors labeled as “non-corresponding.”
For intercept recalibration, we assume that the coeffi-
cients for the corresponding linear predictors are
equal to 1 whereas we assume that the non-
corresponding linear predictors have a coefficient of
0. This update aims to improve calibration-in-the-
large by aligning observed event rates and mean pre-
dicted risks [13].

Logistic recalibration
For method 2, a multinomial logistic recalibration
framework for LPFvsI and LPEvsI is applied [13]:

LP2;FvsI ¼ α1 þ β1 � LPFvsI þ γ1 � LPEvsI

LP2;EvsI ¼ α2 þ γ2 � LPFvsI þ β2 � LPEvsI

�
ð4Þ

Intercepts (α), coefficients for corresponding linear
predictors (β), and coefficients for non-corresponding
linear predictors (γ) are estimated in order to update
the regression coefficients [13]. This method corrects
miscalibration of the predicted probabilities from M4,
such that there is no general over- or underestimation
of risks and such that predicted risks are on average
not overly extreme or overly modest. It may be sur-
prising that coefficients for non-corresponding linear
predictors are not fixed at zero. Only if the original
model is correct for the updating population, all βs
are 1 and all γs are 0 in Eq. 4. When performing lo-
gistic recalibration by setting all γs to 0, there is no
unique result: the updated model will be different de-
pending on the choice of reference category in the lo-
gistic recalibration model [13]. In the Appendix, we
work out the logistic recalibration formula for the case
study.

Model refitting by re-estimating individual coefficients
Method 3 re-estimates the intercepts and the coeffi-
cients of each predictor using the updating data. A
straightforward refit using multinomial logistic regres-
sion is used:

LP3;FvsI ¼ α1 þ β1;1 � log hCGmð Þ þ β1;2 � hCGrc

þβ1;3 � hCGrc2

LP3;EvsI ¼ α2 þ β2;1 � log hCGmð Þ þ β2;2 � hCGrc

þβ2;3 � hCGrc2

8>>><
>>>:

ð5Þ
Model refitting by penalized estimation of differences with
recalibrated coefficients
Method 4 uses the recalibrated linear predictors from
method 2 (i.e., LP2,FvsI and LP2,EvsI from Eq. 4) as an
offset:

LP4;FvsI ¼ α1 þ LP2;FvsI þ β1;1 � log hCGmð Þ
þβ1;2 � hCGrcþ β1;3 � hCGrc2

LP4;EvsI ¼ α2 þ LP2;EvsI þ β2;1 � log hCGmð Þ
þβ2;2 � hCGrcþ β2;3 � hCGrc2

8>><
>>:

ð6Þ

Adding the linear predictors as offset implies that the
changes in the intercepts and predictor coefficients with
respect to method 2 are modeled. We used ridge penal-
ization on these changes to shrink coefficients to their
recalibrated values in order to prevent an overly com-
plex model leading to too extreme risk predictions [14].
Without such penalization, methods 3 and 4 would be
identical.

Model refitting including reassessment of functional form
Method 5 re-estimates model coefficients as in method 3,
but now the functional form of hCG ratio is updated as
well. This is done with a restricted cubic spline (rcs) fit
with three knots for the log of hCG ratio [2]:

LP5;FvsI ¼ α1 þ β1;1 � log hCGmð Þ þ β1;2 β1;3

h iT
�rcs log hCGrð Þ; knots ¼ 3ð Þ

LP5;EvsI ¼ α2 þ β2;1 � log hCGmð Þ þ β2;2 β2;3

h iT
�rcs log hCGrð Þ; knots ¼ 3ð Þ

8>>>>><
>>>>>:

ð7Þ

Because M4 was originally developed on a small data-
set, the quadratic effect for hCG ratio may be inadequate
or the result of overfitting. Given that hCG ratio is the
most important predictor, it is worthwhile to re-assess
its functional form. When using rcs with three knots,
the number of parameters used to model hCG ratio re-
mains at two. We decide to keep the log-transformation
for the average hCG level to limit the overall complexity
of the model.

