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Abstract

Background: Surrogate outcomes are often utilized when disease outcomes are difficult to directly measure. When
a biological threshold effect exists, surrogate outcomes may only represent disease in specific subpopulations. We
refer to these outcomes as “partial surrogate outcomes.” We hypothesized that risk models of partial surrogate
outcomes would perform poorly if they fail to account for this population heterogeneity. We developed criteria for
predictive model development using partial surrogate outcomes and demonstrate their importance in model
selection and evaluation within the clinical example of serum creatinine, a partial surrogate outcome for acute
kidney injury.

Methods: Data from 4737 patients who underwent cardiac surgery at a major academic center were obtained.
Linear and mixture models were fit on maximum 2-day serum creatinine change as a surrogate for estimated
glomerular filtration rate at 90 days after surgery (eGFR90), adjusted for known AKI risk factors. The AUC for eGFR90
decline and Spearman’s rho were calculated to compare model discrimination between the linear model and a
single component of the mixture model deemed to represent the informative subpopulation. Simulation studies
based on the clinical data were conducted to further demonstrate the consistency and limitations of the procedure.

Results: The mixture model was highly favored over the linear model with BICs of 2131.3 and 5034.3, respectively.
When model discrimination was evaluated with respect to the partial surrogate, the linear model displays superior
performance (p < 0.001); however, when it was evaluated with respect to the target outcome, the mixture model
approach displays superior performance (AUC difference p = 0.002; Spearman’s difference p = 0.020). Simulation studies
demonstrate that the nature of the heterogeneity determines the magnitude of any advantage the mixture model.

Conclusions: Partial surrogate outcomes add complexity and limitations to risk score modeling, including the potential
for the usual metrics of discrimination to be misleading. Partial surrogacy can be potentially uncovered and appropriately
accounted for using a mixture model approach. Serum creatinine behaved as a partial surrogate outcome consistent with
two patient subpopulations, one representing patients whose injury did not exceed their renal functional reserve and a
second population representing patients whose injury did exceed renal functional reserve.

Keywords: Surrogate markers, Mixture models, Acute kidney injury, Serum creatinine

* Correspondence: derek.k.smith@vanderbilt.edu
1Department of Biostatistics, Vanderbilt University Medical Center, 2525 West
End Ave, Suite 11000, Nashville, TN 37212, USA
Full list of author information is available at the end of the article

Diagnostic and
Prognostic Research

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Smith et al. Diagnostic and Prognostic Research  (2017) 1:21 
DOI 10.1186/s41512-017-0022-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s41512-017-0022-1&domain=pdf
mailto:derek.k.smith@vanderbilt.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Patient level clinical risk score development and associ-
ated decision support applications are vitally important
to modern personalized medicine. For many pathologies,
this process is straightforward. First, the disease process
of interest is defined and the data about relevant covari-
ates are collected. This information is used to develop a
statistical model that meets desired performance mea-
sures. When the disease process is difficult to directly
measure, however, surrogate measurements are often
used which prevent the use of simple risk score model-
ing methodology.
In 1989, Prentice defined necessary surrogate outcome

criteria to ensure valid hypothesis testing [1]. Further
work on surrogate outcome criteria has focused on the
preservation of type I error rates for inference [2]. Surro-
gate outcome criteria for the development of risk scores,
however, remain undefined. These criteria will be devel-
oped in Section 2 of this work.
After delineating criteria for the use of surrogate

markers in risk score development, Section 3 will exam-
ine the increased modeling complexity associated with
partial surrogacy situations. Partial surrogates are a class
of markers that behave differently in different patient
subpopulations. In one subpopulation, partial surrogates
may display a high association with the outcome of
interest, while in others, they may display no association.
In this study, we examine how serum creatinine change
for the assessment of acute kidney injury behaves in this
manner. However, there are many other commonly used
clinical markers that scientific considerations make sus-
pect for partial surrogacy. For example, liver enzymes
are often used to measure acute liver injury in the same
way serum creatinine change is used to measure acute
kidney injury. Unlike serum creatinine, liver enzymes are
a direct biomarker for liver damage entering the blood
stream as a direct result of liver cell death. Although it
might seem like that would preclude partial surrogate
behavior, there are subpopulations where liver enzymes
behave differently than in health people. When used as a
surrogate for acute liver injury in patients with cirrhosis,
the utility of the marker is greatly reduced because in
this subpopulation liver damage often resulting in little
to no enzyme production. Fitting a predictive model
meant to quantify acute liver injury in a population that
contains both healthy patients and patients with cirrho-
sis would likely demonstrate the same type of partial
surrogate behavior noted in the AKI example, but in-
stead of arising from a threshold which the injury must
overcome to be detectable, it would likely demonstrate a
ceiling effect which chronic liver disease patients may
have exceeded. Some other examples of markers for
which scientific considerations might imply partial sur-
rogacy include alveolar bone loss for the assessment of

periodontal disease severity and ST elevations for the as-
sessment of myocardial infarct in a population contain-
ing patients with left bundle branch block.
The heterogeneity displayed by partial surrogates be-

