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Abstract

Background: Research on prognostic prediction models frequently uses data from routine healthcare. However,
potential misclassification of predictors when using such data may strongly affect the studied associations. There is
no doubt that such misclassification could lead to the derivation of suboptimal prediction models. The extent to
which misclassification affects the validation of existing prediction models is currently unclear.

We aimed to quantify the amount of misclassification in routine care data and its effect on the validation of the
existing risk prediction model. As an illustrative example, we validated the CHA2DS2-VASc prediction rule for
predicting mortality in patients with atrial fibrillation (AF).

Methods: In a prospective cohort in general practice in the Netherlands, we used computerized retrieved data from
the electronic medical records of patients known with AF as index predictors. Additionally, manually collected data
after scrutinizing all complete medical files were used as reference predictors. Comparing the index with the reference
predictors, we assessed misclassification in individual predictors by calculating Cohen'’s kappas and other diagnostic
test accuracy measures. Predictive performance was quantified by the c-statistic and by determining calibration of
multivariable models.

Results: In total, 2363 AF patients were included. After a median follow-up of 2.7 (IQR 2.3-3.0) years, 368 patients died
(incidence rate 6.2 deaths per 100 person-years). Misclassification in individual predictors ranged from substantial
(Cohen's kappa 0.56 for prior history of heart failure) to minor (kappa 0.90 for a history of type 2 diabetes). The
overall model performance was not affected when using either index or reference predictors, with a c-statistic of
0.684 and 0.681, respectively, and similar calibration.

Conclusion: In a case study validating the CHA2DS2-VASc prediction model, we found substantial predictor
misclassification in routine healthcare data with only limited effect on overall model performance. Our study
should be repeated for other often applied prediction models to further evaluate the usefulness of routinely
available healthcare data for validating prognostic models in the presence of predictor misclassification.
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Background

Prognostic prediction models aim to estimate the prob-
ability that a certain outcome may develop in the future
and, in many medical fields, they are essential in assist-
ing clinical decision making. Studies on prediction
models include development, validation, updating, and
implementation and frequently rely on large datasets
from routine healthcare [1]. Derived from, for instance,
electronic health records or administrative databases,
these data offer great potential for clinical research.
After a prediction model is developed and its potential
usefulness is recognized, it is typically validated, possibly
using routine healthcare data, in different healthcare set-
tings and various countries to justify its application.

Yet, while the validity of routine healthcare data [2]
and implications of potential misclassification on studied
associations [3-6] are well-addressed in general, mis-
classification in predictors in the context of prognostic
research specifically has received little attention. Even
though the RECORD statement [2] suggests to assess
the accuracy of categorical routine healthcare variables
by comparing them to a reference standard using diag-
nostic test accuracy measures (i.e., sensitivity, specificity,
positive and negative predictive values) or kappa coeffi-
cients, it is still unknown whether this approach suffi-
ciently captures the potential bias and/or imprecise
inferences that may arise when validating existing pre-
diction models.

Using the well-known CHA2DS2-VASc model as a case
study, we aimed to further explore the influence of pre-
dictor misclassification on the validation of a prediction
model when using routine healthcare or registry data.

First, we quantified the amount of misclassification
present in routine care registry data of a representative
sample of patients with atrial fibrillation in general prac-
tice. Second, we assessed the influence of predictor mis-
classification on the accuracy of the CHA2DS2-VASc
model to predict mortality when validated on such data.

Methods

Clinical setting and the CHA2DS2-VASc prediction rule
Atrial fibrillation is the most common cardiac arrhythmia,
with a prevalence of 1-2% in the general population [7]. It
is a major risk factor for ischemic stroke; hence, the pre-
diction (and subsequent reduction) of stroke risk is a
mainstay in the treatment of atrial fibrillation [8]. Practice
guidelines [9-11] recommend the use of a clinical predic-
tion rule, of which the CHA2DS2-VASc rule is now most
commonly recommended and used. This rule was devel-
oped in 2010 by Lip et al. [12], as an update to the earlier
CHADS?2 score [13], and originally intended to predict ei-
ther an ischaemic stroke, peripheral embolism, or pul-
monary embolism by assigning AF patients points for
congestive heart failure (1 point), hypertension (1 point),
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age above 75 years (2 points), diabetes (1 point) and
prior stroke (2 points), age above 65 (1 point), vascu-
lar disease (1 point), and female sex (1 point). The
total score subsequently results in an expected annual
stroke risk (see Tables 1 and 2).

