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Abstract

Background: In literature, not much emphasis has been placed on methods for analyzing repeatedly measured
independent variables, even less so for the use in prediction modeling specifically. However, repeated measurements
could especially be interesting for the construction of prediction models. Therefore, our objective was to evaluate
different methods to model a repeatedly measured independent variable and a long-term fixed outcome variable into

a prediction model.

Methods: Six methods to handle a repeatedly measured predictor were applied to develop prediction models.

Methods were evaluated with respect to the models’ predictive quality (explained variance R* and the area under the
curve (AUQ)) and their properties were discussed. The models included overweight and BMI-standard deviation score
(BMI-SDS) at age 10 years as outcome and seven BMI-SDS measurements between 0 and 5.5 years as longitudinal
predictor. Methods for comparison encompassed developing models including: all measurements; a single (here: the
last) measurement; a mean or maximum value of all measurements; changes between subsequent measurements;
conditional measurements; and growth curve parameters.

Results: All methods, except for using the maximum or mean, resulted in prediction models for overweight of similar
predictive quality, with adjusted Nagelkerke R? ranging between 0.230 and 0.244 and AUC ranging between 0.799 and
0.807. Continuous BMI-SDS prediction showed similar results.

Conclusions: The choice of method depends on hypothesized predictor-outcome associations, available data, and
requirements of the prediction model. Overall, the growth curve method seems to be the most flexible method
capable of incorporating longitudinal predictor information without loss in predictive quality.
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Background

In recent years, the popularity of longitudinal studies has
increased and with that the number of longitudinal studies
itself [1]. These studies, in which participants are repeat-
edly measured over time, enable the monitoring of an indi-
vidual evolution of disease or other (health-) outcome over
time [1-3]. Numerous publications have been written on
advanced statistical techniques for the analysis of repeated
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measurements as outcomes. However, in the literature, less
emphasis has been placed on repeated measurements in
independent variables.

Prediction models can be valuable tools for both public
health and clinical practice [4]. They can assist in the iden-
tification of persons at high risk of being or becoming ill
and estimate subject-specific probabilities of diagnostic
and prognostic outcomes [4]. Most prediction models are
characterized by the prediction of a fixed outcome meas-
urement. Using repeated measurements of an independent
variable would provide a model with more information
about the variable’s trajectory or development over time
than just a single measurement. This information could
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especially be interesting for the use in prediction modeling
in circumstances in which not a single measurement but a
certain trajectory of an independent variable has a strong
association with the outcome, which may lead to a better
prediction of this particular outcome. These improve-
ments in individual risk estimation could in turn lead to
improved health assessments and medical decision making
in health care practice.

Few articles have been written on the various methods
that could be applied for the analysis of longitudinally mea-
sured independent variables. The articles written by Chen
et al. [5] and Tu et al. [6] discuss different methods that
could be used for such analyses. However, their focus is
not on the application of these methods for individual risk
prediction, but on assessing growth trajectories and longi-
tudinal exposure. Our aim is to compare different methods
that can be used to model a repeatedly measured inde-
pendent variable (longitudinal predictor) and a fixed out-
come variable into prediction models and to evaluate the
predictive quality of these models. We focused on methods
that could relatively easily be applied by epidemiologists.
Thus, for the current study, we selected available methods,
that can handle longitudinal predictor information and a
fixed outcome, are able to assess individual risk prediction,
and are easily applied by epidemiologists. We excluded
methods based on clustering and random effects as they
are not appropriate for the use in individual prediction
modeling. As an example we used data from the Terneu-
zen Birth Cohort [7] in which we applied various methods
for the prediction of overweight and body mass index
standard deviation score (BMI-SDS) at the age of 10 years
with BMI-SDS measured between 0 and 5.5 years as a lon-
gitudinal predictor. In the discussion, the properties of the
different methods are discussed with respect to the flexibil-
ity in handling missing data and differences in timing of
measurements, the ability to incorporate all information of
the longitudinal predictor, and to handle small or large
numbers of repeated measurements, and user-friendliness.

