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Untapped potential of multicenter studies:
a review of cardiovascular risk prediction
models revealed inappropriate analyses
and wide variation in reporting
L. Wynants1,5* , D. M. Kent2, D. Timmerman1,4, C. M. Lundquist2 and B. Van Calster1,3

Abstract
Background: Clinical prediction models are often constructed using multicenter databases. Such a data structure
poses additional challenges for statistical analysis (clustered data) but offers opportunities for model generalizability
to a broad range of centers. The purpose of this study was to describe properties, analysis, and reporting of
multicenter studies in the Tufts PACE Clinical Prediction Model Registry and to illustrate consequences of common
design and analyses choices.

Methods: Fifty randomly selected studies that are included in the Tufts registry as multicenter and published after
2000 underwent full-text screening. Simulated examples illustrate some key concepts relevant to multicenter
prediction research.

Results: Multicenter studies differed widely in the number of participating centers (range 2 to 5473). Thirty-nine of
50 studies ignored the multicenter nature of data in the statistical analysis. In the others, clustering was resolved by
developing the model on only one center, using mixed effects or stratified regression, or by using center-level
characteristics as predictors. Twenty-three of 50 studies did not describe the clinical settings or type of centers from
which data was obtained. Four of 50 studies discussed neither generalizability nor external validity of the developed
model.

Conclusions: Regression methods and validation strategies tailored to multicenter studies are underutilized.
Reporting on generalizability and potential external validity of the model lacks transparency. Hence, multicenter
prediction research has untapped potential.

Registration: This review was not registered.

Keywords: Clinical prediction model, Multicenter, Cardiovascular disease

Introduction
Clinical predictive models (CPMs) are clinically useable
mathematical equations that relate multiple predictors
for a particular individual to the probability of risk for
the presence (diagnosis) or future occurrence (progno-
sis) of a particular outcome [1]. They are an increasingly

common and important methodological tool for
patient-centered outcomes research and for clinical care.
By providing evidence-based estimates of the patient’s
probability of health outcomes, CPMs enable clinicians
and patients to make decisions that are more rational
and consistent with a patient’s own risks, values, and
preferences.
It is no surprise that many researchers use multicenter

datasets as a substrate to develop clinical prediction
models. To be useful, clinical prediction models must be re-
liable in new patients, potentially including patients from
different hospitals, countries, or care settings. Recruitment
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at multiple sites makes it easier to collect sufficient data to
estimate model parameters reliably, especially when the
outcome of interest is a rare event.
Currently, the TRIPOD guidelines do not mention any

requirements that are specific to multicenter studies,
other than reporting the number and location of centers
[1, 2]. Nonetheless, multicenter studies pose particular
challenges to statistical data analysis and offer new op-
portunities. On the one hand, a key assumption
underlying common regression techniques is violated.
Observations are not independent as they are clustered
within hospitals; patients within a hospital may be more
alike than patients from different hospitals. On the other
hand, the fact that hospital populations differ from one
another may shed light on the generalizability of the
model.
Studies have shown that mixed (i.e., random inter-

cept) and fixed (i.e., center variables) effects regression
allow to study differences between centers in event
rates and predictor effects and may even provide bet-
ter predictions [3–8]. Leave-center-out cross-validation
has been proposed to efficiently assess the
generalizability of the model to centers not included in
the development set [9, 10]. For example, small center
effects and successful cross-validation of a model de-
veloped in multiple tertiary care centers in one coun-
try strongly indicate generalizability to other tertiary
centers in that country. However, transportability of
the model to clinical care settings or distinct popula-
tions not represented in the data can never be guaran-
teed [11–13]. In the example above, predictive
performance in primary or secondary care or in for-
eign centers (“transportability”) remains to be assessed
in external validation studies.
Hence, multicenter studies are extremely interesting if