tween relevant subpopulations influences their ability to
satisfy Prentice’s criteria for hypothesis testing. We dem-
onstrate that partial surrogate outcomes also complicate
our proposed surrogate criteria for risk score prediction.
Additionally, evaluating risk scores using a partial surro-
gate is complicated by the observation that the model
which provides optimum discrimination for the surro-
gate outcome does not necessarily discriminate the tar-
get outcome. The implications of this observation for
model selection and evaluation of likely clinical benefit
will be described. Finally, Section 4 of this manuscript
will explore analytical challenges introduced by partial
surrogacy theoretically and computationally.
In the course of this work, an analysis of perioperative

acute kidney injury (AKI) will be performed to
emphasize the clinical importance of our surrogate cri-
teria for risk score modeling and to demonstrate the
limitations and special considerations associated with
partial surrogates in an applied analysis context.

Section 2: surrogate outcomes in risk score models
Clinical risk scores are commonly assessed in two ways.
The first way in which they are assessed is by model dis-
crimination, the degree to which a risk score is ordered
similarly to the disease marker of interest. Second, they
are assessed by model calibration, a comparison of the
magnitude of the risk score and the magnitude of the
disease marker of interest. Risk scores that are well cali-
brated are simpler to implement and are traditionally
considered ideal due to the observation that good cali-
bration generally implies good discrimination. Unfortu-
nately, there is no reason to expect that a risk model
built on a surrogate measure will be well calibrated as it
is designed to predict the surrogate and not the target
outcome. For this reason, the risk scores developed here
will be evaluated on measures of pure discrimination
(area under the receiver operating curve for binary mea-
sures and Spearman’s rho for continuous ones) as op-
posed to more traditional measures of predictive
performance such as mean square error, which are sensi-
tive to calibration.
Suppose that we are interested in developing a risk

score, R, for a true clinical outcome, T, where R is any
one-dimensional summary of a patient’s data that is
intended to help quantify a patient’s disease state dispos-
ition. Next, suppose that we are unable to measure T it-
self in the timeframe necessary to develop a useful
decision support tool. Finally, suppose a surrogate out-
come, S, is readily measurable and related to T either as
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a mediator or a consequence which presents more
readily.
While developing R, our goal will be to obtain a one-

dimensional summary of the data that discriminates well
and maintains some interpretability of the model coeffi-
cients as these are often used to generate hypotheses
about potential mechanisms. A score, R, should provide
higher scores for higher risk or more severely diseased
patients uniformly over the entire range of plausible
scores. We will refer to this last property as being clinic-
ally useful. Ideally, clinical utility should be consistent
over the entire range of potential risk scores. Otherwise,
R’s discriminatory ability might look favorable when ex-
amined over the entire population, despite R preforming
poorly for a particular subset of patients. This could
result in a net-benefit to the population at the ex-
pense of a particular group of individuals, raising
questions about the ethical implementation of R for
generalized patient care.
What criteria of S which make the resulting risk score

more likely to be clinically useful? Although Prentice’s
criteria have been criticized for being overly stringent
for practical application, we will use them here to aid in
the development of a less restrictive set of criteria for
the evaluation of surrogates for risk stratification. Fol-
lowing the pattern of Prentice’s first and second criteria
for valid hypothesis testing [1], surrogate endpoints must
display a relationship between the suspected risk factors
to be included in the model, Z, and both the surrogate
and target outcomes, S and T, respectively. Stated more
formally, the conditional distributions of S and T on Z
must not be equal to the marginal distributions over Z.
For clarity, Prentice’s criteria will be labeled with P, and
the prediction criteria will be labeled with an R.

P1. The proposed risk factor is related to the surrogate
f(S| Z) ≠ f(S).
P2. The proposed risk factor is related to the target
outcome f(T| Z) ≠ f(T).

The necessity of these two criteria, which when ap-
plied to risk score procedures will be referred to as R1

and R2, respectively, is fairly evident. A failure of criter-
ion R1 suggests that the covariates included in the pre-
dictive model contain no information about the
distribution of the surrogate. As such, models built on
the surrogate would display little variation in the risk
score R|Z and any variation observed would be random.
A failure of criterion R2 suggests that the covariates are
not related in any way to the distribution of the target
outcome, and although R|Z may display a rich variation,
it would be expected that f(T| R, Z) = f(T).
For risk score development, a third, less restrictive re-

lationship between variables is necessary in order to

obtain good discrimination and produce a clinically use-
ful model. It is desirable that the distribution of R ∣ T be
changing to favor more extreme values as T increases.
Therefore, for some T1 < T2 corresponding to risk scores
R1|T1 and R2|T2, we have that

R3. P(R1 < R2 | T1, T2) > 0.5.

The R3 criterion promotes variation in R over different
values of T. This ensures that, on average, the risk score
is producing more extreme values when T is more
extreme.
Ideally, the probability described in R3 would be large.