Model extension by refitting and adding a novel marker
Method 6 is similar to method 3 but adds the log of
the progesterone level at presentation as a novel
marker:

LP6;FvsI ¼ α1 þ β1;1 � log hCGmð Þ þ β1;2 � hCGrc
þβ1;3 � hCGrc2 þ β1;4 � log progð Þ

LP6;EvsI ¼ α2 þ β2;1 � log hCGmð Þ þ β2;2 � hCGrc
þβ2;3 � hCGrc2 þ β2;4 � log progð Þ

8>><
>>:

ð8Þ
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Model extension using penalization
Method 7 is similar to method 4 because the linear
predictors from method 2 are used as offset and ridge
penalization is used. Penalization then affects (1) the
differences in the intercepts and coefficients of
log(hCGm), hCGrc, and hCGrc2 relative to logistic
recalibration and (2) the coefficients for the new
predictor:

LP7;FvsI ¼ α1 þ LP2;FvsI þ β1;1 � log hCGmð Þ þ β1;2
�hCGrcþ β1;3 � hCGrc2 þ β1;4 � log progð Þ

LP7;EvsI ¼ α2 þ LP2;EvsI þ β2;1 � log hCGmð Þ þ β2;2
�hCGrcþ β2;3 � hCGrc2 þ β2;4 � log progð Þ

8>><
>>:

ð9Þ

Closed testing procedure
We extend a recently suggested closed testing proced-
ure for updating dichotomous logistic models [15]. A
closed testing procedure involves a hierarchical cor-
rection for multiple testing to control the overall type
I error at the desired alpha level [16, 17]. The pro-
cedure for updating dichotomous prediction models is
based on the closed testing procedure that was intro-
duced for variable selection with multivariable frac-
tional polynomials [18]. The procedure for multinomial
updating compares the original model (method 0)
with intercept recalibration (method 1), logistic recali-
bration (method 2), and straightforward refitting
(method 3) (Table 3). To compare four increasingly
complex and nested updating methods, the proposed
closed testing procedure sequentially assesses the re-
quired scope of model updating: from no updating to
refitting. The overall null hypothesis to be tested at a
predetermined alpha level is that the original model
Table 3 Description of the closed testing procedure for
updating of multinomial logistic regression models

Step Procedure

1. Original model vs
refitting

H0: both models have the same fit, log
Loriginal = log Lrefitted.
Test: likelihood ratio test with (q + 1) × (k − 1)df.
Result: if H0 not rejected, choose the original
model, else go to step 2.

2. Intercept recalibration vs
refitting

H0: both models have the same fit, log
Lint recal = log Lrefitted.
Test: likelihood ratio test with q × (k − 1)df.
Result: if H0 not rejected, choose intercept
recalibration, else go to step 3.

3. Logistic recalibration vs
refitting

H0: both models have the same fit, log
Llogrecal = log Lrefitted.
Test: likelihood ratio test with (q − k + 1) × (k − 1)df.
Result: if H0 not rejected, choose logistic
recalibration, else choose refitting.

Each test is performed at the prespecified overall alpha level
H0 null hypothesis, L likelihood, df degrees of freedom
has the same fit as an updated alternative or else that
log-likelihood(method 0) = log-likelihood(method 1) = log-
likelihood(method 2) = log-likelihood(method 3). The pro-
cedure consists of the following steps:

A. Predetermine the alpha level α.
B. Use a likelihood ratio test at α to compare the refitted

model with the original model. The degrees of
freedom is (q + 1) × (k − 1). If this test is not rejected
(p value >α), there is no statistically significant
improvement in fit of the refitted model vs the
original model. The procedure stops and the original
model is selected. If the test is significant, proceed to
the next step.

C. Use a likelihood ratio test at α to compare refitting
with intercept recalibration. The degrees of freedom
is q × (k − 1). If the test is not rejected, the procedure
stops and intercept recalibration is selected. If the test
is significant, proceed to the next step.

D. If q < k (fewer variables than outcome categories), the
procedure stops. Else, use a likelihood ratio test at α
to compare refitting with logistic recalibration. The
degrees of freedom is (q − k + 1) × (k − 1). If the test is
not rejected, logistic recalibration is selected. If the
test is significant, refitting is selected.

