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Abstract

Background: Disease prevalence is rarely explicitly considered in the early stages of the development of novel
prognostic tests. Rather, researchers use the area under the receiver operating characteristic (AUROC) as the key
metric to gauge and report predictive performance ability. Because this statistic does not account for disease
prevalence, proposed tests may not appropriately address clinical requirements. This ultimately impedes the
translation of prognostic tests into clinical practice.

Methods: A method to express positive- and/or negative predictive value criteria (PPV, NPV) within the ROC space is
presented. Equations are derived for so-called equi-PPV (and equi-NPV) lines. Herewith it is possible, for any given
prevalence, to plot a series of sensitivity-specificity pairs which meet a specified PPV (or NPV) criterion onto the ROC space.
This concept is introduced by firstly reviewing the well-established “mechanics”, strengths and limitations of the ROC
analysis in the context of developing prognostic models. Then, the use of PPV (and/or) NPV criteria to augment the ROC
analysis is elaborated.
Additionally, an interactive web tool was also created to enable people to explore the dynamics of lines of equi-predictive
value in function of prevalence. The web tool also allows to gauge what ROC curve shapes best meet specific positive
and/or negative predictive value criteria (http://d4ta.link/ppvnpv/).

Results: To illustrate the merits and implications of this concept, an example on the prediction of pre-eclampsia risk in
low-risk nulliparous pregnancies is elaborated.

Conclusions: In risk stratification, the clinical usefulness of a prognostic test can be expressed in positive- and negative
predictive value criteria; the development of novel prognostic tests will be facilitated by the possibility to co-visualise such
criteria together with ROC curves. To achieve clinically meaningful risk stratification, the development of separate tests to
meet either a pre-specified positive value (rule-in) or a negative predictive value (rule-out) criteria should be considered:
the characteristics of successful rule-in and rule-out tests may markedly differ.
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Background
With the increasing availability of high-throughput plat-
forms and technologies capable of exploring the entire
“omics” pipeline, contemporary biomarker discovery studies
often yield extensive lists of putative biomarkers. Herewith
the simultaneous development and/or evaluation of various
prognostic test permutations becomes conceivable. By
combining specific subsets of markers, as determined in a

single “omics” analysis, different prognostic paradigms can
potentially be explored and a variety of clinical perspectives
can simultaneously be accommodated.
However, during our efforts to leverage this modulation

potential of “omics” in the development of novel prognostic
tests for pre-eclampsia [1, 2], we were confronted with a
“missing link” when it came to defining prognostic test per-
formance specifications. Where clinical practitioners will
often gauge the merits of a test in terms of prevalence-
dependent metrics like positive predictive value (PPV) or
negative predictive value (NPV), test developers will usually
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use other statistics, such as the area under the receiver op-
erating characteristic (AUROC, also referred to as the c-
statistic or the AUC), which are considered prevalence in-
dependent, to do the same. Here, we present a method
which seamlessly links these two views upon prognostic test
performances: the ability to plot PPV or NPV criteria,
which account for prevalence, in the receiver operating
characteristic (ROC) space. To illustrate the merits and im-
plications of this concept, we use the prediction of pre-
eclampsia risk.

AUROC: popular tool for evaluating prognostic tests
Statistics like sensitivity (Sn), specificity (Sp) and the
AUROC remain widely employed in the development
and assessment of prognostic tests, whereby “prognosis
relates to the probability or risk of an individual devel-
oping a particular state of health (an outcome) over a
specific time” [quoted from Moons et al. [3]]. This is es-
pecially true in biomarker discovery research and the
early stages of translational research, where Sn, Sp and
the AUROC are commonly considered independent of
the underlying prevalence of the condition under study.
Albeit it is known that differences in patient spectrum
lead to test performance variation across different popu-
lation subgroups [4], the assumed independence of Sn,
Sp and the AUROC facilitates the use of cost-effective
case-control studies to evaluate the merits of possible
novel prognostic markers or tests [5].
The AUROC, essentially a measure of discrimination,