Methods

Aim

To evaluate different methods to model a repeatedly
measured independent variable and a long-term fixed
outcome variable into a prediction model.

Design and study population

The Terneuzen Birth Cohort consists of all 2604 children
born in the city of Terneuzen between 1977 and 1986 [8].
Of the selected 2545 live-born children from singleton-
births, 21 were excluded due to conditions possibly affect-
ing growth. Another 941 children were excluded because
they had less than two BMI measurements available in the
age range of 0-5.5 years. For 853 children, there was no
outcome variable of overweight and BMI-SDS at the age of
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10 years available, leaving a total population for analysis of
730 children. The study protocol was approved by the
Medical Ethics Committee of the VU University Medical
Centre Amsterdam, and written informed consent was ob-
tained from all participants [8].

Data

Weight and length/height measurements with correspond-
ing dates, which were prospectively registered by the
Municipal Health Services, were retrieved for the Terneu-
zen Birth Cohort participants from birth onwards [8]. The
weight and length/height measurements were used to
calculate BMI (kg/m?). The exact age at each BMI meas-
urement was calculated.

Next, all available BMI measurements were converted
into BMI-SDS values as described by van Dommelen &
van Buuren [9] using the LMS-method. The LMS-method
is a method developed by Cole to generate smoothed
growth curves by summarizing for each age the distribu-
tion of the growth data into LMS parameters (Lambda (L)
skewness parameter; Mu (M) median; and Sigma (S)
generalized coefficient of variation) and to calculate exact
sds-scores from these LMS parameters [10-12]. The age-
dependent BMI values from the Fifth Dutch Growth Study
[13] were used as reference standard [9]. Because the BMI
reference standard only contained (LMS-)values starting
from 1 week onward for girls and from 2 weeks onward
for boys, the reference standard values of the first two
available weeks for boys and girls were linearly extrapo-
lated to O weeks to enable the generation of BMI-SDS
values at birth.

Creating the example dataset

The growth data are organized in chronological order of
visit per individual (e.g., weight at first visit, weight at sec-
ond visit, etc.). The Preventive Child Health Care (CHC)
Services aim for measurements to be conducted at prede-
termined ages for all children [14]. However, children
often visit CHC Services at different ages because of plan-
ning problems of the parents or at the CHC organization
and/or because of additional appointments beside the
regular visits. It can therefore be that, for instance, the sec-
ond available growth measurement for one child was taken
at age 8 weeks, for another at age 2 years, and for yet an-
other at the age of 7 years. Since the timing and number
of the growth measurements differ considerably among
children, adaptations to the data had to be made to con-
struct a dataset with a more generic structure to be able to
apply and compare all the different prediction methods.

The outcome variable

BMI-SDS at the age of 10 years is the outcome measure-
ment and was computed by selecting the BMI measure-
ment taken between the age range of 9-10.5 years for each
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subject and converting it into BMI-SDS (as previously
described in Data). In case a subject had more than one
BMI measurement available in this age range, the one
measured closest to the aimed age of 10 years was
selected. Additional to this continuous BMI-SDS outcome,
a dichotomous outcome was created, using the Inter-
national Obesity Task Force (IOTF) cut-offs for BMI to
differentiate between non-overweight and overweight
children at the age of 10 years [10, 15].

Longitudinal predictor

A longitudinal predictor was created with complete BMI-
SDS values for each subject at seven specific ages, namely
at birth/0 days, 3 months, 6 months, 14 months, 2 years,
3 years, and 5.5 years. These ages were chosen in order to
resemble, as much as possible, the predefined ages of the
regular visits used by CHC organizations. To create an ex-
ample dataset with this longitudinal predictor the broken
stick method was applied to all the available growth data
from O to 5.5 years of the population for analysis to substi-
tute missing BMI-SDS values while simultaneously gener-
ating BMI-SDS values at the specific ages [16]. The
broken stick method uses a linear mixed model to de-
scribe subject specific growth trajectories at fixed times
using a piecewise linear growth curve and is therefore a
method that can be applied when the dataset contains ir-
regular spacing of ages [16]. By the inclusion of random
effects, subject-specific BMI-SDS values are obtained [16].
This example dataset with predictor BMI-SDS at the exact
ages of 0 days, 3 months, 6 months, 14 months, 2, 3, and
5.5 years is referred to as the broken stick-data. See Add-
itional file 1 for a visual representation of the differences
in data structure between the original dataset and the
newly generated broken stick-dataset. The development of
the prediction models and their predictive quality assess-
ments were performed in this broken stick-dataset. (Data
available on request. The Terneuzen Birth Cohort data are
not accessible in the public domain, because participants
gave informed consent for retrieving information to be
used for the Terneuzen project only.).