they are representative of the settings in which the
model is intended to be used. This is uncertain if centers
that participate in studies differ from those who do not,
for example, because they have an academic interest or
specialization in the disease under study (selection bias)
[14]. Cases identified from specialist centers may not be
representative of all cases in the general population, and
patients without the condition may have been referred
there because they presented with many risk factors, dis-
torting regression estimates (referral bias). Moreover, the
predictive performance of a model may differ between
subgroups in a population (spectrum bias), which has
led to the recommendation to use the prevalence in the
studied setting as a guide when evaluating whether the
reported predictive performance is applicable to a par-
ticular clinical setting [15–18].
The purpose of this research is to investigate the prop-

erties, analysis, and reporting of multicenter studies in
the Tufts PACE Clinical Prediction Model Registry, a

comprehensive database of clinical prediction models for
cardiovascular disease [19, 20]. In addition, we provide
simulated illustrations of consequences of common
design and analysis choices.

Methods
We searched the Tufts PACE Clinical Prediction Model
Registry for multicenter studies. This registry contains
published clinical prediction models for patients at risk
for and with known cardiovascular disease. The inclu-
sion and exclusion criteria and electronic search strategy
are published in detail elsewhere [19, 20]. Briefly, the
registry was constructed from a PubMed search for
English-language articles containing newly developed
prediction models published from January 1990 to
March 2015. It includes prognostic and diagnostic
models to predict binary outcomes (e.g., myocardial in-
farction or death). Only articles that show the model in
a format that allows readers to make individual predic-
tions were included (e.g., an equation, a point score, an
online calculator).
We considered studies labeled in the registry as

multicenter and published between January 2000 and
March 2015. From these, a randomly selected subset
of 50 papers underwent full-text screening. When a
paper presented multiple prediction models, we se-
lected the primary model as identified by the authors.
Where no primary model was identified, we selected
the one with the smallest number of events per vari-
able (EPV). We extracted sample size and other data-
set characteristics for the development dataset. In two
studies, the development dataset was single center
(due to a geographical train-test split of multicenter
data). In these cases, we described the complete mul-
ticenter dataset.
One researcher (LW) extracted the following and en-

tered it in an excel spreadsheet:

� The total sample size of the development
dataset;

� The number of events of interest in the
development dataset;

� The ratio of the number of patients with events
divided by the total sample size (ignoring censoring
in time-to-event data);

� The number of centers;
� The ratio of the sample size in the largest and

smallest center;
� Center sizes, or any descriptive information related

to center size;
� A description of the setting in which the model was

developed (e.g., all tertiary/academic centers, a
community cohort, mixed settings);
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� The type of study data used for model development
(registry/cohort, trial, individual patient data meta-
analysis (IPD-MA));

� The regression technique used for model
development;

� Whether an external validation was included in the
study (a random train-test split is not considered
external validation);

� How many external validation datasets were used;

� Whether external validation happened in the
same center (or community) as model
development;

� Whether external validation happened in the same
country as model development;

� Whether external validation happened in the same
care setting as model development;

� Whether external validation used data from the
same time period as model development;

Fig. 1 Evolution of the yearly total number of prediction models (upper line) and the yearly number of prediction models built with multicenter
data (shaded area) in the Tufts PACE Clinical Prediction Model Registry

Fig. 2 The Tufts PACE Clinical Prediction Model Registry was searched for relevant multicenter articles published after 2000
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� Statements regarding the generalizability of the
prediction model (including selection, referral, and
spectrum bias).

When a publication did not report on these items, but
the authors referred to earlier publications or a study
website when describing the methodology, we screened
these sources. The retrieved information was
cross-checked with recorded information in the Tufts
PACE database, and conflicts were resolved [19, 20]. We
summarized all extracted data as frequencies, medians,
ranges, and interquartile ranges.
We did not register this review, nor did we publish a

review protocol. We used the PRISMA checklist to pre-
pare this manuscript [21].
To highlight potential issues with common design