Ridge penalization
Methods 4 and 7 use ridge penalization which fits
models using penalized maximum likelihood in order to
obtain more stable and shrunken coefficients [14]. In
methods 4 and 7, the coefficients of the predictors are
shrunken towards the coefficients following logistic re-
calibration (method 2). Ridge penalization is imple-
mented with the glmnet package in R [19]. The
regularization parameter λ of the ridge penalty was esti-
mated using 10-fold cross-validation with the deviance
as performance criterion.

Missingness
Extension methods (methods 6 and 7) add the progester-
one level at presentation to the model. At SGH 47
(3.3%) women and at QCCH 109 (12.5%) women had a
missing value for progesterone. We used single imput-
ation to deal with the missing values for the current il-
lustrative study, although multiple imputation might be
preferred to fully account for uncertainty in the imput-
ation process [20]. The log-transformed progesterone
level was imputed via fully conditional specification that
included age, the logarithm of hCG0, the logarithm of
hCG48, and outcome [21].

Performance evaluation: discrimination and calibration
Performance was evaluated using measures for discrimin-
ation and calibration. Optimism-corrected performance
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was based on bootstrap internal validation (500 bootstrap
resamples), as recommended in [22].
The overall discrimination is evaluated using the

polytomous discrimination index (PDI), a nominal
version of the c-statistic [23]. In a set of patients, one
from each outcome category (i.e., a set of size k), PDI
estimates the probability that a patient from a ran-
dom outcome category is correctly identified by the
model. The patient from outcome category i is cor-
rectly identified in a set if this patient has the highest
predicted risk of category i. A PDI of 0.7 means that
it is estimated that on average 70% of patients from a
set is correctly identified. Random performance corre-
sponds to a PDI of 1/k [23]. In addition, c-statistics
for all pairs of categories are calculated using the
conditional risk method [24].
The common definition of calibration is that pre-

dicted risks should correspond to observed propor-
tions per level of predicted risk: for patients with an
estimated risk of event of 0.3, we expect 30% to
have/develop this event. To assess calibration, we cal-
culated calibration intercepts and calibration slopes
(with 95% CI) [13]. Ideally, we expect calibration in-
tercepts of 0 and a calibration slope of 1. The calibra-
tion intercepts indicate whether the risks are
systematically overestimated (if <0) or underestimated
Table 4 Polytomous discrimination index, pairwise c-statistics, and B
using bootstrapping

Updating method PDI c-statistic FPUL-IUP

Temporal updating (SGH)

No updating 0.87 (0.85–0.90) 0.99 (0.98–0.99)

Intercept recalibration 0.87 (0.84–0.89) 0.99 (0.98–0.99)

Logistic recalibration 0.88 (0.85–0.90) 0.99 (0.98–>0.99)

Refitting 0.88 (0.85–0.90) 0.99 (0.99–>0.99)

Penalized refitting 0.88 (0.85–0.90) 0.99 (0.98–>0.99)

Refitting + rcs 0.88 (0.86–0.91) 0.99 (0.98–>0.99)

Extension 0.89 (0.87–0.92) 0.99 (0.99–>0.99)

Penalized extension 0.89 (0.87–0.92) 0.99 (0.99–>0.99)

Geographical updating (QCCH)

No updating 0.80 (0.77–0.83) 0.95 (0.93–0.97)

Intercept recalibration 0.80 (0.77–0.83) 0.95 (0.93–0.97)

Logistic recalibration 0.80 (0.77–0.83) 0.96 (0.94–0.97)

Refitting 0.80 (0.77–0.83) 0.96 (0.94–0.97)

Penalized refitting 0.80 (0.77–0.83) 0.96 (0.94–0.97)

Refitting + rcs 0.82 (0.79–0.85) 0.96 (0.94–0.97)

Extension 0.81 (0.78–0.84) 0.96 (0.94–0.97)

Penalized extension 0.81 (0.78–0.84) 0.96 (0.94–0.97)