Methods to develop prediction models

Different simple and slightly more advanced methods to
handle a longitudinal predictor in a prediction model were
considered for comparison and applied in the example
dataset. The methods were derived from reviews of Chen
et al. [5] and Tu et al. [6] who evaluated procedures to
model individual trajectories and to analyze data with re-
peatedly measured independent variables and a non-time-
varying outcome variable. For the current study we have
chosen easily applicable methods that are able to handle a
longitudinal predictor and a fixed outcome and are able to
assess individual risk prediction.

Page 3 of 10

Models were developed for the prediction of over-
weight (yes/no) using logistic regression and for the pre-
diction of BMI-SDS at the age of 10 years using linear
regression. In all developed prediction models, linear re-
lationships between the predictor variables and the out-
come were assumed. The following six methods were
applied to develop prediction models with the repeatedly
measured predictor BMI-SDS:

All measurements

In the first method all the seven measurements of BMI-
SDS at the age of 0 days, 3 months, 6 months, 14 months,
2, 3, and 5.5 years were used as separate predictors in a
multivariable regression analysis.

A single best measurement

The second method was a univariable analysis in which
one of the seven age BMI-SDS measurements at 0 days,
3 months, 6 months, 14 months, 2, 3, or 5.5 years was
chosen as the single “best” variable representing the
predictor.

Summary measurement (mean or maximum)

This third method is similar to the second with a uni-
variable analysis, but instead of choosing one of the
measurements a summary measure, for example, the
mean or maximum value of all the BMI-SDS measure-
ments, is being used as the single variable representing
the predictor in the model.

The change between subsequent measurements

A fourth method is to make use of the change between
subsequent BMI-SDS measurements as predictors. Includ-
ing the first BMI-SDS measurement at birth and all the six
subsequent changes between BMI-SDS measurements in
the model provides it with all the available information
concerning a subject’s BMI-SDS growth trajectory [6].

The conditional measurements

A fifth method is to make use of conditional BMI-SDS
measurements. A conditional measurement of a certain
time point is obtained by taking the (BMI-SDS) measure-
ment of that specific time point and regress all previous
measurements on it [6]. The residual of this equation is
the conditional (BMI-SDS) measurement of the specific
time point uncorrelated to the previous measurements
[6]. Using the first original (BMI-SDS) measurement
at birth and all subsequent conditional (BMI-SDS)
measurements provides the model with all the avail-
able information concerning a subject’s (BMI-SDS)
growth trajectory [6].



Welten et al. Diagnostic and Prognostic Research (2018) 2:5

Growth curve parameters of BMI-SDS over time

In the sixth method, we performed a two-step analysis
based on information derived from a child’s individual
growth curve. First, a linear regression analysis is per-
formed with age at measurement as independent vari-
able and the BMI-SDS measurement as the dependent
variable. This regression analysis is performed with the
growth data from O days to 5.5 years for each subject
separately in a long structured dataset to obtain subject
specific growth curves over this time interval. Apart
from a linear growth curve, we also applied quadratic
and cubic functions.

Secondly, the mean of all measurements and the
child-specific growth parameters, i.e., slope coeffi-
cient(s)) are entered in a new model to predict the out-
come overweight and BMI-SDS at 10 years, again
assuming a linear association between the predictor(s)
and the outcome as for the previous methods. Here the
mean represents the individual’s average value of BMI-
SDS from 0 to 5.5 years and the slope parameters [5,
17-20] represent the trend of the individual’s change in
BMI-SDS over time. We also added the standard error
of the slope parameter from the first step to the model
as an indication of fluctuation of the actual measure-
ments around the curve [17-20].