and analysis choices for multicenter prediction
models, we supplemented the review with illustra-
tions, the detailed methods of which are provided in
the Appendix. Briefly, in the first illustration, we
compare marginal predicted probabilities (obtained by
using standard logistic regression ignoring clustering)
to conditional predicted probabilities from a mixed
effects model. We simulated a dataset with a binary
outcome with event rate 0.33 and a single standard
normal predictor (with the same distribution across
centers) with an effect of 0.8 on the logit scale. We
generated data for 500 centers, with 1000 observa-
tions each, and let the intercepts vary per center with
a standard deviation of 1 or 0.5. We fitted a standard
logistic regression model and a mixed effects logistic
regression model and evaluated predictions in terms
of discrimination and calibration.

In the second illustration, we exemplify non-tran-
sportability with a published example of a risk score to
predict recurrent cardiovascular events [22] and by
using a real multicenter clinical dataset that was col-
lected to develop preoperative prediction models for
ovarian cancer diagnosis [23]. The dataset contains in-
formation on 3439 patients from 12 oncology referral
centers and 1664 patients from 8 general hospitals.
We consider a binary outcome Y (ovarian malignancy)
and two predictors: age and the log-transformed
CA125 biomarker value. The observed relations (from
logistic regression) between the outcome and predic-
tors in tertiary care and secondary care are taken to be
the true models in each setting. Using resampling
techniques, we generated a typical multicenter model
development dataset in tertiary care, a large external
validation set in tertiary care, and a large external val-
idation set in secondary care. We made calibration
plots and computed C-statistics to assess the
generalizability and transportability of the model.

Results
The number of clinical prediction models published per
year showed a strong increase over time. The proportion
of models built using multicenter data increased slightly
over time. Sixty-four percent (602/944 models) of
models published after 2000 used multicenter data
(see Fig. 1).
Of all studies included in the Tufts PACE Clinical

Prediction Model Registry, 52% (390/747 studies)
were multicenter studies published after 2000 (see
flowchart in Fig. 2). We discuss the details of a ran-
dom subset of 50 studies (Table 1) [24–73]. Forty of

Fig. 3 Total sample size and number of centers (logarithmic axis scales)
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them analyzed observational multicenter data. Six cre-
ated a prediction model making secondary use of
multicenter trial data. For one study, the reporting on
the data source was equivocal. Three studies were in-
dividual patient data meta-analyses (IPD-MA), of
which two combined datasets from multiple commu-
nity cohorts and one combined data from multiple
trials (some of them are multicenter trials them-
selves). In IPD-MA of existing study data, the primary
source of heterogeneity is at the study level and not
at the center level. Hence, from these three studies,
study-level information was extracted and analyzed
instead of center-level information (e.g., number of
studies in the IDP-MA, n in each of the original
studies, statistical account of clustering within
studies).
The sample size for model development in the 50 se-

lected studies varied from 155 to 834,696 with a median
of 2263 (IQR 667 to 13,705). Sixteen studies had be-
tween 100 and 1000 observations, 18 studies had be-
tween 1000 and 10,000 observations, 13 studies had
between 10,000 and 100,000 observations, and 3 studies
had more than 100,000 observations.

Multicenter: a catch-all term
The number of centers contributing data to a multi-
center study varied widely from just two centers to
5473 centers, with a median of 10 (IQR 3 to 76)
(Fig. 3). As such, “multicenter” is a term covering
anything from two researchers joining forces to large
international registries. There was a moderate positive
correlation between the total sample size and the
number of contributing centers (Fig. 3; Spearman ρ
0.4). Four studies did not report the number of par-
ticipating centers. Two of them were large studies
(N = 562,791 and 9556) using data from a quality of
care improvement program mentioning more than a
hundred centers participated, one was a secondary
analysis of a multicenter trial (N = 1692), and one
was a cohort study (N = 747).

