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Abstract

Background: The use of multinomial logistic regression models is advocated for modeling the associations of
covariates with three or more mutually exclusive outcome categories. As compared to a binary logistic regression
analysis, the simultaneous modeling of multiple outcome categories using a multinomial model often better
resembles the clinical setting, where a physician typically must distinguish between more than two possible
diagnoses or outcome events for an individual patient (e.g., the differential diagnosis). A disadvantage of the
multinomial logistic model is that the interpretation of its results is often complex. In particular, the calculation of
predicted probabilities for the various outcomes requires a series of careful calculations. Nomograms are widely used
in studies reporting binary logistic regression models to facilitate the interpretation of the results and allow the
calculation of the predicted probability for individuals.

Methods and results: In this paper we outline an approach for deriving a generic nomogram for multinomial
logistic regression models and an accompanying scoring chart that can further simplify the calculation of predicted
multinomial probabilities. We illustrate the use of the nomogram and scoring chart and their interpretation using a
clinical example.

Conclusions: The generic multinomial nomogram and scoring chart can be used irrespective of the number of
outcome categories that are present.
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Background
The use of multinomial logistic regression modeling has
been encouraged to study multiple unordered outcome
categories (and possibly their combination) simultane-
ously [1, 2]. The multinomial logistic model can be
considered to be an extension of the popular binary logis-
tic regression model, which is often used in the pres-
ence of two mutually exclusive outcome categories. More
specifically, multinomial logistic regression analysis can
be viewed as a series of binary logistic regression analy-
ses where one of the outcome categories is the reference
category in each binary sub-model.
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Researchers often collapse multiple outcome categories
into a single binary (composite) outcome and use binary
logistic regression models to analyze their data. Conse-
quently, potentially important information about the dif-
ferent outcome categories is lost. It can also be argued that
a binary outcome often does not accurately reflect clinical
practice, where physicians commonly have to make deci-
sions while considering more than two relevant choices.
For instance, physicians often consider the presence of
differential diagnoses (and prognoses) for an individual
patient simultaneously [1].
One of the key reasons why researchers might refrain

from multinomial logistic regression analysis is that the
results from these models are more complex to interpret
and more elaborate than results from a binary logistic
regression analysis. In the multinomial context, regres-
sion coefficients are estimated for each binary sub-model
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reflecting the relation of covariates to one outcome cat-
egory relative to the reference category. The number of
estimated parameters quickly increases with additional
outcome categories considered. The large amount of
information from multinomial models can easily over-
whelm researchers and clinicians. In addition, when using
themultinomial logisticmodel for estimating probabilities
for individual patients, the computation involved for the
various outcomes requires a series of careful calculations.
Nomograms found many applications in the reporting

of binary logistic regression models (for recent examples,
see [3, 4]). A nomogram can not only improve insights
of clinicians into the results of a logistic model, it can
also be used to arrive at a predicted probability of out-
come(s) of interest that is (are) tailored to the profile of
an individual patient in a graphical manner. Nomograms
can thus facilitate clinical decision making during clinical
encounters. So far, nomograms have been used primar-
ily for improving the reporting of models with only two
outcome categories. We are aware of one recent paper
that reported on the construction and one on the applica-
tion of a nomogram formultinomial models. However, the
focus of these papers was limited to constructing a nomo-
gram for a limited number of outcome categories [5] and
the reporting of results of one specific dataset [6].
In this manuscript, we present how to construct, inter-

pret, and use a generic nomogram for a multinomial logis-
tic prediction model. We will first specify the multinomial
regression model and then present a general approach for
deriving the nomogram and accompanying scoring chart
for such models irrespective of the number of outcome
categories that are present.We will illustrate the use of the
nomogram and its interpretation using a clinical example
on the risk of operative delivery [7].