Performance assessment of the prediction models

The predictive quality of the prediction models was
assessed with several performance measures. Discrimin-
ation of the prediction models, ie., the ability to differ-
entiate between persons who do and do not develop the
outcome, can be assessed with the explained variance R*
and the area under the curve (AUC) [21, 22]. For the lo-
gistic models adjusted Nagelkerke R as described by
Steyerberg [4], was used and adjusted R* for the linear
models. The AUC was used for both the logistic and lin-
ear models, with the outcome of observed overweight
(yes/no) at the age of 10 years as the state variable and
the predicted risk for overweight (logistic model) or pre-
dicted BMI-SDS value (linear model) at 10 years as test
variable. The DeLong method [23] was used to test for
significant differences between AUC-values.

All analyses were performed using the Statistical Pack-
age for the Social Sciences version 22.0 for Windows
(SPSS Inc., Chicago, IL, USA). The broken stick and
DeLong method were applied using R for Windows ver-
sion 3.2.5 (The R Foundation).

Results

Population for analysis

The characteristics of the population for analysis are
shown in Table 1. Around the age of 10 years (median age
9.9 years, 95% range 9.1, 10.4) mean BMI-SDS was — 0.2
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Table 1 Characteristics of the population for analysis

Broken stick-data

N=730
Male, no (%) 343 (47.0%)
Visit 0 days Age (years) 0.0 (0.0; 0.0)
BMI-SDS —-0.6 (0.9)
Visit 3 months Age (years) 03(0.3;03)
BMI-SDS -04 (0.8)
Visit 6 months Age (years) 0.5 (0.5; 0.5)
BMI-SDS -04(0.8)
Visit 14 months Age (years) 12(1.2,1.2)
BMI-SDS 02 (0.8)
Visit 2 years Age (years) 20 (2.0; 20)
BMI-SDS 0.1 (0.8)
Visit 3 years Age (years) 3.0 (3.0;3.0)
BMI-SDS 0.1 (0.8)
Visit 5.5 years Age (years) 5.5 (5.5, 5.5)
BMI-SDS -02(07)
Visit 10 years Age (years) 9.9 (9.1, 104)
BMI-SDS -0.2 (1.0)
Overweight, no (%) 90 (12.3%)

Values are expressed as the mean (SD), median (95% range) or number (%) of
age at visit, BMI standard deviation score (-SDS) at visit, sex, and overweight

SDS (standard deviation 1.0) and 90 participants (12.3%)
were overweight according to the IOTF cut-offs. Figure 1
shows the development in mean BMI-SDS over time (age
0 days to 5.5 years) of the non-overweight and the over-
weight group at the age of 10 years.

Predictive quality of the prediction models

The predictive quality of the prediction models that were
developed using the six different methods are shown in
Table 2.

This table shows that methods 1 “all measurements”; 2
“single best measurement”; 4 “changes between measure-
ments”; 5 “conditional measurements”; and 6 “growth
curve parameters” were the ones that produced logistic
models for the prediction of overweight at age 10 years of
the highest predictive quality: with adjusted Nagelkerke
R*-values of 0.230 to 0.244 and AUC-values of 0.799 to
0.807. The 5.5 year BMI-SDS (method 1 and 5) and the
5.5,-3, BMI-SDS change (method 4) measurement were
automatically removed from these models as a result of
collinearity, i.e., these variables did not bring any add-
itional information to the model and were therefore of no
extra value. Only the AUC-values 0.767 and 0.737 of
method 3 “summary measurements” using the mean and
median were significantly different from the AUC-value
0.807 of reference method 1 (p values < 0.031).
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Fig. 1 Mean BMI-SDS at ages 0 to 6 years of overweight and non-
overweight 10-year-old children

For the logistic model of method 2 the 5.5y BMI-SDS
measurement was used as the single “best” predictor as
it produced the model of the highest predictive quality.
The effect of choosing one of the other measurements
as single “best” predictor is shown in Additional file 2:
Table S3. The table shows a general trend of an increase
in predictive quality of the model when increasing age of
BMI-SDS measurement with a significantly lower AUC
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for the measurements from 0 to 2 years compared to the
reference 5.5 year measurement (p values < 0.001).