This occurs when the locational shift in the distribution
of R|T as T changes is large relative to its variance. Al-
though not a strict requirement, having a risk score that
is precise will naturally enhance its value.
In summary, our criteria for the development of a sur-

rogate outcome-based risk score are:

R1. The proposed risk factor is related to the surrogate
f(S| Z) ≠ f(S).
R2. The proposed risk factor is related to the target
outcome f(T| Z) ≠ f(T)
R3. The distribution of the risk score conditional on T
needs to be shifting toward more extreme values
amongst those at highest risk for disease

P R1 R2h jT 1;T 2ð Þ > 0:5;T 1 < T 2;

with Prentice’s 3rd and 4th criteria and the magnitude of
the variance of R ∣ T relative to its distributional shift
being unnecessary but playing roles in determining the
value of the resultant score.
These criteria encompass a surrogate outcome’s

minimum requirements to produce a valid risk score.
In the next section, we will begin to examine partial
surrogates, and how the failure of some of these cri-
teria in patient subpopulations can negatively impact
risk score performance.

Section 3: theoretical considerations regarding partial
surrogacy and risk score modeling
In the ideal situation, R1–R3 would hold in every sub-
population on which a risk score model is to be trained.
In other words, it is beneficial if the phenotype defined
by the relationship between Z, S, and T is homogenous
throughout a population, P. However, if there are sub-
populations demonstrating differing phenotypes, extra
care is required to maximize the benefit of risk score
models and provide valid estimation procedures. When
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these heterogeneous subpopulations exist, we will re-
define S to be a “partial surrogate.”
As an example, suppose you have collected data from

P which is composed of two subpopulations V and I, de-
fined by a latent indicator variable, l. In subpopulation
V, R1–R3 hold, suggesting subpopulation V might pro-
duce a valuable risk score model. In subpopulation I,
however, only R2 holds. This suggests that in subpopula-
tion I, S is not meaningfully related to Z or T and is
therefore unlikely to result in a profitable risk score in
this subpopulation.
The ideal method for risk score development when

faced with a partial surrogate is not immediately apparent.
One method is to use traditional modeling strategies in
the full training dataset. In cases where the full dataset sat-
isfies R1–R3, this approach is likely to result in valuable
models. If l was known, an analyst might reasonably de-
cide to use only the data from subpopulation V for model
development and then generalize the model to the entire
population as appropriate. This second method relies on
the relationship between T and Z being homogeneous
over P. Homogeneity will occur if the subpopulations
were defined completely at random. Alternatively, in cases
where l is unknown, a latent variable mixture model can
be used to produce a similar result. For the duration of
this manuscript, l is assumed to be latent.
Given these two approaches, the analyst is forced to

choose between the full-data approach and the mixture
model approach. For inference and estimation, the
choice is clear. Since failing to account for the partial na-
ture of the surrogate will result in a violation of Pren-
tice’s 4th criterion, the mixture model is preferable. For
example, consider a very simple partial surrogate where

T ¼ S V þ εT jS and S
�� ��I ¼ εSjI ; εi � N 0; σ ið Þ

and also

T j Z ¼ βT jZ þ β1Z þ εT jZ:

In this situation, the surrogate is equal to truth plus
error when a patient belongs to subpopulation V, but it
is a random deviate when the patient is from subpopula-
tion I. The relationship between T and Z is consistent
across the entire population. Thus, we have

E T Sj½ � ¼ P Vð Þ S þ P Ið Þ E T½ �
¼ P Vð ÞS þ 1−P Vð Þð ÞE T½ �

and also that

E T jS;Z½ � ¼ P Vð ÞS þ P Ið ÞE T jZ½ �
¼ P Vð ÞS þ 1−P Vð Þð Þ βT jZ þ β1Z

� �
:

P4 requires that the distribution of T|S be the same as
the distribution of T|S, Z, but even this simple partial

surrogate violates that criterion as evidenced by the dif-
fering expectations.
However, for risk score modeling, the decision is less

clear. Using the full dataset and not accounting for the
partial nature of the surrogate generally results in risk
scores with lower variance due to higher effective sample
size but higher bias due to the inclusion of training data
from population I. The mixture model approach gener-
ally boasts reduced bias by correctly accounting for het-
erogeneous subpopulations but suffers higher variance
due to diminished training set sample size. There are
several aspects unique to a given partial surrogate situ-
ation that should affect the analyst’s decision regarding
these modeling strategies.
When making the decision between using a traditional

model or a mixture model, the first consideration is
whether the added complexity of the mixture model ap-
proach is likely to be beneficial. The mixture model’s
primary purpose is to estimate covariate/outcome rela-
tionships in the subpopulations separately. In order for
this to practically improve the risk score’s discrimin-
ation, it needs to result in a different rank ordering of
subjects compared to the traditional approach. This is
likely to occur whenever the phenotype expressed in
subpopulation I is substantively different than that in
subpopulation V in terms of the relative magnitude of
the associations between the covariates and outcome.
This distinctness of subpopulation phenotypes simultan-
eously allows the expectation maximization (EM) algo-
rithm used for model fitting to achieve adequate
subpopulation separation while achieving a more appro-
priate ordering of predictions with respect to T.
In order to apply the mixture modeling approach to a

clinical problem, it is necessary to decide how many
components the model should have. In the case of par-
tial surrogates, this is the number of subpopulations that
are present. In many cases, the number of subpopula-
tions may be strongly suspected based on clinical con-
siderations, but in cases where the number is less
certain, there is a large literature that describes various
methods for identifying the proper number of compo-
nents and the consequences of selecting the wrong num-
ber [3–6].
The EM algorithm involves beginning with a prior