Multinomial logistic model
Let yi denote the single observed outcome category of
individual i. Assuming that this outcome is in one ofK cat-
egories (e.g., a disease among K possible diseases), wemay
assume Yi to be a multinomial random variable with prob-
abilities πi1, . . . ,πiK . Conditional on J observed covariate
values in vector xi, xi = {xi1, . . . , xij, . . . , xiJ }, the proba-
bility of observing category k is denoted by πk(xi). The
multinomial logistic model where category K is treated as
the reference category, can then be defined as

ln
πk(xi)
πK (xi)

= lpk(xi) = αk + β ′
kxi, k = 1, . . . ,K − 1, (1)

where αk is an intercept term, βk = {βk1, . . . ,βkJ } is a vec-
tor of regression coefficients and lpk(xi) is one of K − 1
linear predictors for individual i. We can now define the
probability of each possible category k by

πk(xi) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

exp
{
lpk(xi)

}
/
[
1 + ∑K−1

p=1 exp
{
lpp(xi)

}]

if k = 1, . . . ,K − 1

1/
[
1 + ∑K−1

p=1 exp
{
lpp(xi)

}]

if k = K .
(2)

Methods: Constructing themultinomial nomogram
The nomogram we suggest is a special case of a group
of nomograms that are formally known as parallel scale
nomograms. Doerfler [8] outlined the parallel scale nomo-
gram that can be constructed if a particular value can
be calculated from the sum of two functions. To use
this approach for multinomial logistic models, we make
use of a natural logarithm transformation applied to the
elements of Eq. 2, such that,

lnπk(xi) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

lpk(xi) − ln
[
1 + ∑K−1

p=1 exp
{
lpp(xi)

}]

if k = 1, . . . ,K − 1

− ln
[
1 + ∑K−1

p=1 exp
{
lpp(xi)

}]

if k = K .

(3)

To simplify notation, in the following we let
oik = lnπk(xi), lik = lpk(xi) and si =
− ln

[
1 + ∑K−1

p=1 exp
{
lpp(xi)

}]
.

The parallel scale nomogram makes use of the relation:
oik = lik + si. Each of these three elements in this rela-
tion corresponds to one of the three vertical axes of the
nomogram. The axes are denoted by L (left axis), O (mid-
dle axis), and S (right axis). Axis L is a scaled function of
linear predictor k,m1lik , where m1 is the scaling factor.
Axis O corresponds to the probability of observing cate-
gory k,m2oik . Lastly, axis S is a scaled function of the sum
of exponentiated linear predictors,m3si. Axes O and S are
on the natural log scale.
The nomogram is depicted in Fig. 1. Below we detail

the four-step procedure to arrive at this nomogram. For
further details about the construction of the parallel scale
nomogram, we refer to Doerfler [8].

Step 1: placing the outer axes (L and S)
To obtain an adequately sized nomogram, determine the
desired common height (h) for the outer two axes (L
and S) and the horizontal distance between them (d).
The two parallel axes are placed in the vertical direction.
The values for h and d are assigned at the discretion of
the researcher in a common metric (e.g., centimeters or
inches). Larger values for h and d will allow for more
precise reading of values.
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Fig. 1 Generic nomogram for reporting multinomial logistic regression analysis. Axis L: lpk(xi), Axis O: probability of outcome k, Axis S:
∑

p exp{lpp(xi)}

Step 2: determine the scaling factorsm1,m2,m3
For determining the scaling factors for the outer axes (m1
and m3), the relevant ranges of lik and si need to be con-
sidered. The limits of these ranges (llow, lup, slow, sup) may
be determined by the range observed in the data set where
the model was developed, e.g., llow = min(l̂ik) and lup =
max(l̂ik). These limits define the corresponding limits of
the axes. Once these ranges are chosen, the scaling fac-
torsm1 andm3 are computed bym1 = h/(lup − llow) and
m3 = h/(sup − slow). The remaining scaling factor is given
bym2 = m1m3/(m1 + m3).

Step 3: placing the middle axis (O)
The O axis is placed parallel to the outer axes. The hor-
izontal distance between the axes L and O is given by
dLO = d − d/(m1/m3 + 1).