In the logistic model of method 6 “growth curve param-
eters” we used the model based on individuals’ cubic
growth curves for comparison as this produced the model
with the highest predictive quality. The predictive quality
of the models developed with linear and quadratic growth
curves and models including the standard error are pre-
sented in Additional file 2: Table S4. Overall the models’
predictive quality improved when a quadratic instead of a
linear growth curve was used; remained roughly similar
when a cubic instead of a quadratic growth curve was
used; and did not seem to improve by the inclusion of the
standard error. However, none of the AUC’s of the differ-
ent growth curves were statistically significantly different
from the AUC of the model including the cubic growth
curve parameters and standard error.

Table 2, Additional file 2: Table S3, and S4 also show
the results for the linear models predicting BMI-SDS at
the age of 10 years. The results of these linear models
were similar to the results of the logistic models de-
scribed above with as main result that methods 1, 2, 4,
5, and 6 showed the highest predictive performance.

Discussion

In this article, we applied six relatively simple methods to
develop a prediction model with a fixed outcome and a re-
peatedly assessed longitudinal predictor. Using these
methods, we developed prediction models for overweight
and BMI-SDS at the age of 10 years (including the repeat-
edly measured predictor BMI-SDS age 0-5.5 years) and
evaluated their predictive quality. Overall, the models

Table 2 The predictive quality of prediction models developed using different methods to include longitudinal predictor BMI-SDS

Method Model includes Outcome at 10y

Overweight BMI-SDS

NkR?  AUC R? AUC
1. All original BMI-SDS at age 0 days, 3 months, 6 months, 14 months, 2 years, 0.244° 0.807° 0339° 0.801°
measurements 3 years, 5.5 years
2. Single ‘best” measurement BMI-SDS at age 5.5 years 0.230 0.799 0.329 0.799
3. Summary Mean (BMI-SDS at age 0 days, 3 months, 6 months, 14 months, 2 years, 0.168 0.767 0.238 0.767
measurement 3 years, 5.5 years)
3. Summary Maximum (BMI-SDS at age 0 days, 3 months, 6 months, 14 months, 0.130 0.737 0177 0.737
measurement 2 years, 3 years, 5.5 years)
4. Change between BMI-SDS at age 0 days and BMI-SDS changes between ages 3,,-0g, 6m-3m, 0.244° 0.807¢ 0.339¢ 0.801¢
measurements 140-6ms 2y-14m, 3472y, 5.5,-3,
5. Conditional measurements BMI-SDS at age 0 days and conditional BMI-SDS at age 3 months, 0.244° 0.807¢ 0.348 0.806

6 months, 14 months, 2 years, 3 years, 5.5 years

6. Growth curve Mean and regression coefficients of the cubic growth curve 0.241 0.803 0337 0.803

parameters (mean, bage, Dage? s bages)

Values are the explained variance of each prediction model developed in the broken stick dataset expressed in adjusted Nagelkerke R? (Nk R?) or adjusted R* (R%)
and the area under the curve (AUC). The models predicting the dichotomous outcome overweight no/yes were analyzed using logistic regression. The prediction
models predicting the continuous outcome BMI-SDS at age 10 were analyzed using linear regression

Due to collinearity: a. The model did not contain BMI-SDS at 5.5 years; b. The model did not contain BMI-SDS at 3 years; c. The model did not contain ABMI-SDS
between 5.5,-3,; d. The model did not contain BMI-SDS at 0 days; e. The model did not contain conditional BMI-SDS at 5.5 years
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developed by the different methods were of similar pre-
dictive quality, apart from the models of method 3 “sum-
mary measurement” which were of lower predictive

quality.