Index predictors: routine care ICPC codes

We used data from the CAFe study, a large prospective
cohort study of patients with atrial fibrillation in general
practice in the Netherlands aimed to validate the accur-
acy of the CHA2DS2-VASc prediction model and to
quantify the effect of an automated treatment decision
support tool (trial registration number NTR3741) in a
cluster randomized trial. From February 2013 until Sep-
tember 2014, 38 general practices were enrolled. All pa-
tients with electrocardiographically confirmed atrial
fibrillation were included in the CAFe cohort. Follow-up
lasted a minimum of 2 years. Every 3 months, the elec-
tronic patient file of these AF patients was captured into
a designated research database, containing diagnosis
codes, and free text records and test results. In the
Netherlands, general practitioners (GPs) are encouraged
to record “diagnosis codes” according to the Inter-
national Classification of Primary Care (ICPC) [14] dur-
ing routine care consultations. In the general practices,
personal details are registered through linkage to admin-
istrative data from the municipal authorities, of which
age and sex are captured into the research database. For
the remaining predictor values in CHA2DS2-VASc, the
corresponding ICPC codes were automatically retrieved
and considered as the index predictors. For an overview
of the ICPC codes used, see Table 3.

Reference predictors: manually verified predictors

Except for the predictors “Age” and “Sex category,”
which were obtained from the municipal authorities,
the correctness of the routinely recorded ICPC codes
corresponding to the remaining CHA2DS2-VASc pre-
dictors was manually checked using all available

Table 1 The original CHA2DS2-VASc score [12]

Predictor Score
Congestive heart failure/LV dysfunction 1
Hypertension 1
Age 2 75 years 2
Diabetes mellitus 1
Stroke/TIA/TE 2

Vascular disease (prior myocardial infarction, peripheral artery 1
disease, or aortic plaque)

Age 65-74 years 1

Sex category (i.e, female sex) 1

TE thromboembolism
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Table 2 The annual risks of thromboembolism (ischemic stroke,
peripheral embolism, or pulmonary embolism) for CHA2DS2-
VASc, adjusted for aspirin use [12]

CHA2DS2-VASc score Risk (events/persons)
0 0 (0/103)

0.7 (1/162)
1.9 (3/184)
4.7 (8/203)
2.3 (4/208)
39¢(
4.5 (

3/95)

2/57)
10.1 (2/25)
142 (1/9)
100 (1/1)

The original study deriving the CHA2DS2-VASc consisting of 1084 AF patients
with a follow-up of 1 year, considering ischemic stroke, peripheral embolism,
or pulmonary embolism as outcomes for thromboembolism

O 0 N O 0 M W N

information from the electronic patient file including
diagnostic test results, out-of-hours office reports, and
specialists’ letters. As such, each patient file was thor-
oughly scrutinized and the value of each ICPC code
corresponding to the predictors in the CHA2DS2-
VASc was recorded. These values were collectively
used as the reference predictors of which the defini-
tions are shown in Table 3.

For each patient, two values for the CHA2DS2-VASc
predictors were included in the dataset: one based on
the ICPC codes recordings (index) and one based on the
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manual check of these ICPC codes by scrutinizing the
complete patient file (reference).

Outcome

Our aim was to study potential misclassification in the
prediction variables, not in the outcome. The
CHA2DS2-VASc was originally developed to predict ei-
ther ischemic stroke, peripheral embolism, or pulmonary
embolism. In our methodological study, however, we
used all-cause mortality as an illustrational outcome for
two reasons. First, stroke may be difficult to diagnose,
especially stroke as the cause of (unexpected) death. The
outcome all-cause mortality can be objectively deter-
mined. Second, such mortality data may often be cap-
tured by the municipal authorities, as was the case for
the general practices in our study, further avoiding mis-
classification in the outcome. We manually checked vital
status using the electronic patient file. Follow-up was a
minimum of 2 years.