The median number of patients per center was
133 (range 1 to 16,295; IQR 62 to 530), but imbal-
ance in center contributions was very common. Sam-
ple sizes for each included center were reported in
only 9/50 studies. The ratio of largest to smallest
center size could be computed in 10 studies. Among
these, the median sample size ratio of the largest
center to the smallest was 4 (range 1 to 34, IQR 3
to 7). Twelve additional studies contained summary
statements on sample sizes (e.g., interquartile ranges)
or hospital volume (e.g., number of beds, surgical vol-
ume, catchment population sizes). These indicated imbal-
ance in center sizes in nine studies, were equivocal in one
study, and, interestingly, described active control to limit
imbalance in two studies. These active controls were in-
cluding only the first 10 to 20 consecutive patients in each
center and setting an upper inclusion limit for centers.
The majority (28/50) did not report on center size imbal-
ance. These tended to be smaller studies (median N 1654
versus 4294).
Multicenter collaborations were not exclusively used

to study rare outcomes. The median ratio of the number
of events to the total sample size was 0.07 (range 0.001
to 0.60, IQR 0.03 to 0.16, not reported in 1), and the me-
dian number of events 177 (range 6 to 48,412; IQR 98 to
497; not reported in 1).

Clustered data is commonly ignored during analysis
The vast majority of studies (39/50) completely ig-
nored the clustered data structure that is typical for
multicenter studies during analysis (Fig. 4; 24 used lo-
gistic regression models, 13 Cox models, 2 Fine and
Gray models). The other studies took clustering into
account when building the prediction model in a var-
iety of ways: standard Cox or logistic regression with
a center-level covariate (e.g., a fixed center effect, a
region effect, a physician experience effect), mixed ef-
fects logistic regression, or stratified regression. Two
studies split their dataset into a single-center model
development set and used the other centers for geo-
graphical validation.

Fig. 4 Analysis techniques used for model building in 50 randomly selected multicenter studies
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Validation of the model
In leave-center out-cross-validation, each cluster is left out
of the dataset as a validation set once, while the model is
fitted on all other clusters [9]. Only one study used this
technique, an IPD-MA that used leave-one-study-out
cross-validation.

Ten studies included an external validation in the model
development study, two of which used two separate external
validation datasets. In 3/10 studies, validation was merely
temporal. In 6/10 studies, validation was a mixture of tem-
poral and geographic validation (in a different center or
community, four studies used validation data from a differ-
ent country). Validation in data collected at the same time
as model development, but from another center, occurred
in 1/10. All validations took place in hospitals or care set-
tings similar to the ones in which the model was developed.

Multicenter data does not guarantee generalizability
To evaluate in what type of settings a prediction model
could be applied, it is crucial that researchers describe the
settings from which study data was obtained. In our sam-
ple, 23/50 studies failed to do so.
Among the studies that did report on the settings from

which data was obtained, 16/27 were single-setting studies:
13 collected all data in tertiary/academic centers, 2 col-
lected all data in community hospitals, and 1 collected all
data in veteran affair hospitals. Data from multiple settings
(8/27; e.g., a mix of academic and community hospitals, a
mix of teaching and non-teaching hospitals) and use of
population or community cohort data (3/27) were rare.
Most studies used data from only one country; 11/50

were international studies, and 3/50 did not report
where data was collected.
Only 17/50 of studies included a direct or indirect state-

ment on the generalizability of their findings to the target
population or the potential applicability in other centers.
Eleven studies addressed potential selection bias (includ-
ing referral bias and spectrum bias) in their study. Five
studies critically reflected on generalizability in light of a
high disease prevalence in their study population. One
study questioned generalizability due to the use of specific
devices in the participating centers. More than half the
studies (27/50) did not discuss representativeness of the
study sample or selection bias, but simply stated that ex-
ternal validation is needed. A few studies (4/50) discussed
neither generalizability nor external validity. Only two
studies (2/50) claimed generalizability of their model to
the target population. The first did so on the basis of using
data from a large, multinational registry (N = 63,118; 126
centers) covering a heterogeneous population, accrued
using consecutive enrolment with a limit on the number
of inclusions per month per site to ensure representative-
ness, with standardized definitions, quality control efforts,
and audits. The second (N = 1048, 288 centers, a mix of
teaching and non-teaching hospitals) did so based on
their use of registry data rather than clinical trial
data, a claimed lack of selection, recall, and respond-
ent bias, and successful external validation in an in-
dependent registry with a lower proportion of
severely ill patients than the development dataset.