probability of group assignment, fitting a model that is
weighted by the prior probability to assess the likelihood
of subpopulation membership, and calculating a poster-
ior probability of subpopulation membership based on
the prior and the likelihood. This is repeated until con-
vergence is achieved with the posterior probabilities be-
ing used to generate the prior probabilities for the next
iteration [7]. Substantial separation between subgroup
phenotypes results in the EM algorithm calculating final
posterior probabilities of subpopulation membership
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that are close to zero and one, suggesting there is good
evidence in the data to direct each patient’s subpopula-
tion assignment. When the subpopulations cannot be ef-
fectively separated, mixture model variance will be
magnified, detracting from its utility and favoring the
traditional modeling approach.
A second consideration affecting the development of

partial surrogate-based risk scores is how generalizable a
subpopulation model based on V will be to the entire
population P. If separation into subpopulations I and V
is completely random, then any result obtained from
subpopulation V should be fully generalizable. If subpop-
ulations I and V are generated by a non-random process,
however, neither modeling technique considered above
is guaranteed to result in a clinically beneficial risk score,
and additional external verification would be necessary
to allow generalization.
The last major consideration that influences whether

the mixture model approach is viable for risk score de-
velopment with partial surrogates is the mixing propor-
tion of the population. It is necessary to estimate what
proportion of observations is from V versus the propor-
tion from I. If the training data are composed almost en-
tirely of data from V, the mixture model adds little
benefit over the traditional model which ignores subpop-
ulations. In contrast, if the data are almost entirely from
I, there may not be enough information in the data to
accurately fit a model for subpopulation V, which em-
bodies the clinically relevant covariate/outcome relation-
ship. In both of the situations described here, partial
surrogate-based risk score models are unlikely to pro-
vide a benefit over the traditional modeling approach be-
cause the available dataset does not contain enough
information regarding the true relationship between co-
variates and the outcome of interest.

In summary, there is no universal solution to measur-
ing pathology with partial surrogate outcomes. The mix-
ture model approach provides great benefits in some
situations, but in others, the mixture model approach
fails to adequately fit the data and will lead to inferior
performance compared to a more traditional, non-
mixture approach.

Section 4: examination of developed risk score criteria
and partial surrogate guidelines through clinical analysis
and simulation studies of perioperative AKI
Biological background
Ten to 40% of patients develop AKI following major in-
patient surgical procedures [8]. Perioperative AKI has
been associated with increased short and long-term
mortality, increased hospital length of stay, increased
risk of developing chronic kidney disease (CKD), and in-
creased risk of developing dialysis dependence [8, 9].
Unlike other perioperative injuries, such as myocardial
infarction, there is currently no direct biomarker of kid-
ney injury or cell death that accurately and consistently
reflects AKI. Current consensus guidelines for AKI diag-
nosis use changes in serum concentrations of creatinine
to diagnose AKI [10]. Creatinine is produced by the
muscle, and the kidneys excrete creatinine. Injured kid-
neys excrete less creatinine, and increased serum con-
centrations of creatinine are used to diagnose AKI. The
relationship between AKI and serum creatinine is incon-
sistent, hindering accurate AKI diagnosis. One example
of this inconsistency is the clinical situation in which
renal injury does not produce an increase in serum cre-
atinine (Fig. 1). Patients often sustain kidney damaged
without associated changes in serum creatinine, referred
to as subclinical AKI [11]. This situation is illustrated
well by the following example. A living kidney donor

Fig. 1 Directed acyclic graph displaying the hypothesized mechanism which would result in statistically heterogeneous subpopulations with
respect to serum creatinine change
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frequently will experience little to no serum creatinine
increase following donor nephrectomy despite removal
of roughly 50% of their functional kidney mass [12]. Re-
cent AKI biomarker studies demonstrated that subclin-
ical AKI is also associated with an increased risk of
dialysis and in-hospital mortality, suggesting it repre-
sents clinically significant levels of renal injury [13]. The
accurate measurement of subclinical AKI using common
clinical labs in the immediate postoperative period (cre-
atinine) would allow physicians to predict AKI, institute
additional patient monitoring, and adjust patient treat-
ments. These benefits could reduce patient morbidity
and mortality.
The dramatic example of living donor kidney donation

and minimal serum creatinine change demonstrates that
healthy kidneys have the capacity to temporarily increase
their filtration rate in times of physiologic stress, a char-
acteristic termed renal functional reserve [14]. Renal
functional reserve, however, is difficult to predict, diffi-
cult to measure, limited, and exhaustable [14]. In the
subpopulation of patients, V, who overcome their renal
functional reserve during kidney injury serum creatinine
change would be detected, and associations between
relevant risk factors and serum creatinine change would
be strong, assuming all other serum creatinine modifying
factors remain constant. In the subpopulation of pa-
tients, I, who do not overcome their renal functional re-
serve during episodes of kidney injury, only random or
nonspecific changes in serum creatinine levels would be
measured, and the associations between relevant AKI
risk factors and serum creatinine change would be weak.
With respect to the proposed risk score criteria outlined
in Section 2, this suggests that subpopulation V will
likely come close to satisfying P1–P4 and R1–R3, allowing
for simultaneous estimation of associations and risk
score generation. In contrast, subpopulation I will likely
violate P1, P3, P4, R1, and R3, resulting in poor perform-
ance of risk indices based exclusively on this subgroup,
biased coefficient estimates, and improper p values.
If subpopulations I and V are defined based on ex-