Step 4: placing tick marks and labels
For the outer axes L and S, two sequences of values for
the tick marks and corresponding labels are defined: lT =
(llow, . . . , lt , . . . , lup) and sT = (slow, . . . , st , . . . , sup). Tick
mark t on the axis should be placed relative to the lower
end of that axis at a distance of m1 × (lt − llow) for axis
L and m3 × (st − llow) for axis S. For axis O, we define:
olow = exp{llow + slow}. Because the axis O represents
a log transformed probability scale, first a sequence of

arithmetic probabilities o∗
T is defined with values between

exp{olow} and 1. Then, tick mark t for this sequence may
be placed at m2 × (ln(o∗

t ) − f (olow)) labeled by o∗
t . Axis S

is labeled by
∑K−1

p=1 exp{lpp(xi)}.

Methods: Constructing the scoring chart
The use of the nomogram by health professionals can be
improved by additionally presenting a scoring chart. This
scoring chart provides a graphical approach to arriving at
the values for the two outer axes L and S of the nomogram
for any relevant combination of values on the covariates
(xi). For brevity, in this section we only consider the case
of a multinomial logistic regression model with first order
main effects. The scoring chart (and nomogram) can be
extended to accommodate situations where higher order
and interaction effects are present.
To make the scoring chart user-friendly, the individual

effects of covariate j, (β̂jkxij), that make up the linear pre-
dictor k are rescaled to a “standardized” score. The sum
over these individual effects together with a baseline score
make up a “standardized” total score. This total score is a
linear transformation of lik . To facilitate the applicability
of this standardized total score approach to the nomo-
gram, the scaling of axis L should be adjusted accordingly.
Below we detail the three-step procedure to arrive at the
scoring system that makes up the scoring chart.
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Step 5: standardized covariate effects: points
The estimated multinomial logistic regression coeffi-
cients, β̂jk , are rescaled relative to the largest (conditional)
covariate effect on a scale that has a minimum of 0 and
a maximum of 100. First, the relevant ranges for each
of the covariate variables are considered. Let the bound-
aries of these relevant ranges be denoted: xlowj and xupj .
The rescaling factor and rescaled coefficients are then
computed by r = 100/maxj,k(|β̂jkx

up
j − β̂jkxlowj |) and

β̂∗
jk = r × β̂jk . The covariate effects are “standardized”

by Pointsjk(xij) = β̂∗
jkxij − min(β̂∗

jkx
up
j , β̂∗

jkx
low
j ).

Step 6: standardized total effect: total points
A baseline score for each category (except the refer-
ence category) is defined that takes into account the
standardization that has been performed at step 5.
The baseline score is computed by blk = r × α̂k +
∑

j min(β̂∗
jkx

up
j , β̂∗

jkx
low
j ). To also obtain a “standardized”

baseline score such that the minimum rescaled base-
line score is zero, we subtract the minimum base-
line score, bl∗k = blk − mink(blk). The standardized
total effect for category k given covariate values is
then given by Totalk = bl∗k + ∑

j Pointsjk(xij). Notice
that lik = lpk(xi) = (Totalk + mink(blk))/r.

Step 7: connecting the standardized total effects to the S
axis
A horizontal axes representing Totalk is placed near
the lower end of the scoring chart. Another parallel
horizontal axis is placed: the values on this axis are
related to the former axis by exp{(Totalk + mink(blk))/r}.
Taking the sum over the values that can be read off from
the axis for all categories (except the reference category)
is all the information necessary for determining the value
on the S axis.