corresponds to the probability that a classifier will cor-
rectly rank a randomly chosen person with the condition
higher than a randomly chosen person without the condi-
tion [4]. The AUROC may not be optimal in assessing
prognostic models or models that stratify individuals into
risk categories [6]. In this setting, model calibration (a
measure of how well predicted probabilities agree with ac-
tual observed risk) is also important for the accurate as-
sessment of risk [7]. Furthermore, since the AUROC is
not a function of the actual predicted probabilities but is
based solely on ranks, its use for model selection could
possibly eliminate useful risk factors from prediction
scores [8]. Notwithstanding the fact that the above limita-
tions of the AUROC in evaluating prognostic models are
well established [8, 9], the AUROC remains widely used to
report on prognostic model development efforts, and
there is a continuing reliance on the AUROC to evaluate
novel and emerging risk factors and biomarkers.
At the same time, the convenience of being largely inde-

pendent of disease prevalence is also the key limitation of
the use of the AUROC in prognostic test development.
Clinical decisions and access to certain clinical care path-
ways are mostly governed by weighing the benefits versus
the costs at the level of the intended-use population. For a
so-called “rule-in” test, the benefit of the early detection of

risk in those who will develop the disease (true positives)
needs to be balanced against the cost of wrongly identifying
individuals as being at high risk (false positives). Vice versa,
for a “rule-out” test, the benefits of finding true negatives
will be weighed against wrongly identifying false negatives
as being at low risk. When a prognostic test is assessed in
its clinically relevant context, metrics like positive and
negative predictive values (PPV and NPV), which take the
disease prevalence into account, are more appropriate [10].

Methods
Prognostic tests: AUROC, ROC curves and thresholds
The ROC curve follows the calculation of sensitivity and
specificity for all the test values obtained within a study;
sensitivity is plotted against 1-specificity in a ROC curve
(Fig. 1). Sensitivity (Sn) is equal to the true positive rate
and is expressed in function of true positives (TP) and
false negatives (FN) as follows:

Sn ¼ TP
TPþ FN

1ð Þ

Specificity (Sp) is equal to the true negative rate and is
classically expressed in function of true negatives (TN)
and false positives (FP) as follows:

Sp ¼ TN
TNþ FP

2ð Þ

The AUROC is considered a measure of the perform-
ance of a prognostic test, ranging from an area of 0.5
(non-discriminative test, the diagonal) up to 1 (a perfect
test with perfect discrimination of future cases and con-
trols). It is obvious from Fig. 1 that for a given AUROC,
differently shaped ROC curves can be found, whereby
each different shape corresponds to a prognostic test
with different prediction characteristics.
When a dichotomous test is required, a threshold for the

score is defined. For instance, to identify a population at
risk, it is common to lock the false positive rate (FPR)
allowed and then to observe where the ROC curve crosses
the specificity criterion [11, 12]. In Fig. 2a, it is shown that
for three differently shaped ROC curves, yet with the same
AUROC, this criterion results in three different sensitivities.
As mentioned earlier, the statistics AUROC, Sn and Sp are

considered prevalence-independent statistics [13], yet
prevalence is important when assessing the clinical useful-
ness of a prognostic test [14]. In case of a low prevalence
disease, high sensitivity and specificity can still be associated
with (very) low PPVs.
Prognostic test performance assessments should there-

fore also consider metrics that take the prevalence of a dis-
ease such as PPV into account, i.e. the fraction of patients
that will actually develop the condition (TP) within the
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group of all patients that have a positive test (TP + FP).
Fig. 2b, illustrates how, for the same specificity threshold,
prevalence modulates the PPV achieved. Applying Bayes’
theorem, PPV can be expressed in terms of Sn, Sp and
prevalence p [15]:

PPV ¼ Sn p

Sn pþ 1−Sp
� �

1−pð Þ 3ð Þ

In a similar fashion, one can show a linear relation-
ship between the multiplicative inverse of PPV,

prevalence and positive likelihood ratio; Add-
itional file 1: equations 3’ and 3”.
Therefore, and as shown in Fig. 2b, the PPV increases

with prevalence for a fixed sensitivity and specificity (or
fixed likelihood ratio).
Moreover, this illustrates that the utility of a prognos-

tic test cannot be determined by merely estimating
whether its sensitivity and/or specificity are higher than
or equal to a predefined cut-off. Indeed, a lower specifi-
city is permissible if sensitivity is higher.
Typically, a prognostic rule-in test should (1) identify a

minimal proportion of the patients that will actually de-
velop the disease and (2) ensure that this true positive
group has a sufficiently large proportion of the patients
testing positive. In other words, such prognostic tests must
reach a minimal sensitivity and minimal PPV (Fig. 3b).
Likewise, a prognostic rule-out test should (1) identify

a minimal proportion of patients that will certainly not
develop the disease and (2) ensure that of the patients
testing negative, sufficiently few will develop the disease
(false negatives). Such test must therefore reach a min-
imal specificity and minimal negative predictive value
(NPV); following Bayes’ theorem [14], NPV can be writ-
ten as follows (Eq. (4)):