haustion of renal functional reserve as we hypothesize,
then it is important to recognize that the likelihood of
renal functional reserve exhaustion is not random.
Young, healthy patients are less likely to overcome their
substantial renal reserve than older patients with under-
lying disease [14, 15]. Therefore, generalizing a risk score
generated in subpopulation V to the entire population P
requires validation of that score in the entire population.
This validation can be accomplished by evaluating the
partial surrogate-based clinical risk score’s discrimin-
ation of the target outcome, T. Although there is no gold
standard marker for clinically significant kidney damage,
one marker of indisputable clinical significance is the de-
cline in kidney glomerular filtration at 90 days [16, 17].

The 90 days following surgery allows the kidneys to re-
cover from acute injury if possible and reestablish an
equilibrium serum creatinine concentration. This post-
operative day 90 serum creatinine concentration is used
to estimate glomerular filtration rate via the Chronic
Kidney Disease Epidemiology Collaboration equation
(eGFR90) [18], the primary indicator of kidney function.
Indeed, current clinical guidelines recommend that pa-
tients who experience AKI should routinely have 90 day
eGFR evaluation to assess recovery versus progression to
permanent kidney damage [19]. Therefore, in this ana-
lysis eGFR90 will be considered the target outcome, T.

Methods
Data and models
The data used in this analysis are from 4737 patients
who underwent cardiac surgery at a large academic
medical center from November 2009 through June 2015.
Institutional IRB approval was obtained prior to per-
formance of all analyses. In this dataset, all patients had
serum creatinine measurements in the first two post-
operative days and 1268 patients had 90 ± 15 day
eGFR90 measurements available. Table 1 compares the
characteristics between those with and without a re-
corded value for eGFR90. Aside from a slight deviation
in the proportion of patients with diabetes, the covari-
ates are well balanced between the groups making a
missing at random assumption plausible. However, sen-
sitivity to this assumption will also be assessed.
Ten preoperative and intraoperative traits were se-

lected a priori for inclusion in the analysis including age,
body mass index, a diagnosis of diabetes, baseline kidney
(glomerular) filtration rate, baseline hemoglobin concen-
tration, volume of intraoperative urine output, volume

Table 1 Patient and surgical characteristics stratified by whether
the patient record contained a record of eGFR at 90 days
postoperatively. Continuous variables are reported as median
(IQR) and binary variables are reported as proportion (%)

eGFR90 present eGFR90 missing

n 1268 3469

Age (year) 61 [51, 69] 64 [54, 71]

BMI (kg/m2) 29.14 [25.02, 33.80] 28.41[25.00, 32.72]

Hemoglobin (g/dL) 12.4 [10.5, 13.9] 13.3 [11.8, 14.6]

Diabetes 567 (44.7%) 1198 (34.5%)

Total urine output (mL) 450 [275, 725] 450 [300, 700]

Total fluids given (mL) 1600 [1000, 2200] 1750 [1100,2400]

Baseline eGFR 66.69 [47.06, 85.95] 74.52 [56.62, 90.24]

Max intraoperative
lactate (mg/dL)

1.9 [1.2, 3.2] 1.6 [1.0, 2.6]

Length of surgery (min) 318 [260, 404.25] 301 [253, 368]

Emergency surgery 113 (8.9) 202 (5.8)
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of intraoperative intravenous fluid administered, max-
imum measured intraoperative plasma lactate level,
length of surgery, and an indicator for emergent surgery.
These variables were chosen as well-established predic-
tors of AKI and therefore were considered likely to be
valuable predictors of serum creatinine change from
baseline [20–24].
For the purposes of model comparisons, a linear

model and a two-component mixture of linear models
were fit. The residual error of the two mixture compo-
nents was not constrained. The linear model risk score
is the model’s prediction. For the mixture model, the risk
score is the prediction from the single component of the
mixture that is post hoc identified to be associated with
subpopulation V. Each model was evaluated based on
the following metrics: the AUC for a target outcome
greater than 20 mL/min/1.73 m2 and the Spearman’s
correlation. The first metric is a common method of risk
score implementation and is based on the presumption
that a change of 20 mL/min/1.73 m2 in eGFR90 is clinic-
ally meaningful. An absolute change in eGFR90 was
chosen over a relative change because of the many stat-
istical issues that can arise from the inclusion of ratios
of random variables such as improper error distributions
and spurious associations [25]. For comparison, we have
included the ROC curves that would result for the
models predicting whether 2-day postoperative serum
creatinine change exceeded 0.3 mg/dL, a relatively sensi-
tive cutoff for AKI suggested by the Acute Kidney Injury
Network and the Kidney Disease Improving Global Out-
comes guidelines [19, 26]. The second metric measures
discrimination without requiring an arbitrary cutoff.
In order to assess the sensitivity of this analysis to the

missingness of eGFR90 and the choice of cutoff in
eGFR90 for the ROC analysis, an additional analysis was
performed. A logistic propensity score model was fit to
whether eGFR90 was present in the patient record. The
resulting propensity score was used as a weight, and the
AUC was recalculated. This process was repeated at
each potential cutoff in eGFR90 from 5 to 25 mL/min/
1.73 m2 resulting in a propensity score adjusted,
eGFR90-dependent ROC curve.