Methods to model a longitudinal independent variable
Most prediction models are developed without the inclu-
sion of longitudinal predictor information. Including this
information, however, could lead to improvement of indi-
vidual risk prediction. There are various methods to in-
clude a longitudinally measured independent variable into
a model, which are discussed in overviews by Chen et al.
[5] and Tu et al. [6]. However, most of these methods are
not primarily designed for the purpose of risk prediction.
For the current study we selected methods that can han-
dle longitudinal predictor information and a fixed out-
come, are able to assess individual risk prediction, and are
easily applied by epidemiologists. Methods that we have
not discussed are for example methods based on cluster-
ing such as Gaussian mixture model by clustering the ex-
posure values [5]; functional clustering models [5]; and
functional logistic regression model [5]; and methods
based on random effects such as latent growth curve
modeling [6]; and growth mixture modeling [6]. The clus-
tering methods are based on the grouping of individual
trajectories leading to a loss of information and are diffi-
cult to use for individual risk prediction as it is unknown
to which group a new individual belongs in practice.
Methods based on random effects are not appropriate for
the use in prediction modeling as in practice the random
effect(s) of an individual are unknown and, therefore, only
the fixed effects can be used (which comes down to the
growth curve method described in this paper). Another
method that receives attention is the use of joint modeling
[24]. This method is appropriate for longitudinal data in
combination with survival data and therefore fell beyond
the scope of this article. Joint modeling loses its surplus
value when there is no survival data but an outcome mea-
sured at a fixed time-point after the last predictor meas-
urement. This is because the last estimated predictor
measurement before the occurrence of an event is used
for the final model, which would be the estimated 5.5y
BMI-SDS measurements here (coming down to method 2
with actual 5.5y BMI-SDS). At last, there is the method of
curve matching [25], a new method that would be suitable
and could be interesting for individual risk prediction.
However, curve matching is still under development and
we were therefore unable to include it in our comparison.

Methods to develop prediction models with a
longitudinal predictor

At first sight one might consider method 1 “all measure-
ments” to be the most straightforward method. Its advan-
tage is that it is easily applied and that all of the available
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information on the predictor is being used [5, 6]. A major
limitation is that it requires for all subjects to be measured
around similar time points [5, 6] and to have no missing
values [5] for any of the measurements; otherwise, no pre-
diction can be made. Another disadvantage of this method
is the risk of running into the problem of collinearity [5,
6], causing some of the predictor’s variables to be removed
from the model. Finally, a limitation is that more variables
have to be entered in the model when more measure-
ments are available. This is problematic with a large num-
ber of repeated measurements as it is desirable to end up
with a good yet parsimonious prediction model that is
easily applicable in practice.

An advantage of method 2 “single best measurement”
and method 3 “summary measurement” is that they are
also simple to apply and there is no problem with collin-
earity [5]. An important limitation of these methods is
the loss of longitudinal predictor information. Another
limitation is that method 2 “single best measurement” is
not flexible with the timing of the measurements and
handling of missing values. Method 3 “summary meas-
urement”, however, does not require availability of all
measurements to calculate a mean or maximum of the
available data and is therefore somewhat more flexible
with the timing and missing values of measurements.

An advantage of method 4 “changes between measure-
ments” and method 5 “conditional measurements” is that
they use all available information on an individual’s growth
development and can handle the problem of collinearity
slightly better than method 1 “all measurements” [6].
However, as was seen in the example, collinearity might
still occur. A limitation of these methods is that many var-
iables will have to be included in the model if there are
many repeated measurements and the methods are not
flexible in the presence of missing data. However, some
flexibility in the timing of the measurements is possible
for method 4 “changes between measurements” as a sort
of ratio of change could be used (ie., change divided by
the covered period of time), but these ratios should still
cover approximately the same age ranges. Moreover,
method 5 “conditional measurements” requires partici-
pants to be measured at similar time points [6].