PDI polytomous discrimination index, FPUL failed pregnancy of unknown location, I
QCCH Queen Charlotte’s and Chelsea Hospital, rcs restricted cubic splines
(if >0). The calibration slopes indicate the presence of
too extreme (if <1) or too modest (if >1) risk predic-
tions. For the original model, we derive flexible cali-
bration curves based on vector splines using the
VGAM package in R [25]. This is similar to dichot-
omous calibration plots where observed proportions
are based on loess or spline-based analyses [26, 27].
As an overall measure of performance that com-

bines discrimination and calibration, the Brier score
was computed. Brier scores were also optimism-
corrected.
Results
Validation of the original M4 model
The original model had very good discrimination. The
PDI was 0.87 at temporal updating and 0.80 at geo-
graphical updating (Table 4). c-statistics were 0.99
and 0.95 for FPUL vs IUP, 0.92 and 0.91 for FPUL vs
EP, and 0.89 and 0.84 for IUP vs EP (Table 4). Cali-
bration of predicted risks was poor in both updating
settings, as demonstrated by the calibration curves
(Fig. 1). The calibration intercepts were 1.19 (FPUL
vs IUP) and 0.60 (EP vs IUP) at temporal updating
and 0.27 and 0.86 at geographical updating (Fig. 2).
The calibration slopes were 0.82 (FPUL vs IUP) and
rier score on the updating data after correction for optimism

c-statistic FPUL-EP c-statistic IUP-EP Brier

0.92 (0.89–0.94) 0.89 (0.85–0.93) 0.172 (0.155–0.190)

0.92 (0.89–0.94) 0.89 (0.85–0.92) 0.165 (0.148–0.183)

0.93 (0.91–0.95) 0.91 (0.88–0.94) 0.158 (0.143–0.173)

0.93 (0.91–0.95) 0.91 (0.88–0.94) 0.157 (0.141–0.172)

0.93 (0.91–0.95) 0.91 (0.88–0.94) 0.158 (0.142–0.172)

0.93 (0.91–0.95) 0.92 (0.89–0.95) 0.153 (0.137–0.168)

0.93 (0.92–0.95) 0.93 (0.90–0.95) 0.150 (0.135–0.165)

0.93 (0.92–0.95) 0.93 (0.90–0.95) 0.150 (0.135–0.165)

0.91 (0.88–0.94) 0.84 (0.79–0.88) 0.286 (0.258–0.314)

0.91 (0.88–0.94) 0.84 (0.79–0.88) 0.278 (0.247–0.310)

0.93 (0.90–0.95) 0.84 (0.79–0.88) 0.267 (0.243–0.291)

0.94 (0.92–0.96) 0.84 (0.80–0.88) 0.266 (0.243–0.291)

0.94 (0.91–0.95) 0.84 (0.79–0.88) 0.265 (0.242–0.289)

0.94 (0.92–0.96) 0.85 (0.81–0.89) 0.261 (0.237–0.284)

0.94 (0.92–0.96) 0.84 (0.80–0.88) 0.262 (0.238–0.287)

0.94 (0.92–0.96) 0.84 (0.80–0.88) 0.263 (0.239–0.287)

UP intra-uterine pregnancy, EP ectopic pregnancy, SGH St. George’s Hospital,



0.0 0.2 0.4 0.6 0.8 1.0

Predicted probability

O
bs

er
ve

d 
pr

op
or

tio
n

a

0.0

0.2

0.4

0.6

0.8

1.0 SGH

FPUL
IUP
EP

0.0 0.2 0.4 0.6 0.8 1.0

Predicted probability

O
bs

er
ve

d 
pr

op
or

tio
n

b

0.0

0.2

0.4

0.6

0.8

1.0 QCCH

FPUL
IUP
EP

Fig. 1 Calibration curves for the original M4 model on the temporal
(a) and geographical (b) updating data

Van Calster et al. Diagnostic and Prognostic Research  (2017) 1:2 Page 7 of 14
0.71 (EP vs IUP) at temporal updating and 0.63 and
0.44 at geographical updating (Fig. 2).