Results
The mixture model resulted in moderately well-
differentiated clusters and a relative entropy equal to
0.607. Seven hundred twenty-eight patients were mo-
dally assigned to the V subpopulation, and 4009 patients
were assigned to the I subpopulation. The linear model
found all the factors to be significantly associated with
eGFR90 change except for a history of diabetes and
emergency surgery, which were marginally significant
(p = 0.085 and p = 0.063, respectively). The mixture
component found all the risk factors to be significantly

associated with eGFR change with the exception of
emergency surgery (p = 0.072). However, the magnitude
of the coefficients for the linear model were attenuated
by an average of 42.8% (range = [19.2%, 68.1%]), which is
consistent with subpopulation I’s phenotype being atten-
uated relative to subpopulation V. The model coeffi-
cients are given in Table 2. In addition, the mixture
model represented a substantial improvement in fit over
the linear model with BICs of 2131.3 and 5034.3,
respectively.
The area under the ROC curve was calculated for each

of the candidate risk scores and for the gold standard of
the observed serum creatinine change for the prediction
of an eGFR90 decline greater than 20 mL/min/1.73 m2.
The observed serum creatinine change had the worst es-
timated AUC of 0.608 (0.572, 0.645), although not sig-
nificantly worse than that of the linear model 0.633
(0.595, 0.672), p = 0.262. The mixture model component
yielded the best AUC of 0.678 (0.641, 0.715), which was
a significant improvement over both the observed cre-
atinine change and the linear model, p = 0.002 and p <
0.001, respectively. In addition, the ROCs were calcu-
lated for each candidate risk score for the prediction of a
serum creatinine increase greater than 0.3 mg/dL. The
result was an AUC of 0.602 (0.582, 0.623) for the mix-
ture and 0.663 (0.644, 0.682) for the linear model, p <
0.001. The ROCs for both endpoints are given in Fig. 2.
The improvement due to using the mixture compo-

nent’s prediction as a risk score for eGFR90 is further
demonstrated by looking at Spearman’s rank correlation.
The correlation between the observed serum creatinine
change, and the observed eGFR90 change was 0.231
(95% CI 0.204, 0.258). For the linear model, the correl-
ation was 0.223 (0.196, 0.250). For the mixture compo-
nent, the correlation was 0.305 (0.280, 0.331). These
values were compared via a permutation test showing a
significant improvement by the mixture model over the

Table 2 Coefficients resulting from the application of the
mixture model to the perioperative AKI dataset. The column on
the right represents the coefficients from subgroup V and are
noticeably larger in absolute magnitude than those on the left

Subpopulation I Subpopulation V

BMI 0.047 (0.038, 0.057) 0.25 (0.206, 0.295)

Total urine output − 0.041 (− 0.052, − 0.03) − 0.147 (− 0.193, − 0.100)

Total fluids given − 0.015 (− 0.025, − 0.004) − 0.134 (− 0.179, − 0.09)

Age 0.063 (0.051, 0.074) 0.213 (0.168, 0.258)

Baseline eGFR 0.110 (0.097, 0.122) 0.388 (0.344, 0.433)

Hemoglobin − 0.063 (− 0.074, − 0.053) − 0.253 (− 0.297, − 0.209)

Max intraoperative lactate 0.060 (0.048, 0.073) 0.206 (0.161, 0.250)

Diabetes − 0.002 (− 0.013, 0.008) − 0.109 (− 0.152, − 0.066)

Length of surgery 0.072 (0.058, 0.085) 0.193 (0.144, 0.241)

Emergency surgery 0 (− 0.011, 0.011) 0.05 (0.012, 0.087)
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observed value and the linear model’s prediction, p =
0.035 and p = 0.020, respectively. The low values of these
correlations are due to the fact that the majority of sur-
gical patients sustain no kidney injury; and thus, any
change in their eGFR is truly random, i.e., only a small
portion of the population’s eGFR changes are ordered by
something other than random chance, so despite the low
correlation the improvement provided by utilizing the
partial surrogate is substantial.
The sensitivity analysis was performed as detailed in

the methods section resulting in the propensity score ad-
justed, eGFR90 dependent ROC curves for each model.
The difference in AUCs is given in Fig. 3. The AUC for
the mixture approach is consistently, significantly higher
over the entire range of potential cutoffs after account-
ing for the propensity to be missing.
This analysis demonstrates a major issue in the devel-

opment of risk scores using partial surrogate outcomes.
If the partial surrogate nature of serum creatinine
change had gone unrecognized in this analysis, the ana-
lyst would likely look to how well various models dis-
criminate with respect to serum creatinine change as a
preferred method for both model selection and
characterization. The ROC analysis demonstrates that
the analyst would then conclude that the linear model
was clearly superior to the mixture model because its
risk score is ordered more similarly to the surrogate
measure. However, the ROC of the target outcome,
eGFR90, shows the true relationship is reversed and that
the mixture model produced superior ordering. It is crit-
ical to identify partial surrogates and account for them
appropriately since there would be no indication of this

flaw in analysis if model performance was judged solely
on its ability to predict the surrogate outcome, postoper-
ative serum creatinine elevation.