Box 1 An illustration of the consequences of ignoring
clustering

Standard regression models ignore any differences between

centers and have been illustrated to yield worse predictions

than mixed or fixed effects regression models in real clinical

examples and simulated data [3–5]. Consider the didactical

illustration in Fig. 5, where the data is strongly clustered and

standard and mixed effects logistic regression models with a

single predictor are estimated in a large dataset (n = 500,000,

simulation details in Appendix) Additional file 1. If standard

logistic regression is used (red dots), the large differences in

baseline event rates between centers (blue dots for 20

randomly selected centers) go unnoticed. Ignoring this

source of variance in the dataset often leads to

underestimated standard errors (in this example with 500,000

observations, 0.0034 versus 0.0038). When acknowledging the

differences in event rates between centers, a better

discrimination can be obtained by using the conditional

probabilities (C-statistics 0.79 vs. 0.67). Standard regression

methods yield regression coefficients and predicted

probabilities with a marginal interpretation, averaged in the

population, ignoring centers. The effect estimates are

typically closer to zero, than when clustering is taken into

account [74, 75]. Hence, in Fig. 5, the slope of the marginal

predictions (red dots) is less steep than that of the mixed

effect model’s conditional predictions in each center (blue

dots). This has implications for model calibration, as

described in detail elsewhere [4, 76] and illustrated in the

second panel. The predictions from the marginal model are

too moderate for patients in the average center. Because

differences in event rate between centers are ignored by the

standard logistic regression model, predicted probabilities

will often be systematically over- or underestimated in

individual centers, in contrast to the mixed effects

model (third and fourth panel). One may argue that calibration

within centers is most important in the context of prediction

modeling, because test results are interpreted and clinical

decisions are made in the individual centers. A second example,

with small but realistic differences between centers, is provided in

Appendix.
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Discussion
This review of the Tufts PACE Clinical Prediction Model
Registry indicated that 64% of clinical prediction models
published after 2000 were derived from multicenter data.
Our survey of published studies resulted in a number of
important observations.
Firstly, “multicenter” is a broad term, covering

small-scale studies conducted at only two collaborating
centers as well as very large international registries. Sec-
ondly, all studies had in common that the collected

patient data cluster within centers, yet this data struc-
ture is most often ignored during analysis. In the minor-
ity of studies that did acknowledge the data structure, a
broad array of analysis techniques were used, indicating
there is no commonly accepted way to build prediction
models in clustered data. Thirdly, even though multicen-
ter studies hold the promise of better generalizability to
the clinical target population than single-center studies,
reporting on the potential generalizability and external
validity is not transparent. Nearly one in two studies
failed to describe the care settings from which data was
obtained, and nearly two thirds of studies failed to critic-
ally reflect on the potential generalizability of the devel-
oped model to new centers or resorted to vague
statements that further validation was needed.
Our findings are in line with Kahan’s, who reviewed mul-

ticenter randomized trials and found that the reporting of
key aspects was poor and only 29% of studies adjusted for
center in the analysis [77]. They are also in line with nu-
merous reviews that signaled incomplete reporting and
poor design and analysis for prediction models for diabetes
[78], kidney disease [79, 80], cancer [81], neurological disor-
ders [82, 83], and fetal and maternal outcomes in obstetrics
[84]. Some have criticized vagueness of reported selection
criteria, such that it remained unclear whether participants
were selected in an unbiased way [85], and specialist fields
contributing the majority of models, which are unlikely to
be generalizable to general hospital populations [80]. A
common grievance is the paucity of external validations
[79–85]. The proportion of multicenter studies was rarely
reported in published reviews but seems to vary by specialty
[80, 82, 83]. Researchers in neurology have identified the
common use of single-center data as one of the main
causes for the lack of generalizability of models in their
fields [82, 83].
An obvious limitation of our review is that it is lim-