NPV ¼ Sp 1−pð Þ
1−Snð Þ pþ Sp 1−pð Þ 4ð Þ

As for PPV, a linear relationship between the multiplica-
tive inverse of NPV, prevalence and negative likelihood ra-
tio can be derived; Additional file 1: equations 4’and 4”.

Equi-PPV and equi-NPV lines
When developing prognostic models for application in
healthcare, preferentially the clinical context of the tests

Fig. 1 Three different receiving operating curves with the same AUROC

a b

Fig. 2 Sensitivity and PPV at a given specificity. a Sensitivity at a given specificity (Sp = 0.90) for three ROC curves with the same AUROC (full ROC
curves shown in Fig. 1). b PPV as a function of disease prevalence (p = 0.05, 0.10, 0.20) for given specificity (Sp = 0.90) and sensitivity (Sn = 0.58)
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should be taken into account from the start. At the same
time, the convenience of using cost-efficient case-control
study designs and the well-established AUROCs to
evaluate models in development is desirable. Presented
with this conundrum, we established a means to visual-
ise PPV (and NPV) criteria in the ROC space.
For a rule-in test, a clinically relevant minimal PPV and

sensitivity are established. We can, for example, consider a
hypothetical prognostic test which becomes clinically rele-
vant when PPV ≥ 0.50 and sensitivity ≥ 0.50 (Fig. 3b). By
rearranging the Eq. (3), it is possible to derive specificity
(Sp) in terms of sensitivity (Sn) and PPV cut-off (PPVc):

Sp ¼ 1−Sn
p

1−pð Þ
1−PPVcð Þ
PPVc

whereby PPVc is a fixed target value, and Sn is varied be-
tween 0 and 1. For a given prevalence, the specificity at
which the PPV criterion is met can be calculated for
each sensitivity (Fig. 3a). This series of sensitivities and
specificities can be represented as a line onto a ROC
plot: we call this line the equi-PPV line (Fig. 3). The
equation for the equi-PPV line is:

Sn ¼ 1−Sp
� � 1−pð Þ

p
PPVc

1−PPVcð Þ 6ð Þ

Similarly, for a rule-out test an equi-NPV line can be
derived and plotted on ROC plots (Eq. (7)):

Sn ¼ 1− Sp
1−pð Þ
p

1−NPVcð Þ
NPVc

where NPVc is the NPV cut-off. This line corresponds
the minimal NPV required to achieve clinical relevance.

As shown in Fig. 3, equi-PPV (equi-NPV) lines can be
plotted in the ROC space. Combined with a sensitivity
(specificity) target, they divide the ROC space into quad-
rants that correspond with the clinical relevance of a
test. The predictive performance of a prognostic test
can, therefore, be quickly estimated. If the ROC curve
passes through the upper left quadrant, the test complies
with the predetermined performance criteria.

Software tool
To allow for the exploration of the relationship between
the AUROC, sensitivity, specificity, prevalence and predict-
ive values, a software tool was developed. Its dynamic inter-
face permits the reader to gain an understanding in the
dynamics of these relationship. The tool is available at the
following address: http://d4ta.link/ppvnpv/. On this website,
an R package is also made available so that the reader can
perform PPV and NPV analyses on their own data.