Simulation studies
The results of the clinical example presented above were
used to generate simulation studies meant to further illus-
trate the potential benefits and limitations of using the
mixture modeling approach in the presence of a partial
surrogate. In the above example, a two-component mix-
ture model was fit to the data resulting in two fitted

models, f̂ V and f̂ I , with corresponding parameters

β̂V ; σ̂
2
V

� �
and β̂I ; σ̂

2
I

� �
. Each data point represents a draw

from one of these two models with a certain probability.
In each of the simulations that follow, each of the pa-

tients in the cohort will be assigned to subpopulation V
or I by a random draw governed by their individual pos-
terior probability of group membership derived from the
fitted mixture model. New outcomes were then gener-
ated according to which subgroup the patient was
assigned to. In both simulations, a new value of S and T
are generated for patients assigned to subgroup V via

T jZ � N Zβ̂V ; σ̂V

� �

SjZ;V � N Zβ̂V ; σ̂V

� �
:

That is T and S are generated from the same model
with normal errors. After being drawn, the values of T
were normalized to have a means of 0 and standard devi-
ation of 50 in order to make them more consistent with

Fig. 2 Receiver operating characteristic curves for the linear (dashed) and mixture (solid) models predicting maximum 2-day creatinine change
(left) vs. eGFR90 (right)
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eGFR90 changes. In subpopulation I, T is generated in the
same way. The difference is in how S is generated in this
subpopulation. In the first simulation, S will be generated
via an alternative linear model in which the covariates are
still related to S but not in the same way as they are under

f̂ V . Each repetition of the simulation used a different model
with the coefficients being drawn independently from

βR;i � N 0; :176ð Þ; i ¼ 1; ::; 10:

The standard deviation for this distribution is ¼ of the
range of the observed coefficients with the intention that
the sampled coefficients would be of similar magnitude to
those observed in the clinical example. The outcome for
these patients was then sampled from

S j Z; I � N Z βI;1; ; βR;1;…; ; βR;10

h i
; σ̂ I

� �
:

The second data-based simulation is conducted
similarly with one exception. In this simulation, S is
drawn from

S j Z; I � N 0; σ̂ Ið Þ:
This simulation represents the scenario where the co-

variates of interest have little to no relationship with the
surrogate within subpopulation I but are related within
subpopulation V. The directed acyclic graphs that de-
scribe these two scenarios are given in Fig. 4.
Having generated new outcome variables T and S for

both subpopulations, a linear and two-component mix-
ture are then fit to the simulated data. The models are
compared as in the clinical example, a cutoff-based
measure of discrimination (AUC), a cutoff-free measure
of discrimination (Spearman’s rank correlation), and
relative mean-square error (MSE) reduction in the esti-
mation of the model coefficients. The results of these
simulations are summarized in Table 3.
In the first simulation, where the outcome for those

assigned to subpopulation I were generated from a

model that was distinct from f̂ V but not null, the results
favored application of the mixture model in each case.
For the linear model, the AUC for discriminating
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Fig. 3 Difference in the propensity score adjusted AUC over eGFR90 cutoffs ranging from 5 to 25 mL/min/1.73 m2
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whether T was larger than 20 spanned almost the entire
range of the statistic [0.05, 0.95] quantiles = [0.518,
0.923]; the results for the mixture model was more con-
sistent [0.05, 0.95] quantiles = [0.908, 0.982]. The mean
difference in AUC was 0.213, [0.05, 0.95] quantiles
= [0.034, 0.433]. The Spearman’s correlation displayed a
similar result with the linear model yielding a wide range
of values [0.05, 0.95] quantiles = [− 0.091, 0.349], whereas
the mixture model produced more consistent results
[0.05, 0.95] quantiles = [0.471, 0.526]. The mean differ-
ence in rank correlation was 0.349, [0.05, 0.95] quantiles
= [0.146, 0.603]. Lastly, the MSE of the estimated model
coefficients was substantially improved with the linear
model estimating coefficients with an order of magni-
tude larger error [0.05, 0.95] quantiles = [0.024, 0.077]
compared to the mixture approach [0.05, 0.95] quantiles
= [0.002, 0.008]. This represents a relative reduction in
the MSE of the coefficient estimates of 89.1%.
In the second simulation, in which the covariates are