Data analyses

The following analyses were performed to assess mis-
classification in the predictors based on routinely recorded
ICPC codes (index) and determine the consequences of
such misclassification on the prediction of all-cause
mortality:

1. We compared the index predictor values with the
reference predictor values using Cohen’s kappa [15]
and calculated sensitivity, specificity, and positive

Table 3 Automatically extracted ICPC codes for the index predictors in the CHA2DS2-VASc model and the definition of the reference

predictors used for manually scrutinizing the electronic patient file

Predictor ICPC code(s) for index predictors

Definition for reference predictors

Congestive heart failure K77 heart failure

Hypertension K86 hypertension without organ
damage
K87 hypertension with organ

damage/secondary hypertension
Age Age in years

Diabetes T90 type 1 and type 2 diabetes

Stroke/TIA K89 TIA

K90 cerebrovascular accident (stroke)

Vascular disease K74 angina pectoris

K75 acute myocardial infarction

K76 other chronic ischemic heart
disease

K91 atherosclerosis

K92 other peripheral arterial disease
KO3 other pain suspected to originate
from the cardiovascular tract

Sex category Female sex

Signs and symptoms suggestive of heart failure, with structural or
functional abnormalities on echocardiography, either with preserved
or reduced ejection fraction

Repeated systolic blood pressure measurement of 140 mmHg or higher

Age in years

Repeated fasting blood glucose measurement of = 7.0 mmol/L
(126 mg/dL) or a non-fasting glucose measurement of 2 11.1
mmol/L (200 mg/dL)

Focal neurological deficit of sudden onset lasting > 24 or < 24 h,
respectively

- Coronary heart disease: prior myocardial infarction (both ST-elevated
myocardial infarction or non-ST-elevated myocardial infarction), angina
pectoris or prior percutaneous coronary intervention (PCl) or coronary
artery bypass graft surgery (CABG)

- Peripheral artery disease: symptoms of intermittent claudication with
ankle-branchial index < 0.9 or prior surgery or percutaneous intervention
on the abdominal or thoracic aorta or lower extremity vessels

Previous thrombo-embolism

Female sex
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and negative predictive values of the dichotomous
index predictors with respect to the reference predictors.

2. For each patient, we calculated the CHA2DS2-VASc
score using either the index predictors or the
reference predictors. We tabulated the two
distributions of these CHA2DS2-VASc scores and
the discordance. Next, for each score on CHA2DS2-
VASc based on index predictors and reference
predictors, we calculated the mortality incidence
rate (IR) per 100 person-years.

3. To assess the influence of misclassification on
discrimination, we calculated the c-statistic using
censored data for the CHA2DS2-VASc model as a
continuous point-based score based on the index
predictors and on the reference predictors.

4. For assessing the influence of misclassification on
calibration, data on the baseline hazard and hazard
ratios for the CHA2DS2-VASc model predicting
mortality are missing. To obtain these, we first fitted a
multivariable Cox proportional hazards CHA2DS2-
VASc model using the individual reference predictors.
We assessed calibration by creating a calibration plot
and calculating the calibration slope. Using the same
baseline hazard and hazard ratios, we then assessed
calibration using the index predictors; the difference
in calibration then occurring can only be caused
by misclassification.

All analyses were performed in R [16] version 3.32
with the packages survival 2.40-1 and rms 5.1-0.

Results

A total of 2363 patients with atrial fibrillation were in-
cluded in the cohort. The median age was 77 (IQR 68-84)
years, and 52.3% were male. During a follow-up of
5901 person-years (median 2.7 years, IQR 2.3-3.0), in
total, 368 patients died (crude incidence rate 6.2/100 per-
son-years), mostly from non-cardiac causes (74%).