Theoretical results
Due to the non-corresponding linear predictors, the
number of coefficients to be estimated in logistic re-
calibration increases quickly with the number of out-
come categories. Logistic recalibration requires the
estimation of k − 1 intercepts and of (k − 1)2 coeffi-
cients, hence k × (k − 1) parameters in total. Straight-
forward refitting of the model requires k − 1 intercepts
and of q × (k − 1) coefficients, hence (q + 1) × (k − 1) pa-
rameters in total. This implies that logistic recalibration is
obsolete if q < k because then refitting does not require
more parameters.
Discrimination
Discrimination improved only slightly with more
elaborate updating. An interesting finding is that re-
calibration can affect discrimination, which is not
possible for dichotomous risk models. For intercept
recalibration, this effect was so small that it was not
visible when rounding c-statistics to two decimals
(Table 4). Logistic recalibration clearly improved dis-
crimination (Table 4). For temporal updating, the
PDI increased to 0.88 and the c-statistics to 0.93 for
FPUL vs EP and 0.91 for IUP vs EP (Table 4). For
geographical updating, the PDI remained at 0.80, but
c-statistics increased to 0.96 (FPUL vs IUP) and 0.93
(FPUL vs EP) (Table 4). Refitting, refitting with in-
clusion of functional form, and extension led to fur-
ther small improvements in discrimination. Model
extension increased the PDI by +0.01 (geographical
updating) or +0.02 (temporal updating) and pairwise
c-statistics by at most +0.04.

Calibration
Intercept recalibration improved calibration substan-
tially by correcting calibration-in-the-large (Fig. 2).
Due to overfitting of M4, logistic recalibration further
improved calibration: the calibration slopes improved
to 0.98 (FPUL vs IUP) and 0.97 (EP vs IUP) at tem-
poral updating and to 1 and 0.98 at geographical up-
dating (Fig. 2). Calibration remained good for more
elaborate updating methods, although refitting and
extension led to slightly lower calibration slopes. This
was corrected when penalized versions of these
methods were used.

Overall performance (Brier) and closed testing procedure
The Brier score of the original model was 0.172 at tem-
poral updating and 0.286 at geographical updating
(Table 4). This improved gradually when intercept recali-
bration (0.165 and 0.278), logistic recalibration (0.158
and 0.267), or refitting (0.157 and 0.266) was used. Revi-
sion with inclusion of functional form improved Brier
scores to 0.153 and 0.263.
Model extension resulted in Brier scores of 0.150 and

0.262. The likelihood ratio tests for the log of progester-
one indicated its predictive value at temporal updating
(OR FPUL vs IUP = 0.19 (95% CI, 0.12 to 0.30), OR EP vs
IUP = 0.30 (0.19 to 0.46) and geographical updating (OR
FPUL vs IUP = 0.60 (0.44 to 0.81), OR EP vs IUP = 0.67
(0.50 to 0.91)).
The closed testing procedure favored refitting over

the original model or recalibration methods in both
datasets (Table 5), despite minor performance im-
provements of refitting over logistic recalibration
(Table 4, Fig. 2). This suggests that refitting resulted
in a better model log-likelihood compared to logistic
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Fig. 2 Calibration intercepts and slopes (with 95% CI) after correction for optimism using bootstrapping. Results for temporal updating are shown
in a–d and for geographical updating in e–h

Table 5 Results of the closed testing procedure

Step df Temporal updating (SGH) Geographical updating (QCCH)

1. Original model vs refitting 8 Δℓ = 241.6, p < 0.0001 Δℓ = 212.1, p < 0.0001

2. Intercept recalibration vs refitting 6 Δℓ = 169.1, p < 0.0001 Δℓ = 172.7, p < 0.0001

3. Logistic recalibration vs refitting 2 Δℓ = 20.2, p < 0.0001 Δℓ = 22.8, p < 0.0001

df degrees of freedom, SGH St. George’s Hospital, QCCH Queen Charlotte’s and Chelsea Hospital, Δℓ difference in −2 log-likelihood
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recalibration and hence that refitting would result in
improved predicted risks per patient. This is sup-
ported by reclassification graphs [28] shown in Fig. 3:
predicted probabilities are on average higher for the
true outcome after refitting than after logistic recali-
bration. For example, in panel C, the predicted risk
of IUP for true IUP cases from SGH is often higher
after refitting (y-axis) than after logistic recalibration
(x-axis).
The updated model coefficients for each method and