Result and discussion
Empirical example: predicting the risk of operative delivery
To illustrate the suggested scoring chart and nomogram
for the reporting of multinomial logistic models, we use a
previously publishedmodel on predicting the risk of oper-
ative delivery [7]. We detail their use by considering a spe-
cific hypothetical subject (described below). The predic-
tion model used in this illustration was developed using
data from a randomized clinical trial conducted in the
Netherlands [9].
In brief, the multinomial prediction model was devel-

oped in 5667 laboring women with high-risk vertex
(i.e., babies in a normal position in the uterus) sin-
gleton pregnancies beyond 36 weeks of gestation that
met the inclusion criteria of the randomized clinical
trial. Based on the combination of the intervention
(i.e., instrumental vaginal delivery (IVD) or caesarean
section (CS)) and the indication for the intervention
(i.e., fetal distress (FD) or failure to progress (FTP)),
women were assigned to one of five distinctive outcome
categories: spontaneous vaginal delivery (reference cat-
egory); instrumental vaginal delivery due to suspected
fetal distress (IVD-FD); caesarean section due to sus-
pected fetal distress (CS-FD); instrumental vaginal deliv-
ery due to failure to progress (IVD-FTP); or caesarean
section due to failure to progress (CS-FTP). The multino-
mial regression model included the antepartum variables:
maternal age, parity, gestational age, maternal diabetes
mellitus, previous caesarean delivery, fetal gender, mater-
nal hypertensive disorder, suspected intrauterine growth
restriction, and antepartum estimated fetal weight. An
antepartum prediction model was developed using this
set of variables (i.e., model 1 in Schuit et al. 2012; see
Table 1). For more details on the various outcome cate-
gories and candidate predictors, we refer to the original
publication [7].

Table 1 Multivariable associations for multinomial antepartum prediction model, predicting the risk of operative delivery

IVD-FD vs spont. CS-FD vs spont. IVD-FTP vs spont. CS-FTP vs spont.

β̂jk OR(95% CI) β̂jk OR(95% CI) β̂jk OR(95% CI) β̂jk OR(95% CI)

Intercept −13.1 −15.6 −11.1 −15.4

Maternal age, years 0.029 1.03 (1.01, 1.05) 0.052 1.05 (1.02, 1.09) 0.054 1.06 (1.03, 1.08) 0.056 1.06 (1.04, 1.08)

Gestational age, weeks 0.26 1.29 (1.18, 1.41) 0.32 1.38 (1.22, 1.56) 0.038 1.04 (0.95, 1.13) 0.13 1.14 (1.05, 1.24)

Nulliparous 2.05 7.79 (5.26, 11.5) 1.13 3.09 (2.09–4.55) 3.39 29.7 (17.2–51.1) 2.65 14.1 (9.78–20.3)

Previous caesarean delivery 1.77 5.87 (3.70, 9.32) 1.06 2.88 (1.74, 4.76) 2.39 10.9 (5.92, 20.1) 2.23 9.34 (6.17, 1.41)

Neonatal female gender −0.19 0.83 (0.67, 1.03) −0.5 0.61 (0.45, 0.83) −0.25 0.78 (0.63, 0.96) −0.013 0.99 (0.81, 1.20)

Birthweight, 100-g increments −0.059 0.94 (0.92, 0.97) −0.079 0.92 (0.89, 0.96) 0.083 1.09 (1.06, 1.11) 0.12 1.12 (1.10, 1.15)

Maternal diabetes mellitus 0.32 1.37 (0.65, 2.91) 0.99 2.69 (1.29, 5.60) −0.24 0.79 (0.35, 1.76) 0.87 2.38 (1.44, 3.95)
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Consider the following hypothetical subject: a nulli-
parous diabetic subject with a maternal age of 32 years, a
gestational age of 40 weeks, expecting a boy with an esti-
mated birth weight of 3540 g. Using the results presented
in Table 1 and a series of calculations (that follow from
Eqs. 1 and 2), one may calculate the predicted probabil-
ities for the hypothetical case study for each of the five
outcomes as 0.096 (IVD-FD), 0.051 (CS-FD), 0.069 (IVD-
FTP), 0.268 (CS-FTP), and 0.516 (spontaneous delivery).
To facilitate the calculation of the predicted probabilities,
we constructed a scoring chart (Fig. 2) and nomogram