ited to 50 risk prediction studies in cardiovascular dis-
ease. We expect that in other fields, multicenter studies
also differ widely in terms of numbers of included cen-
ters and analyses techniques used. A second limitation
is that publication bias may have influenced the results.
Large-scale studies with many participating centers
may have had a higher likelihood of being published,
potentially leading to overestimated study sizes and
numbers of participating centers in this review.

Recommendations for research practice
The strengths of a multicenter design are the ability to
speed up data collection and the coverage of a broader
population. However, the successful conduct of prospect-
ive multicenter studies requires careful study organization
and coordination, motivated study staff at the participat-
ing centers, and a dedicated and experienced method cen-
ter [86]. Based on our findings, we can make some

Box 2 Illustrations of non-transportability

When a model is developed from a selected high-risk popula-

tion, it may not generalize well to a general hospital population

or a lower level of care. The Essen Stroke Risk Score to pre-

dict recurrent cardiovascular events was developed from

cerebrovascular trial patients, a selective and high-risk popu-

lation. When validated in a registry representative of stable out-

patients, it yielded consistently overestimated cardiovascular event

rates in each risk stratum, except the lowest [22].

As another example, consider a prediction model for ovarian

cancer that was developed in a multicenter dataset of 2263

patients in 10 tertiary care centers (ratio between the largest

and the smallest center sample size 4:1), which is a typical

example of a multicenter dataset judging by the results of the

review. In tertiary care, the average patient age was 49 (sd 16)

and the average log-transformed CA125 value was 4.05 (sd

1.78). The outcome prevalence was 0.43. The linear predictor of

the prediction model was − 5.79 + 0.04 × age + 0.83 ×

log(CA125). In Fig. 6, the calibration plot shows that this model

is generalizable to an independent tertiary care center.

In secondary care, patients were slightly younger (average 47, sd

16) and had lower log-transformed CA125 values (average 3.45,

sd 1.32). The true outcome prevalence was 0.17. The model de-

veloped in data from tertiary care was not transportable to sec-

ondary care. The predicted probabilities of experiencing the

event were severely overestimated (expected number of events

3126, observed number of events 1629, calibration plot in Fig.

6). Transportability to settings not represented in the develop-

ment data cannot be assumed, regardless of the statistical mod-

eling used.

The overestimation of the event probability may be solved by

re-estimating the prediction model’s intercept in secondary care

[13]. However, it is interesting to note that the effects of age

and the CA125 value were slightly smaller in tertiary care than

in secondary care (see Appendix). This may occur in real life,

due to referral bias. Specialized care may see a larger share of

puzzling or unusual cases (e.g., young diseased people).
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suggestions to improve the analysis and reporting of mul-
ticenter studies.

Model development
We recommend using appropriate statistical techniques
to analyze clustered data. Studies have shown that stand-
ard logistic regression yields suboptimal results when data
is clustered [3–5]. First, mixed and fixed effects regression
provide valuable insights into the differences in event rate
between centers, after adjustment for the patient-level
predictors [6]. Second, it is well known that ignoring clus-
tering yields incorrect standard errors (often

underestimated). This also affects stepwise regression,
which is known to induce “testimation bias” even in
unclustered data [87], but is still common. Third, standard
regression methods yield regression coefficients and pre-
dicted probabilities with a marginal interpretation, aver-
aged in the population, ignoring centers [74, 75]. As
illustrated here and elsewhere [4, 76], this has a negative
impact on model calibration. Miscalibration gets worse as
the differences between centers increase. In contrast, fixed
(with center dummies) and mixed effects regression
methods yield correct standard errors for patient-level
predictors and better calibrated predictions to support