Results
Developing a pre-eclampsia test for first-time pregnant
women
We have a longstanding research interest in the predic-
tion of pre-eclampsia risks in nulliparous women early
in pregnancy using novel protein or metabolite bio-
markers [1, 2]. First-time pregnant women have a risk of
~ 1/20 to develop pre-eclampsia [16], or a relative risk of
approximately 2, compared to non-nulliparous [17].
In our continuous efforts to develop a clinically mean-

ingful screening test, we recently proposed the following
rationale [18]. The prenatal management of a multiparous
woman with regards to pre-eclampsia is largely guided by
her previous pregnancy history. Epidemiological studies

a b

Fig. 3 Illustrations of positive predictive value thresholds. a Impact of prevalence: equi-PPV lines for fixed positive predictive value (PPV = 0.50)
and three different prevalence values; i.e. 0.05, 0.1 and 0.2. b Defining minimum predictive performance: division of the “ROC space” into four
quadrants as defined by a PPV cut-off (PPV ≥ 0.50) and a sensitivity cut-off (Sn ≥ 0.50) corresponding minimum test requirements for a test to
deliver clinically relevant prognostic performance (hypothetical). Only tests whose ROC curves cross both cut-off lines and have points in the
upper-left quadrant (green) do outperform the minimum test requirements

(5)

(7)
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have shown that previous pre-eclampsia is associated with
an increased risk of recurrence. For a second pregnancy,
recurrence risks of about 1 in 8.6 to 1 in 6.8 (or PPV of
0.116 to 0.147) are reported [19, 20], whereas a woman
without prior pre-eclampsia will have a lower risk of 1 in
77 to 1 in 100 (or NPV of 0.987 to 0.99) [19, 20]. In line
with this, if a woman has experienced pre-eclampsia in a
previous pregnancy, she will be managed more vigilantly
in most healthcare systems in high-resource settings, with
more prenatal visits compared to a woman who did not
develop pre-eclampsia in any earlier pregnancy.
Based on the above, we proposed that a pre-eclampsia

risk stratification test for nulliparous should ideally mimic
the pre-eclampsia risk information as available for a
second-time pregnant woman. Therefore, the test should
either stratify nulliparous women to a high-risk group with
a post-test pre-eclampsia probability of at least 1 in 7.5
(equivalent to a PPV = 0.133; rule-in) or stratify them to a
low-risk group with a post-test probability of at least 1 in
90 (equivalent to a NPV = 0.988; rule-out) and ideally both.
In Fig. 4, we plotted both the proposed minimal PPV

and NPV criteria on the ROC space to identify the quad-
rant in the ROC space which would comply with both
these criteria simultaneously. To illustrate the impact of
prevalence, the criteria for three published prevalence
values were plotted: 0.05 [16], 0.03 [21], and 0.07 [22]
(rounded for convenience).
The reader can appreciate that to achieve the success

quadrant in each of the possible prevalence scenarios, a
screening test with extraordinary Sn and Sp is required. The
existence of such a test is unlikely; for instance, Royston et
al. noted that the AUROC of prognostic models is typically
between 0.6 and 0.85 [23]. Knowing that pre-eclampsia is a
syndrome [24] that at time of risk prediction the future dis-
ease status remains to be determined by a stochastic

process, the target population concerns healthy first-time
pregnant women without any overt risk factors, and pre-
eclampsia diagnoses cannot be made unequivocally [25],
the failure to develop such a test should not be surprising.
Yet the American College of Obstetricians and Gynecolo-
gists (ACOG) published recently that “useful prediction for
pre-eclampsia would require a high likelihood ratio (greater
than 10) for a positive test as well as a low likelihood for a
negative result (less than 0.2)” [26]; one can calculate this
would require for a prognostic test with a minimum Sn of
0.82, and associated Sp of 0.92, or AUROC ≥ 0.87.
Upon the realisation that a single prognostic test

for pre-eclampsia in low-risk first-time pregnant
women will not be able to meet the earlier proposed
target PPV and NPV criteria, we investigated whether
there are alternative ways to develop a clinically
meaningful pre-eclampsia risk prediction tests for this
intended patient population and how “omics” data
could help achieve this.
We hypothesise that possibly more meaningful pre-

eclampsia risk prediction can be achieved when the risk
stratification question is resolved in its two constituting
requirements: i.e., treat the rule-in and rule-out inde-
pendently. Instead of a pursuing a single risk stratifica-
tion test which meets both clinical PPV and NPV
requisites, the development of separate rule-out and
rule-in tests which complement each other and which
can be deployed together, should be considered. To this
end, minimal performance criteria for both tests must
be established: for instance, for the rule-in test, it could
be specified that at least 50% of all the cases need to be
identified (Sn ≥ 0.50), similarly it could be specified that
at least 50% of the non-cases need to be ruled out
(Sp ≥ 0.50). The sections of the ROC space where these
minimal performance criteria are met are highlighted in

a b c

Fig. 4 a–c Equi-PPV and equi-NPV lines corresponding the pre-eclampsia risk in multiparous pregnant women with previous pre-eclampsia (PPV) or
without previous pre-eclampsia (NPV). These minimal prognostic performance thresholds are calculated for three different pre-eclampsia prevalence
values, as reported for first-time pregnant women
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Fig. 5, based on the middle prevalence scenario (p =
0.05), please note the presented data are hypothetical.