each dataset are provided in the Appendix.
Discussion
In this paper, we propose methods to update risk models
based on multinomial logistic regression. As a case
study, the M4 model to predict the outcome of pregnan-
cies of unknown location [12] was updated temporally
(using more recent data from the same setting) and geo-
graphically (using data from a different hospital). Seven
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Fig. 3 Reclassification plots for logistic recalibration (method 2) vs refitting
updating data: the predicted probability of FPUL when the reference stand
standard is IUP (c, d), the predicted probability of EP when the reference st
updating methods were considered: two recalibration
methods (intercept recalibration, logistic recalibration),
three revision methods (refitting of individual coeffi-
cients, penalized refitting of individual coefficients, and
refitting with reassessment of functional form of the
most important predictor), and two extension methods
(straightforward and penalized extension). A closed test-
ing procedure was introduced to select between no up-
dating, intercept recalibration, logistic recalibration, and
refitting.
Conclusions for the case study on the M4 model
The original M4 model was poorly calibrated in both
updating settings, but discrimination was very good.
Steady but mild improvements in discrimination were
observed when increasingly elaborate methods were
used. The closed testing procedure suggested refitting
in both updating settings. This was likely due to (1)
slightly better discrimination, (2) the fact that revision
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methods should improve the average accuracy of risk
predictions per individual, and (3) large validation
sample size. Reassessment of functional form ap-
peared to further improve discrimination, whereas pe-
nalized refitting had beneficial impact on calibration.
Extending the model with progesterone further im-
proved model discrimination.

Differences between updating of dichotomous vs
multinomial risk models
Some dissimilarities can be seen between dichotomous
and nominal updating methods. For dichotomous out-
comes, recalibration does not change the c-statistic,
since this is a rank order statistic not affected by linear
transformation. A multinomial logistic model contains
multiple linear predictors, one for each outcome cat-
egory vs the reference category. Because of different ad-
aptations to the linear predictors, recalibration methods
can change the PDI (nominal c-statistic) and the pair-
wise c-statistics.
For multinomial risk models with k outcome categor-

ies, we have k − 1 calibration intercepts and (k − 1)2

calibration slopes. Hence, logistic recalibration is
more complicated for multinomial logistic risk models
and in fact even becomes obsolete when k is higher
than the number of variables q in the original risk
model (excluding intercepts, but including nonlinear
and interaction terms). In these situations, logistic re-
calibration requires at least as many parameters as
straightforward refitting.
In addition, a multinomial calibration plot is more

complex than a dichotomous one [13]. For the former,
we have one curve for each outcome category while for
the latter, a single curve is sufficient. The same predicted
risk for one category can be associated with different ob-
served proportions depending on the predicted risks for
the other categories [13]. Therefore, irrespective of
whether a logistic or flexible calibration analysis is used,
smoothing is needed in the calibration plots to visualize
the overall relationship between predicted risks and ob-
served proportions.
Finally, the number of parameters to be estimated

increases with the number of outcome categories. For
example, if the original model has q variables, straight-
forward refitting requires (q + 1) × (k − 1) parameters.
Hence, the more categories, the more cumbersome
model revision becomes.

Choice of updating method
Calibration can often be strongly improved with sim-
ple intercept and/or slope adjustments [1, 7, 8]. When
updating a prediction model that was originally based
on a small sample, as in our case study, intercept re-
calibration will typically be insufficient as it is likely
that the original model is overfitted. Recalibration
corrects problems with the calibration intercepts and
slopes. This was recently described as “weak” calibra-
tion [26]. In contrast, “strong” calibration is defined
as the correspondence between predicted probabilities
and observed proportions per covariate pattern. This
is a utopic goal in empirical studies [26], but if we
would like to approach strong calibration, revision
methods should be preferred. These methods aim to
correct bias in individual model coefficients and
hence should on average lead to more accurate pre-
dictions per covariate pattern. In our case study, the
closed testing procedure indicated that refitting was
required although there were minor differences in dis-
crimination and calibration performance measures.
In research on updating methods for risk models, the

functional form or optimal transformation of continuous
predictors has thus far received limited attention. How-
ever, transformations used in the original model may not
hold for every setting in which the model may be used.
Settings will for example vary with respect to the homo-
geneity of the patient population, or the transformation
used in the original model may be the result of overfit-
ting. Our case study also showed that the functional
form of the effect of hCG ratio could be improved from
the original model.
In theory, one would always prefer revision methods