Fig. 5 Didactical example of predictions made ignoring center effects, when differences between centers are very large
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decision-making at the center level, even if average center
effects are used in new centers [3, 4]. Fourth, modeling
center effects also improves discrimination between two
patients from different centers [4, 88].
During model building, center-level covariates can be

used to tailor predictions to centers with specific charac-
teristics. This captures the combined effects of omitted
predictors that vary by center and are not fully captured
by the patient-specific covariates (e.g., regional differences
in population health, different patient spectra due to refer-
ral mechanisms). Those may be extremely difficult to cap-
ture otherwise. For example, one may incorporate a
predictor in the model that specifies the center type or
specialty (e.g., tertiary centers versus others) [8, 89, 90].
Note, however, that standard regression techniques that
ignore clustering yield standard error estimates for effects
of center characteristics that are typically too small.
When using fixed or mixed effects regression, one

may check for center-predictor interaction (or random
slopes). This type of interaction may be rare and have
little influence on predictions [91].
Fixed and mixed effects regression models can easily

be fitted with commonly used statistical software. To
apply such models in a new center, an average intercept
can be used (which is a random intercept of zero in a
mixed effects model; in a fixed effects model, this is not
straightforward) and simple updating techniques can
yield predictions tailored to new centers [13, 92].

Model validation
A geographical split into a single-center development
dataset and a validation set consisting of data from the
other centers may alleviate the need to address

clustering during model building but is very inefficient
as only a part of the available data is used for developing
the model.
In contrast, leave-center-out cross-validation (also

known as internal-external cross-validation) makes effi-
cient use of all available data and offers an excellent op-
portunity to test the generalizability of the model to new
centers [9]. To summarize the predictive performance in
each center, a simple average performance [9] or an
optimism-corrected performance measure can be com-
puted [93]. At the very least, however, the difference in
performance between centers should be inspected [94].
Meta-analytic techniques summarize performance and
simultaneously quantify between-center heterogeneity, by
distinguishing between sampling variability within centers
and variance in predictive performance between centers
[18, 95]. Note that leave-center-out cross-validation does
not resolve data clustering in the development sets and
does not guarantee transportability to distinct care settings
or populations not represented in the multicenter dataset.

Reporting
We recommend identifying the patients and care set-
tings for which the model is intended and transparently
reporting the threats to generalizability to this target
population. This includes careful reporting of
center-level characteristics such as types of centers (e.g.,
secondary versus tertiary care) and the sample sizes per
center. Describing the limitations of the study, including
non-representativeness of study samples, is already a key
element on the TRIPOD checklist [1]. The STROBE
checklist includes the requirement to address potential
sources of bias and states that the direction and

Fig. 6 Example of a prediction model built in tertiary care that is generalizable to a new tertiary care center but not transportable to a new
secondary care center
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magnitude of any potential biases should be addressed
[96]. We fully endorse these recommendations. Selection
bias is of special interest in prediction model studies.
The study sample may not be representative of the clin-
ical population in which the developed model is
intended to be applied, for example, because data was
collected in teaching hospitals by physicians with a re-
search interest in the disease under study (referral bias).
The performance of a prediction model is influenced by
the case-mix and the disease prevalence [15, 97, 98].
Hence, if specialized centers collected the study data, se-
lection bias may lead to overestimated disease probabil-
ities (miscalibration-in-the-large) or lower specificity.
Note that in half of the studies reporting information on
study settings, all participating centers were tertiary or
academic centers. Arguably, prediction models and
decision-support systems are most useful at lower levels
of care (secondary and primary), where the patient
case-mix is broad, and practitioners need to triage and
refer patients efficiently.

Design for generalizability
Lastly, multicenter studies have most potential if
generalizability is not an afterthought but considered at
study design. Frequently, researchers develop prediction
models from databases collected for other purposes. How-
ever, if prediction is considered in the design phase, cen-
ters from diverse settings can participate to ensure the
dataset is representative of the intended target population.
Moreover, researchers can aim to collect consecutive pa-
tients from each participating center, whilst maintaining a
good balance in center sample sizes.