(Fig. 2) using the reported regression coefficients by
Schuit et al. [7]. For illustrative purposes we have added
some information specific to the case study in Figs. 2
and 2. The scoring chart and nomogram without the
case study information can be found in Webfigure A and
Webfigure B, respectively.
Using the scoring chart (Fig. 2), each subject charac-

teristic can be converted into a score for a particular
outcome category (except the reference category). We
have illustrated this procedure by drawing vertical dashed
lines between the axes only for the subject characteristic

Fig. 2 Scoring chart—hypothetical case study based on multinomial prediction model in Schuit et al. Case description: Maternal age: 32 years;
gestational age: 40 weeks; nulliparous; birth weight: 3540 g, maternal diabetes. Abbreviations: instrumental vaginal delivery (IVD), caesarean section
(CS), fetal distress (FD), failure to progress (FTP)



van Smeden et al. Diagnostic and Prognostic Research  (2017) 1:8 Page 6 of 7

Fig. 3 Nomogram—hypothetical case study based on multinomial prediction model in Schuit et al. Case description: Maternal age: 32 years;
gestational age: 40 weeks; nulliparous; birth weight: 3540 g, maternal diabetes. Abbreviations: instrumental vaginal delivery (IVD), caesarean section
(CS), fetal distress (FD), failure to progress (FTP)

“maternal age” (32 years) to the Points axis (upper end
scoring chart) in the figure. We leave it to the interested
reader to draw the lines for the remaining characteristics.
By adding the points of the separate predictors to the base-
line points for each of the chosen outcomes, one obtains
the total points for this particular outcome. Each of these
total points should bemarked at the line indicated by Total
Points (lower end scoring chart). For the considered sub-
ject, the total points are 159 (IVD-FD), 140 (CS-FD), 149
(IVD-FTP), and 189 (CS-FTP). Further, by drawing ver-
tical lines from the marked points on Total Points axis
to the Exp(lik) axis (illustrated using dashed lines), one
can read-off the exponentiated linear predictor for each
of the outcome categories. This information is then put
in the boxes right under the Exp(lik) axis. Finally, by tak-
ing the sum over these values (registered under box “S”)
one obtains all information needed to use the nomogram
(Fig. 2).
To use the nomogram (Fig. 2), one first marks on the

Total Points axis (left axis) the total points for each out-
come category except the reference category, as derived
from the scoring chart. One than marks the value reg-
istered under box “S” in the scoring chart on the S axis
of (Fig. 2). The points marked on the Total points axis
and point on the S axis are then connected using straight
lines. From the middle “O” axis, one can now read-off

the predicted probabilities for each of the four outcomes
for this particular case. Finally, by subtracting these four
probabilities from one , the probability of the reference
category is obtained, corresponding to the probability of a
“spontaneous delivery”.

Conclusion
Nomograms are not likely to be used very often in con-
temporary clinical practice for calculating probabilities for
individual patients given the considerable burden placed
on the user and also because its accuracy is limited by
the precision with which physical markings can be drawn,
reproduced, viewed, and aligned. For this purpose, elec-
tronic implementation of a prediction model by means of
a website calculator, mobile app, or an algorithm imple-
mented into the electronic medical file of the patients to
directly calculate the relevant probabilities may be con-
sidered. However, we still think that nomograms remain
quite useful, even today, as they do offer great visual
insight a (multinomial) prediction model, which is often
perceived as a black-box (for a further discussion on the
usefulness of nomograms we refer to [10, 11]). There-
fore, we do expect that our general approach to construct
and report scoring charts and nomograms for multino-
mial logistic regression models will facilitate the inter-
pretation and use of such models to a wider audience.
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Our approach is flexible and generalizable and can be
used irrespective of the number of outcome categories
and types of covariates present. R-code for developing
the nomogram is available from http://mvansmeden.net/
software/multinomial-nomogram.
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