Discussion
The ability to plot PPV (and/or NPV) criteria in the
ROC space provides the prognostic test developer with
an informative tool as it allows for the explicit account-
ing for prevalence (pre-test probability) and the clinically
desirable (or relevant) post-test probability. This is par-
ticularly relevant when developing and evaluating prog-
nostic tests for diseases of low prevalence.
Prognostic tests often combine multiple variables to

predict outcomes. The development of such multi-
component tests involves the selection and
optimization of a modelling technique and the selec-
tion of the relevant variables. In the test development
phase, this process often focuses on maximising the
AUROC only, irrespective of the underlying distribu-
tion of risk scores in cases and controls. In this
phase, case control design is typically applied for
practical and economic reasons; novel technologies
(like “omics”) to discover or evaluate novel predictive
markers are often cost and time intensive. Then, if a
dichotomous test is pursued, a suitable cut-off needs
to be selected: popular ways of selecting an optimal
threshold include finding the point on the curve clos-
est to the coordinate (x = 0, y = 1), and calculation
of the Youden index [14, 27]. These methods give
equal weight to sensitivity and specificity but do not
consider disease prevalence. Consequently, when de-
veloping novel prognostic tests, all too often little
thought is given to which predictive performance cri-
teria are relevant to a specific clinical demand: ultim-
ately, a test result should assist a clinician, to make

an actionable decision. By solely relying on metrics
such as the AUROC, sensitivity or specificity one
risks selecting sub-optimal variables and models and
ultimately proposing clinically meaningless tests.
In risk stratification, the aim is often to identify a

population at increased risk (rule-in), or at decreased
risk (rule-out), and to change care regimen accordingly.
In this context, PPV and NPV are important determi-
nants of the predictive performance of prognostic tests.
Explicit consideration of minimal PPV and NPV criteria
in test development bears the potential to deliver prog-
nostic models which are more fit-for-purpose. For
instance, in the pre-eclampsia example, the quoted pre-
eclampsia prevalence values all related to low-risk
nulliparous women (same care setting), yet the various
populations exhibited different a priori risks. As illus-
trated in Fig. 4, these differences in prevalence for differ-
ent patient populations are reflected in the slope of the
corresponding equi-PPV (NPV) lines, hence determine a
population-specific zone in the ROC space wherein the
minimal criteria for PPV (NPV; or PPV and NPV to-
gether) are met. This can also have an application in test
validation: when the prevalence of disease is known in
the validation setting, the zone of successful validation
can easily be determined upfront. Upon calculating the
risk scores in the validation cohort using the prognostic
model under scrutiny, one can then observe whether the
ROC curve (or associated 95% confidence interval) is
crossing the zone of success. Recently, Willis and Hyde
introduced a similar concept, i.e., an “applicable region”
in the ROC space. Interestingly, they derived this con-
cept to select studies for meta-analysis as relevant for a
certain clinical setting [28, 29]. Evidently, a significant
change in application setting, e.g., from secondary care

a b

Fig. 5 Multivariable modelling. Two possible prognostic test permutations for pre-eclampsia prediction in first-time pregnant women are shown
(hypothetical data) (a). Rule-in test compliant with pre-set test specification: PPV ≥ 0.133, Sn ≥ 0.50, for a 5% disease prevalence. b Rule-out test
compliant with pre-set test specification: NPV ≥ 0.988, Sp ≥ 0.50, for a 5% disease prevalence
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to primary care, will have a more profound impact on
case mix, being the distribution of outcomes and pre-
dictive factors [30]. Such change of application setting
and patient spectrum will be outside the utility scope of
equi-PPV (NPV) lines for gauging test performance.
Ideally, the performance of prognostic models should