The advantage of method 6 “growth curve parameters”
is that it can handle the problem of collinearity while
taking all information on a subject’s growth into ac-
count. When there are many repeated measurements
only a couple of variables need to be entered in the pre-
diction model, as all original measurements are summa-
rized into the mean and a (few) growth curve
parameter(s) at hardly any cost to the predictive quality
of the model. Another advantage is the flexibility of the
model with missing values and timing of measurements;
this method can even be employed if people are irregu-
larly measured over time. A down side of this method is
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that it needs to be performed in two steps and you need
to import the results of the analyses of step 1 into your
dataset before performing step 2, thus it is a slightly less
straightforward method. Moreover, this method might
not be useful in circumstances where the predictor only
has a very small (2-3) number of repeated measure-
ments, because you will end up having to enter the same
number of variables into the prediction model while
having a loss of data due to simplifying the data into a
growth curve parameter.

See Table 3 for a quick overview of the pros and cons
of each method.

Strengths and limitations

For this study we used data from the Terneuzen Birth Co-
hort and created a complete example dataset with seven
repeated measurements at specific time points. Unfortu-
nately, the Terneuzen data contained many missing values
and applying the broken stick method could possibly have
led to too much coherence between subsequent measure-
ments causing collinearity. However, body size measure-
ments that succeed each other tend to be correlated [6];
therefore, collinearity is not uncommon when repeated
growth measurements are included in a single model. Be-
cause it could not be ruled out that using the broken stick
method had its own effect on the performance of the dif-
ferent methods, we performed the same analyses in an-
other example dataset which was constructed by
restructuring the Terneuzen data and applying multiple
imputations. Results of these analyses regarding the differ-
ent methods were similar to those discussed in the previ-
ous results section. See Additional file 2: Text S1 for
further details on how these analyses were performed and
Additional file 2: Figure S2 and Table S1-S4 for the repli-
cated results by these analyses.
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We believe that we have provided a clear overview of
the most relevant methods for epidemiologists and clini-
cians to consider for individual risk prediction with longi-
tudinal predictors. A strength of this study is its focus on
the applicability of the different methods for epidemiolo-
gists. When the appropriate method is applied, prediction
models can make optimal usage of the available informa-
tion provided by the repeatedly measured predictors. The
improved predictions from these models may subse-
quently lead to improved decision making by clinicians in
health care settings. Moreover, measuring a predictor re-
peatedly enables health care professionals to recalculate a
client’s risk for a specific outcome at each new visit and to
adjust the course of a treatment if needed. Further re-
search is needed to determine how this should be realized.

Practical implications

Having discussed the different methods, the question of
which method to apply for the development of a predic-
tion model for daily practice with a longitudinal pre-
dictor rises. Unfortunately, there is not a single
straightforward answer. All methods are considered ap-
propriate for different situations. The choice of method
will depend on (1) the hypothesized association between
predictor and outcome, (2) the available data that will be
used to construct the prediction model, and (3) the re-
quirements of the prediction model for use in practice.
Each of the following criteria must be considered:

Relation between predictor and outcome

When the developmental curve of the predictor is of im-
portance for the risk estimation on the outcome, all
methods described in this article can be used apart from
the univariable methods 2 “single best measurement” and
3 “summary measurement” as the loss of information on

Table 3 Characteristics of the methods for developing a prediction model with a longitudinal predictor

Method Flexible with  Flexible with timing Encompasses all ~ Capable of Capable of dealing  Straightforward predictor
missing values of measurements  information on  dealing with with a small number computation (no additional
the development a great number of repeated steps that need to be
of the predictor  of repeated measurements performed before prediction
measurements model can be made)

1. All original + + +

measurements

2. Single “best” + + +

measurement

3. Summary (mean or  + + + + *

maximum etc.)

4. Change between * + + *

measurements

5. Conditional + + *

measurements

6. Growth curve + + + +

parameters

*advantage that is present; *advantage that is partially present; an empty cell indicates an advantage that is not present. See discussion section
"Methods to develop prediction models with a longitudinal predictor" for more information
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the predictor’s development would lead to a decreased
predictive quality. Method 6 “growth curve parameters”
would be suitable when it is expected that there are dis-
tinct developmental trajectories of the predictor across
outcome groups and that these trajectories are adequately
reflected by the growth curve parameters [5]. When it is
well known that a specific measurement is the most opti-
mal predictor, method 2 “the best measurement” could be
used. The choice of which single variable you choose
needs to be soundly-based to justify its use as the “best” as
it assumes that the single measurement is representative
for, or even has superior predictive value compared to, all
the other measurements and that its development over
time is not of importance for the predictive accuracy. The
use of method 3 with the mean of all measurements would
be more appropriate when there is no change in the pre-
dictor over time or when changes are not associated with
the outcome [5]. When an acute or extreme occurrence of
exposure to the predictor is associated with the outcome,
and not the development of the predictor over time or its
mean level, the use of method 3 with the maximum value
could be considered as a suitable method [5].