not related to the surrogate marker in patients assigned
to subpopulation I, resulted in much more modest im-
provements in discrimination. In this situation, the lin-
ear model produced reasonably large AUCs consistently
[0.05, 0.95] quantiles = [0.873, 0.972] although the AUCs
from the mixture approach were slightly larger [0.05,
0.95] quantiles = [0.906, 0.982]. The average difference
between the AUCs was 0.021, [0.05, 0.95] quantiles
= [0.002, 0.044]. The linear also improved its perform-
ance with respect to Spearman’s rank correlation [0.05,
0.95] quantiles = [0.333, 0.451] compared to that of the
mixture model [0.05, 0.95] quantiles = [0.454, 0.524].
With respect to the MSE of the estimated coefficients,
the linear model still displayed serious bias [0.05, 0.95]
quantiles = [0.028, 0.034] as compared to the mixture

approach, [0.05, 0.95] quantiles = [0.002, 0.009]. This
represents an 83% relative reduction in MSE.
In the first example, the surrogate is generated in sub-

population I in a way that by random chance can be

similar to or very different from f̂ V . When the generat-

ing model is similar to f̂ V , the linear model, which pools
the subpopulations together, can perform well in terms
of discrimination as evident by its ability to generate
high AUCs and rank correlations. However, when the
generating model for subpopulation I is very different

from f̂ V , the discrimination suffers tremendously. While
the random model selection is very influential in the
resulting discrimination, the estimated model coeffi-
cients produced by the linear model always represent an
averaging of the true coefficients in the two models
resulting in higher MSE of estimation than the mixture
model approach.
In the second example, the linear model performs

much better in terms of discrimination. In this example,
the model coefficients estimated by the linear model are

biased estimates of those in f̂ V ; however, they are biased
toward zero. This type of consistent attenuation pre-
serves the relative size and direction of the coefficients.
The model is therefore able to order the outcomes well
with discriminatory performance only modestly lower
than the mixture approach. The inclusion of subpopula-
tion I in this example attenuates the estimated coeffi-
cients in the linear model resulting in a bias that inflates
the MSE in a similar way to what was observed in the
first simulation. This does not impact its utility as a pre-
dictive model but would have implications for inference,
which is beyond the scope of this analysis. R code for
two simplified examples of this technique is provided as
a supplement to this manuscript (Additional file 1).

Discussion
Recognizing partial surrogacy of an outcome marker is
critical regardless of whether the goal of an analysis is
inference or prediction. In our clinical example of peri-
operative AKI, it was demonstrated that treating serum
creatinine change as a full surrogate rather than a partial
surrogate led to the erroneous conclusion that the linear
model approach was much better than a mixture model
at measuring kidney injury, represented by eGFR90.
Prior to this work, no account has been given to the

Fig. 4 Directed acyclic graphs outlining the scenarios mimicked in
the two simulation studies

Table 3 Results of the two simulation studies given as mean (0.05 quantile, 0.95 quantile)

AUC Spearman’s rho MSE

Simulation 1 Linear model 0.737 [0.518, 0.923] 0.152 [−0.091, 0.349] 0.048 [0.024, 0.077]

Mixture model 0.950 [0.908, 0.982] 0.501 [0.471, 0.526] 0.004 [0.002, 0.008]

Simulation 2 Linear model 0.928 [0.873, 0.972] 0.394 [0.333, 0.451] 0.031 [0.028, 0.034]

Mixture model 0.949 [0.906, 0.982] 0.492 [0.454, 0.524] 0.005 [0.002, 0.009]
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partial surrogate nature of serum creatinine change,
meaning that effect estimates and predictive models
based on creatinine-related endpoints are susceptible to
a severe, systematic bias.
Despite being a clinically important marker of kidney

function, eGFR90 has limitations. Patients who experi-
ence transient serum creatinine elevations that resolve
by 90 days may still be at increased risk for adverse se-
quelae [27, 28]. The analysis we performed here does
not fully capture these patients’ increased risk. This ana-
lysis demonstrates that the proposed technique pro-
duced a superior model for the prediction of eGFR90.
Although it is plausible that similar models will improve
the prediction of other AKI related endpoints, these
models will require validation using data not available in
this dataset.
The simulation studies included here are meant to

highlight the complexity of the decision on how to
model a partial surrogate for the development of a risk
score. This decision is heavily influenced by a mixture
model’s ability to choose the correct number of subpop-
ulations for a given problem and resolve subgroup V
from subgroup I by the relationships between covariates
and the surrogate outcome. In practice, the only way an
analyst can quantify these issues is by fitting a mixture
model whenever partial surrogacy is suspected. By
inspecting the fitted mixture model, the analyst will then
be able to assess the model’s entropy and the clinical sig-
nificance of the difference between the phenotypes esti-
mated by the mixture model. This provides the analyst
with a better understanding of the effect partial surro-
gacy has on their potential risk score model.

Conclusions
Recognizing when a clinical marker is acting as a partial
surrogate has implications on model selection, predictive
ability, and coefficient estimation. Serum creatinine
change from baseline, a common marker of kidney in-
jury, displays behavior consistent with a partial surro-
gate. The use of a mixture model which separates
patients into those likely to have a creatinine measure
representative of kidney injury and those likely to have
an unrelated creatinine measure appears to effectively
counter the poor behavior of the biomarker in the car-
diac surgery population.

Additional file

Additional file 1: R Code. (R 6 kb)
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