also be assessed in terms of calibration [7, 23], where one
will look to compare the observed probabilities with the
predicted probabilities [9]. It is interesting to note that by
itself, the definition of a cut-off using PPV and NPV does
not require prior calibration of the model. This is due to
the fact that calibration is done by applying a monotonic
transformation to the score. The independence from cali-
bration is illustrated by the fact that calibration does not
usually modify ranking and that the ROC curve is based
on the ranking of the scores. It is important to mention
that calibrated scores and predictive values have different
use. The calibration ensures that the test score reflects the
likelihood of a test to predict a patient’s chance to develop
a condition [31]. The predictive values give the likelihood
that a subset of selected patients develops (or not for the
NPV) a condition.
In our pre-eclampsia example, we also hypothesised that

the explicit consideration of PPV and NPV criteria in test
development also allow dissemination of data-rich “omics”
experiments in an alternative and possibly more effective
way. Rather than searching for a “golden” combination of
markers which meets various stakeholder perspectives,
often leading to the unattainable requirement to deliver
high PPV and high NPV at the same time, the likelihood of
finding subsets of markers which answer PPV and NPV cri-
teria independently will increase. In other words, a single
“omics” analysis can deliver inputs to two different test par-
adigms, which can be interpreted independently or con-
junctly, depending on the clinical context. As can be seen
in Fig. 5, prognostic tests that meet the separate pre-set cri-
teria do not necessarily have very high AUROCs, rather
they have skewed risk score distributions, and hence
skewed ROC curves.
A limitation of this approach is the possibility that the

combined rule-in and rule-out stratification using inde-
pendent tests can deliver conflicting information: e.g. a pa-
tient might be classified to be simultaneous high risk and
low risk. One will have to determine what fraction of pa-
tients will be in this “conflict” group, and what the appro-
priate care would be for the patients in this group. Again,
this will be depending on the clinical context; for instance,
in our case of pre-eclampsia risk stratification in low-risk
nulliparous, this group might be considered “unclassified”
and stay in the “one-fits-all” care pathway which is the
current clinical standard.
Finally, we consider it conceivable that multi-component

tests which are developed to comply with either the rule-in
or the rule-out test will also be more generalisable. Using

the web tool, it was found that models which comply with a
(stringent) PPV criterion are characterised by a fraction of
cases which are very well discriminated (following a tight
risk score distribution in controls). Vice versa, models
which comply with a (stringent) NPV criterion are charac-
terised by a fraction of controls which are very well discrim-
inated (following a tight risk score distribution in the cases).
Provisional this is not a result of mere overfitting or patient
spectrum, it may well be the predictors constituting a good
rule-in model are more directly associated with the patho-
physiology of the condition (e.g. pre-eclampsia) or its sever-
ity. Likewise, a good rule-out model might constitute
predictors which are strong determinants of non-disease (or
health). If so and arguably, the methods presented here may
enhance the transportability of such models across different
healthcare and demographic settings. Validation of dedi-
cated rule-in or rule-out models will need to be done to
confirm this hypothesis. Of note, we applied a rule-in criter-
ion (PPV≥ 0.20; Sn ≥ 0.50) to develop a biomarker based
prognostic model for pre-eclampsia in low-risk nulliparous
once before; in that instance, we were able to validate the
model as developed in a cohort of New Zealand and Aus-
tralian women in an European patient population [1].

Conclusion
The equi-PPV and equi-NPV lines are valuable statistical
tools which enrich the well-established ROC analysis to
quantify the clinical usefulness of a prognostic test in a
simple and meaningful fashion. The enriched ROC plots
simultaneously visualise sensitivity, specificity, NPV and/
or PPV. They can be used to estimate the clinical rele-
vance of a prognostic test by visualising simultaneously a
range of statistics and in particular its rule-in and/or its
rule-out performance. It can also be used to compare
prognostic tests or to gauge the impact of e.g., preva-
lence on the predictive performance requirements.
It is of note that equi-PPV and equi-NPV lines are also

relevant for the development and evaluation of diagnos-
tic tests.
The reader is invited to explore this feature at the fol-

lowing website: http://d4ta.link/ppvnpv/.

Additional file

Additional file 1 Expression of predictive values in terms of prevalence
and likelihood ratio’s. (DOCX 21 kb)
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