Missing data

Another important property to consider is a method’s
capability to handle missing data. Method 1 “all mea-
surements”, method 4 “change between measurements”,
and method 5 “conditional measurements” require that
there are no missing values in any of the variables, as all
variables need to be entered in the model to generate an
individual’s prediction. These methods might therefore
be less appropriate for developing prediction models to
be used in settings where missing values regularly occur,
although one could also apply a proper method of im-
puting these missing values to still generate predictions.
Method 3 “summary measurement” and method 6
“growth curve parameters” are more flexible and can still
be used to calculate predictive values when a person has
a missing value for a (couple of) measurement(s). How-
ever, although these methods are flexible in the handling
of missing values a sufficient amount of measurements
is still needed to make reliable predictions.

Data structure

Most of the time, repeated measurements are organized
in variables within certain time-intervals. In this case,
all methods could be applied. However, when this is
not the case and measurements are irregularly taken
over time, method 4 “change between measurements”
might be applied when there are only small differences
in timing of measurements. When this is the case, the
ratio of change could be calculated over certain periods.
Methods 3 “summary measurement” and 6 “growth
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curve parameters” are flexible and do not require the
data to be measured at specific time points. However,
despite the flexibility of the methods the input data still
needs to cover the same data construct used to develop
the model and give enough information to cover the
development of the predictor over the aimed period of
time to make reliable estimates.

Number of repeated measurements

The number of repeated measurements also affects the
choice of method. When there are only two or three re-
peated measurements of the predictor, method 6 “growth
curve parameters” may be redundant. However, when
there are a great number of repeated measurements it is
no longer feasible to put all the BMI-SDS measurements,
the change or the conditional measurements in a predic-
tion model (method 1, 4, and 5). Method 6 could then be
used to summarize all these values into a growth curve de-
scribed by two to three variables. Methods 2 “single best
measurement”, 3 “summary measurement” could also be
used in case of many repeated measurements, but these
methods are much less refined as information on the de-
velopment of the predictor is lost.

Computational cost

As stated before we have focused on comparing prediction
methods that are easily applicable for epidemiologists, as
all the 6 methods are easily applied none of the methods
should probably be selected or rejected based on compu-
tational costs: they are all very manageable for statistical
software programmes if applied appropriately. Although
there are differences in computational costs for the differ-
ent methods these are very difficult to quantify as it will
depend on different factors such as the structure (current
and desired for analysis) and size (number of persons;
number of measurements; and the number of imputed
datasets if applicable) of the dataset.

Conclusion
The choice of method for developing a prediction model
with a longitudinal predictor depends on hypothesized
predictor-outcome associations, available data, and require-
ments of the prediction model. For this article’s example,
predicting overweight at age 10 years with longitudinal pre-
dictor BMI-SDS, method 6 “growth curve parameters” is
probably the best choice. This is because (1) we expect that
children’s BMI-SDS development over the ages 0-5.5 years
is associated with overweight at age 10 years [26]; (2) miss-
ing values and irregular measurements occur regularly in
CHC practice; and (3) a considerable amount of repeated
BMI-SDS measurements are available.

The growth curve method is the one that is best capable
to encompass all information on development while still
being able to handle missing values and irregular
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measurements in a flexible manner. Moreover, with this
method irregularly measured data would not have to be
restructured in a generic structured dataset to be able to
build a prediction model. Therefore, when dealing with a
predictor that has been measured for considerable times
and its development over time is expected to be associated
with the outcome, the growth curve method seems to be
the method best to be applied and used in practice.
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