Conclusion
Multicenter designs are very common in prediction model
development. Although multicenter studies may provide
better insight in the generalizability of developed predic-
tion models, this potential often remains untapped due to
the use of unsuitable analysis methods and lack of trans-
parent reporting.

Appendix (Fig. 7)
Simulation details
Illustration 1 Ignoring clustering
We generated a dataset of 500,000 patients. A single
standard normal predictor X (which may be thought of
as a linear combination of multiple predictors) had a
true effect of 0.8. The true intercept was − 1. Random ef-
fects (ri) of 500 centers (1000 patients each) were gener-
ated with a mean of zero and a standard deviation of 1
or 0.5 (two scenarios). The true disease probability was
calculated by applying the inverse logit transformation
to − 1 + ri + 0.8 X. By comparing the disease probability
to a random draw from a uniform distribution on the

interval [0,1], the binary outcome vector Y was created.
The event rate is 0.33 in scenario 1 and 0.31 in scenario
2.
In the generated datasets, a standard and mixed effects

(random intercept) logistic regression model were fitted.
We plotted the predicted probabilities of each model as
a function of X. We calculated the C-statistic of both. In
addition, we plot the predicted probabilities against the
true probabilities in an average-prevalence center, a
high-prevalence center, and a low-prevalence center.
The R code is provided online.
The results of scenario 1, which has extreme clustering,

are shown in the main manuscript for didactical reasons.
The plot below shows the results of scenario 2, with small
between-center differences, akin to what may be found in
a study using data from various similar centers (e.g., all
tertiary centers).

Illustration 2 Non-transportability
The estimated random intercept logistic regression
models in a clinical database (3439 patients in 12 oncol-
ogy referral centers and 1664 patients in 8 general hospi-
tals) were taken to be the true models in this example.
In tertiary care, this is log(p(Y = 1)/(p(Y = 0)) = − 5.77 +
0.04 × age + 0.85 × log(biomarker). The proportion of
residual variance in Y attributable to differences between
centers is 0.06. In secondary care, this is log(p(Y = 1)/
(p(Y = 0)) = − 7.77 + 0.05 × age + 0.91 × log(biomarker).
The proportion of residual variance in Y attributable to
differences between centers is < 0.01.
A dataset to develop a clinical prediction model was con-

structed by sampling age and biomarker values from the
tertiary care dataset. This way, we assure a realistic joint
distribution of predictor values. The properties of the mul-
ticenter model development dataset were informed by find-
ings of the review. We first sampled 10 centers without
replacement, and within each center, we sampled patients
such that the total sample size was 2263 and the ratio be-
tween the largest and the smallest center sample size was 4
to 1. After predictor values were sampled, Y values were
generated according to the true model in tertiary care,
using center-specific intercepts.
In the created development dataset, a random inter-

cept logistic regression model was fitted to generate the
prediction model.
Next, a simple random sample of 10,000 patients was

taken with replacement from the tertiary care database,
again generating Y values according to the sampled pre-
dictor values and the true model coefficients, but this time
assuming an average center intercept. By creating such a
large validation set (“augmenting” or “upstrapping” the
real tertiary care database), we can trust that observed dif-
ferences in predictive performance in this illustration are
not due to random sampling error. Generating a 0/1
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outcome based on the model-based true probability for a
certain vector of predictor values (e.g., age 49 and
log-biomarker value 4) assures that the event is observed
with a certain probability each time this predictor value
combination is sampled,and avoids exact replicates of ob-
servations and deterministic relations in the dataset. The
generated dataset is the validation set to assess discrimin-
ation and calibration in tertiary care.
Another simple random sample of 10,000 patients was

taken with replacement from the secondary care data-
base, while Y values were generated according to the
true model coefficients in secondary care. This is the
validation set to assess discrimination and calibration in
secondary care.

Additional files

Additional file 1: Simulation code. (PDF 204 kb)
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