Misclassification in individual predictor values
There was substantial variation in the amount of mis-
classification between the index predictors (see Table 4).
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For instance, the prevalence of (a history of) heart fail-
ure according to the ICPC codes was 28.1%, whereas by
manually checking all available information in the elec-
tronic patient file, the prevalence was 18.3% (Cohen’s
kappa 56.1). The prevalence of other index and reference
predictors were more comparable, e.g., for hypertension,
60.8 and 59.9% (kappa 70.9), respectively, and for dia-
betes, 24.3 and 22.5% (kappa 89.7), respectively. For
cross tables with the presence and absence of each pre-
dictor individually, see Additional file 1: Table S1. Sensi-
tivity (i.e., the proportion of patients with heart failure
according to the reference predictor that correctly had
the diagnosis according to the index predictor) was low-
est for heart failure (55%) and highest for diabetes (89%).
Specificity (i.e., the proportion of patients without heart
failure according to the reference predictor that correctly
were diagnosed as such using the index predictor)
ranged from 83% (hypertension) to 99% (diabetes). A
similar pattern was observed for the predicted probabil-
ities. Diabetes showed the highest PPV (i.e., the probabil-
ity of having diabetes according to the reference
predictor if diagnosed with diabetes according to the
index predictor) and NPV (i.e., the probability of not
having diabetes according to the reference predictor if
the index predictor was absent) of 98.8 and 96.4%, re-
spectively. Hypertension again showed the lowest values
(83.3 and 81.6%, respectively).

CHA2DS2-VASc scores and observed mortality

With respect to the reference predictors, the index pre-
dictors assigned patients the correct CHA2DS2-VASc
scores in between 40.7% (for score 7) and 85.0% (for
score 0); see Fig. 1. The median CHA2DS2-VASc score
using index data was 4.0 (IQR 2-5); for the reference
data, this was 3.0 (IQR 2-5).

Table 5 shows the number of patients, the number of
events, the total number of person-years, and the ob-
served IR of all-cause mortality for each CHA2DS2-
VASc score calculated with index and reference predic-
tors. Although small numbers for the lowest and highest
score limit definite conclusions, we observed a relative
~10% difference between both sets of predictors. For

Table 4 Prevalence of individual ICPC codes (index predictors) and manually verified diagnoses (reference predictors) and measures

of misclassification

ICPC codes (index Manually verified diagnoses Kappa Sensitivity Specificity PPV NPV
predictors) (reference predictors)
Congestive heart failure/LV dysfunction 28.1 183 56.1 54.5 957 833 843
Hypertension 60.8 599 709 87.8 83.3 89.1 81.6
Diabetes 243 22.5 89.7 88.6 98.8 95.8 96.4
Stroke/TIA/TE 18.7 164 755 74.8 97.1 85.5 94.4
Vascular disease 346 26 604 63.1 937 84.2 827

ICPC International Classification of Primary Care, PPV positive predictive value, NPV negative predictive value
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Fig. 1 The concordance of CHA2DS2-VASc scores as calculated using the index predictors (x-axis) and as calculated using the reference predictors

instance, for patients with a score 4 according to the
index predictors, the IR was 5.6 per 100 person-years,
while this was 6.5 per 100 person-years for the same
score according to the reference predictors.

Discrimination
The c-statistics were 0.685 (95% CI 0.655-0.715) for the
CHA2DS2-VASc model as a continuous score based on

the index predictors and 0.682 (95% CI 0.653-0.712)
based on the reference predictors, respectively.

Calibration

To obtain a baseline hazard and hazard ratios of
CHA2DS2-VASc predicting mortality, we first fitted a
multivariable Cox proportional hazards with the individ-
ual reference predictors. Details on this model are

Table 5 Incidence rate of all-cause mortality for each CHA2DS2-VASc score as calculated with ICPC codes (index predictors) or manually

verified diagnoses (reference predictors)

ICPC codes (index predictors)

Manually verified diagnoses (reference predictors)

Score No. of patients (%) No. of events py IR No. of patients (%) No. of events py IR

0 124 (5.3) 2 338 0.6 125 (5.3) 2 346 0.6
1 194 (8.2) 2 541 04 203 (8.6) 4 567 0.7
2 307 (13.0) 29 892 33 344 (14.6) 37 994 3.7
3 356 (15.1) 48 1041 46 417 (17.7) 54 1208 45
4 404 (17.2) 67 1186 56 431 (18.3) 83 1274 6.5
5 292 (12.4) 86 887 9.7 254 (10.8) 89 795 1.2
[§ 187 (7.9) 70 590 1.9 139 (5.9) 60 441 13.6
7 82 (3.5) 37 262 14.1 54 (2.3) 27 187 144
8 33(14) 26 127 20.5 16 (0.7) 10 60 16.7
9 8(0.3) 1 23 43 4(02) 2 14 143

py person-years/100, IR incidence rate no. as of events/100 person-years
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specified in Additional file 1: Table S2. The calibration
slope of this model was 1.00 (95% CI 0.85-1.15).