in order to make optimal adjustments to the model.
Computing power will usually not be an issue, but ra-
ther the available sample size is a key determinant for
the choice of updating method. If sample size is lim-
ited, recalibration may already give very good value
for money whereas revision may require too much
from the available data. However, when sample size is
large, model revision will help to further improve dis-
crimination and/or accuracy of predicted risks [26, 29].
Reliably reassessing functional form may require even
more data (e.g., updating a linearly modeled covariate
with restricted cubic splines). For multinomial
models, the number of outcome categories k is im-
portant as well. If k is larger than the number of
model variables q in the original model, logistic recal-
ibration is obsolete.
Existing evidence for dichotomous risk models

recommends at least 100–200 cases in the smallest out-
come category for reliable model validation [26, 30, 31].
Further, based on common guidelines for developing
dichotomous models, at least 10 cases per coefficient
in the smallest outcome category would be recom-
mended to use model revision [1, 32]. The total num-
ber of coefficients equals q × (k − 1) for multinomial
updating. For straightforward refitting, 20 cases per
coefficient is preferable; otherwise, penalized refitting
can be recommended [1]. If sample size is smaller,
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logistic recalibration is a defendable alternative. How-
ever, such guidelines for multinomial risk models re-
quire additional research. The closed testing
procedure indirectly takes sample size in account by
the fact that larger samples yield higher statistical
power: for larger samples, the procedure will more
easily suggest revision.
Further research
The influence of sample size (e.g., events per vari-
able (EPV)) on the development, validation, and up-
dating of multinomial logistic models for risk
prediction as well as its influence on calibration
slopes should be investigated. Second, different pen-
alization techniques for multinomial risk prediction
models can be considered, including variants of the
Lasso [1, 19, 33–36]. Third, research concerning al-
tering functional form of one or more predictors in
case of updating might be conducted. Fourth, it
might be of interest to use and consider benchmark
values to distinguish between case-mix effects and
wrong coefficients when explaining poor validation
results of multinomial prediction models [37]. Fifth,
updating methods should be evaluated within the
context of dynamic/continuous updating, a topic that
becomes increasingly relevant [38]. Finally, updating
techniques are needed for prediction models for or-
dinal outcomes.
Conclusions
Updating methods for dichotomous risk models were
successfully adapted to multinomial risk models. Sim-
ple recalibration methods may work well even if the
original prediction model was based on a relatively
small sample. Since the number of parameters to be
estimated increases with the number of outcome cat-
egories, we recommend full model revision only when
the sample size is large. To decide on the appropriate
updating complexity, the closed testing procedure is
helpful because it will tend to favor recalibration in
smaller samples and refitting in larger samples. If the
available sample size is large, revision including re-
assessment of functional form may be considered to
better tailor predictions to individual patients or co-
variate patterns.
Appendix

1 Exclusion criteria for the case study

For the study on pregnancies of unknown location,
exclusion criteria were being lost to follow-up, a
missing hCG level at presentation (hCG0) or a level
≤25 IU/L (which is considered as a negative preg-
nancy test), an unavailable 48-h hCG (hCG48) level,
and an hCG48 level that is not taken within 1 to
3 days after the hCG0 level. Some patients do not
have an hCG48 level due to an IUP or EP being
detected using ultrasonography prior to this blood
sample, a very low hCG0 level, failing to return in
time, or being lost to follow-up. Of the 2708 patients,
2295 (85%) are available for analysis after applying
the exclusion criteria. At SGH, 93 of 1610 women
had an hCG0 level ≤25 IU/L, 12 had no hCG48 level,
and 83 were lost to follow-up. At QCCH, 1 of 1098
women had no hCG0 level, 17 had an hCG0 level
≤25 IU/L, 125 had no hCG48 level, 22 had hCG48
measured more than 3 days after hCG0, and 60 were
lost to follow-up. Therefore, data from 1422 (88%)
patients were available at SGH and data from 873
(80%) women at QCCH. At SGH, there were 50%
FPUL, 41% IUP, and 9% EP. The QCCH data con-
tained 58% FPUL, 28% IUP, and 14% EP.