The baseline hazard and hazard ratios were then used
to assess calibration using the index predictors. There
was a slight underestimation of the probability of sur-
vival across all risk deciles when using routine health-
care data, though differences in calibration were
minimal with equal calibration slope of 1.00 (95% CI
0.86-1.15). See Fig. 2.

Discussion

We illustrated the impact of potential misclassification
in routine healthcare data when such data was used as
predictors in a prognostic prediction model. In our val-
idation of the CHA2DS2-VASc rule in patients with
atrial fibrillation, we found substantial misclassification
in the predictor values from routinely collected general
practice diagnosis codes, but this did not affect the ac-
curacy of the model to predict mortality.

In recent years, the availability of data routinely col-
lected during healthcare delivery has grown substantially
[17], whereas in the past epidemiologic research often
was dependent on dedicated prospective cohorts [18].
With the availability of faster computers and software
programs, everyday healthcare data, possibly linked to
other data sources, has a great potential for large-scale
observational clinical studies. Indeed, in the field of atrial
fibrillation, for instance, studies evaluating populations
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with over 100,000 AF patients are becoming the new
standard, rather than an exception [19-21]. Importantly
though, these studies mostly rely on diagnosis disease
codes (e.g., ICD-10 codes, READ codes, or ICPC coding)
as generated during daily clinical practice. Following stud-
ies that investigated the completeness of morbidity coding
[22] or the methods and reporting of validity assessment
[23], the quality of these data has been questioned. While
these studies certainly contribute to knowledge on the val-
idity of routine healthcare data itself, it does not provide
full insight in the validity of applying such data in predic-
tion models. This is important, because the number of
prediction models used in everyday practice is rapidly
increasing [24—26].

To the best of our knowledge, our study is the first to
quantify the influence of predictor misclassification in
these data on the results of a study validating a clinical
prediction model.

For full appreciation of our findings, several remarks
should be made. First, several processes leading to mis-
classification in data from routine healthcare can be hy-
pothesized. At the most basic level, simple coding
mistakes such as typing errors or choosing the wrong
diagnosis code may lead to the inadvertent presence or ab-
sence of a diagnosis code. Furthermore, if an initially sus-
pected disease (e.g, heart failure or coronary heart
disease) is not confirmed after future diagnostic testing,
the diagnosis code needs active removal from the
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Fig. 2 Calibration plot showing deciles of observed and predicted probabilities of survival from the CHA2DS2-VASc model developed using the
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T T 1
0.8 0.9 1.0




van Doorn et al. Diagnostic and Prognostic Research (2017) 1:18

electronic patient file or it will lead to “false positives.”
Practitioners conversely may also omit diagnosis codes for
certain diseases frequently occurring and managed con-
comitantly. For instance, recording “hypertension” and
“coronary heart disease” (both included in the CHA2DS2-
VASc model) together as “cardiovascular disease” may
cause “false negatives” in the index predictors.

Second, a further cause for misclassification may be
suboptimal diagnostic criteria for a certain disease. We
found substantial variation in the validity of data from
routine healthcare where, for instance, “a history of heart
failure” showed notable misclassification. It can be diffi-
cult to diagnose heart failure, especially in absence of
echocardiography as is often the case in general practice.
Indeed it has been shown that heart failure is often over-
diagnosed in general practice, similarly as in our study
[27]. Diabetes, on the contrary, is predominantly diag-
nosed in general practice based on well-defined diagnos-
tic criteria and showed very limited misclassification.
When using routine care data in epidemiological re-
search, potential difficulties in diagnosis of diseases and
thus variation between data sources in the variables
under study (e.g., electronic patient records or adminis-
trative databases) should be considered [28].

Third, the CHA2DS2-VASc score is a simplistic deci-
sion rule, with limited integer weighting of predictors (1
of 2 points). Although we did find pronounced differ-
ences in the score as calculated with index or reference
predictors, using such simple weighting could also have
“canceled out” some of the misclassification. Future
studies should investigate the effects of misclassification
in predictors on the predictive performance of other pre-
diction models.