2 Logistic recalibration: worked out formula for the
case study

Logistic recalibration (method 2) has the following for-
mula for the case study:

LP2;FvsI ¼ α1 þ β1 � LPFvsI þ γ1 � LPEvsI

LP2;EvsI ¼ α2 þ γ2 � LPFvsI þ β2 � LPEvsI

�

The linear predictors LPFvsI and LPEvsI for the case
study are

LPFvsI ¼ log
PFPUL

PIUP

� �
¼ 5:88−1:18� log hCGmð Þ

−5:56� hCGrcþ 2:05
�hCGrc2

LPEvsI ¼ log PEP
PIUP

� �
¼ 0:39−0:06� log hCGmð Þ
−0:26� hCGrc−3:93
�hCGrc2

8>>>>>>><
>>>>>>>:

If we fill in these linear predictors into the logistic recali-
bration formula, we obtain the following updated linear
predictors:

LP2;FvsI ¼ a1 þ β1 � 5:88þ γ1 � 0:36ð Þ
þ β1 � −1:18þ γ1 � −0:06ð Þ � log hCGmð Þ

þ β1 � −5:56þ γ1 � −0:26ð Þ � hCGrc
þ β1 � −2:05þ γ1 � −3:93ð Þ � hCGrc2

LP2;FvsI ¼ a2 þ γ2 � 5:88þ β2 � 0:36ð Þ
þ γ2 � −1:18þ β2 � −0:06ð Þ � log hCGmð Þ

þ γ2 � −5:56þ β2 � −0:26ð Þ � hCGrc
þ γ2 � −2:05þ β2 � −3:93ð Þ � hCGrc2

8>>>>>>>>>><
>>>>>>>>>>:
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3 Updated model coefficients
Parameter of M4

dating method Intercept Log(hCGm) hCGrc hCGrc2 Log(prog)

mporal updating (SGH), FP vs IUP

No updating 5.88 −1.18 −5.56 2.05 na

Intercept recalibration 7.07 −1.18 −5.56 2.05 na

Logistic recalibration 9.12 −1.34 −6.32 1.70 na

Refitting 6.19 −0.86 −7.37 2.19 na

Penalized refitting 7.87 −1.14 −6.42 1.74 na

Refitting + rcs 24.08 −0.87 Replaced by rcs na

Extension 10.90 −0.77 −5.49 1.65 −1.67

Penalized extension 9.84 −0.84 −5.99 1.80 −1.20

mporal updating (SGH), EP vs IUP

No updating 0.39 −0.06 −0.26 −3.93 na

Intercept recalibration 0.99 −0.06 −0.26 −3.93 na

Logistic recalibration 5.29 −0.70 −3.31 −0.36 na

Refitting 4.01 −0.50 −4.04 0.33 na

Penalized refitting 4.86 −0.64 −3.33 −0.33 na

Refitting + rcs 14.44 −0.48 Replaced by rcs na

Extension 7.83 −0.47 −2.66 −0.14 −1.21

Penalized extension 6.83 −0.50 −3.05 −0.05 −0.84

ographical updating (QCCH), FP vs IUP

No updating 5.88 −1.18 −5.56 2.05 na

Intercept recalibration 6.15 −1.18 −5.56 2.05 na

Logistic recalibration 5.08 −0.82 −3.86 0.61 na

Refitting 4.74 −0.75 −4.04 0.06 na

Penalized refitting 4.86 −0.78 −3.90 0.50 na

Refitting + rcs 9.01 −0.73 Replaced by rcs na

Extension 5.67 −0.66 −3.38 −0.06 −0.52

Penalized extension 5.45 −0.73 −3.65 0.38 −0.32

ographical updating (QCCH), EP vs IUP

No updating 0.39 −0.06 −0.26 −3.93 na

Intercept recalibration 1.25 −0.06 −0.26 −3.93 na

Logistic recalibration 1.70 −0.20 −0.91 −1.33 na

Refitting 3.81 −0.51 −0.42 −1.59 na

Penalized refitting 3.22 −0.43 −0.67 −1.39 na

Refitting + rcs 0.79 −0.51 Replaced by rcs na

Extension 4.61 −0.45 0.07 −1.75 −0.40

Penalized extension 3.89 −0.43 −0.41 −1.45 −0.21

Gm the average of hCG at 48 hours and hCG at presentation, hCGrc the centered ratio of hCG at 48 hours and hCG at presentation, prog progesterone, FPUL
iled pregnancy of unknown location, IUP intra-uterine pregnancy, EP ectopic pregnancy, SGH St. George’s Hospital, QCCH Queen Charlotte’s and Chelsea
spital, rcs restricted cubic splines
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