Fourth, as a result of misclassification in predictors, the
total CHA2DS2-VASc score for a given patient differed
substantially between data sources. This may have large im-
plications if a cut-point is applied as is the case with the
CHA2DS2-VASc score [9]. Well-defined specific treatment
recommendations apply for those with a score of 0, 1, or >
2, and miscalculation by only one point will impact the pro-
portion of patients eligible for anticoagulant treatment. As
an illustration of the patients in whom such treatment was
indicated (CHA2DS2-VASc score > 2) based on index pre-
dictors, nearly 20% had a score of 0—1 based on reference
predictors and thus no strict indication for treatment. Like-
wise, validation studies of prediction rules commonly report
the observed risk per score, and in our study, there was a ~
10% relative difference for many CHA2DS2-VASc scores,
though the numbers of events often were small.

Lastly, while misclassification in individual predictors
was substantial, the discrimination and calibration of full
models containing all predictors of CHA2DS2-VASc was
comparable between routinely collected index data and
the reference data. The misclassification in the former,
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thus, seem to “average out” in multivariable analyses.
Our results suggest that while a data source shows low
performance on the “traditional” measures of accuracy
(kappa, sensitivity/specificity, and predictive values), one
may still observe valid estimates when validating a mul-
tivariable prediction model.

Strengths and limitations

Strengths of our study include the opportunity to assess
misclassification in predictors from routine healthcare
from the well-known CHA2DS2-VASc model. This model
is recommended by multiple practice guidelines and fre-
quently validated using data from routine healthcare. We
verified the disease status, predictor values, and outcomes
in a large sample of over 2000 health records. Manually
scrutinizing electronic patients files is a resource-intensive
process, and we believe this amount approaches what may
be considered the maximum realistically feasible. Further-
more, we could collect clinical data from general practice
but also could include specialists’ letters with diagnoses
and test results from secondary care. Consequently, we
were able to study an often used clinical prediction rule
without any missing data.

A limitation of our study is that, irrespective of clear
definitions for manually checking the predictors, some
information (e.g., description of signs and symptoms in
free text fields) leave room for different interpretation.
The final judgment was made by the researcher, based
essentially on the same data that was used by the GP to
record the initial ICPC diagnosis code. We did not sub-
ject patients to any new clinical assessment. As such,
some misclassification might also have occurred in our
reference data. Furthermore, we only evaluated a single
prediction model. How our results apply to other prog-
nostic prediction models should be the focus of future re-
search. In addition, our study used all-cause mortality as
the outcome, while the CHA2DS2-VASc rule was specific-
ally designed to predict stroke risk. While this avoided
misclassification in the outcome, the influence of
misclassification on the performance of its intended pur-
pose requires further research. Last, it should be stressed
that we only focus on the validation of a prediction model.
For prediction model development using Cox analysis,
methods on how to correct for misclassification in predic-
tors have been previously addressed [29].

Future considerations

Our results provide evidence that misclassification in rou-
tine healthcare data can be substantial and that several as-
pects (e.g., the risk of the outcome with a certain score) of
the validation of a clinical prediction rule may be influ-
enced, while other aspects (such as discrimination and cali-
bration) may not. Future studies should focus on the
influence of misclassification on the predictive performance
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of more complex models, or the influence of different pre-
dictor misclassification patterns, e.g, using a simulation
study. In addition, when data on true predictor status is
available, this can be used to correct for misclassification in
routine healthcare data [5]. Insight is needed in the amount
of reference data necessary to ensure reliable prediction
model performance. This can advise researchers on the
efforts required to obtain any reference data (e.g., the pro-
portion of patients’ files that needs manual checking). Ul-
timately, future research on these topics can further inform
applied researchers on when routine healthcare data can
reliably be used to evaluate prediction models.

Conclusion

In this case study of CHA2DS2-VASc, we observed that
even in the presence of substantial predictor misclassifi-
cation in routine healthcare data, the overall perform-
ance of a prediction model was not negatively affected.

Additional file

Additional file 1: Table S1. Cross tables with the presence and
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