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The calibrated model-based concordance
improved assessment of discriminative ability
in patient clusters of limited sample size
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Abstract

Background: Discriminative ability is an important aspect of prediction model performance, but challenging to
assess in clustered (e.g., multicenter) data. Concordance (c)-indexes may be too extreme within small clusters. We
aimed to define a new approach for the assessment of discriminative ability in clustered data.

Methods: We assessed discriminative ability of a prediction model for the binary outcome mortality after traumatic
brain injury within centers of the CRASH trial. With multilevel logistic regression analysis, we estimated cluster-specific
calibration slopes which we used to obtain the recently proposed calibrated model-based concordance (c-mbc) within
each cluster. We compared the c-mbc with the naïve c-index in centers of the CRASH trial and in simulations of clusters
with varying calibration slopes.

Results: The c-mbc was less extreme in distribution than the c-index in 19 European centers (internal validation; n= 1716)
and 36 non-European centers (external validation; n= 3135) of the CRASH trial. In simulations, the c-mbc was biased but less
variable than the naïve c-index, resulting in lower root mean squared errors.

Conclusions: The c-mbc, based on multilevel regression analysis of the calibration slope, is an attractive alternative
to the c-index as a measure of discriminative ability in multicenter studies with patient clusters of limited sample size.

Keywords: Prediction model, Model performance, Discrimination, Concordance, Clustered data, Multilevel regression,
Traumatic brain injury

Background
Assessing the performance of a prediction model is of
great practical importance [1, 2]. An essential aspect of
model performance is separating subjects with good out-
come from subjects with poor outcome (discrimination)
[3]. Harrell’s concordance-index (c-index) is often used
to assess discrimination [4]. The c-index estimates the
probability that for two randomly chosen subjects with
different outcomes, the model predicts a higher risk for
the subject with poorer outcome (concordance proba-
bility). In addition to the c-index, we recently introduced
a model-based concordance measure (mbc), similar to
the concordance probability estimator proposed for

proportional hazards regression models by Gönen and
Heller [5, 6]. The mbc is the expected concordance
probability of a regression model under the assumption
that the regression model is “valid”, i.e., outcomes are
generated according to this regression model. The mbc
at external validation is the closed form variant of the
previously proposed case-mix corrected c-index [7]. The
difference between the mbc at model development and
the mbc at external validation indicates the change in
discriminative ability attributable to the difference in
case-mix heterogeneity between the development and
validation data. The calibrated mbc (c-mbc)—based on
predictions recalibrated to the external validation data—
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also takes (in)validity of the regression coefficients, in-
cluding the intercept, into account when measuring the
discriminative ability in external data.
In risk modeling, patient data is often clustered. A typ-

ical example is multicenter patient data, i.e., data of pa-
tients who are treated in different centers. We have
suggested summarizing the discriminative ability with
random-effects meta-analysis of the cluster-specific
c-index, because the discriminative ability often varies
between clusters of patients [8]. However, for small clus-
ters, the cluster-specific c-index may be too extreme. Ex-
treme estimates are also a problem for cluster-specific
calibration intercepts and slopes. Multilevel regression
analysis can provide less extreme (“shrunk”) random ef-
fect estimates, trading off variance with bias [9–11]. The
random effect estimates of calibration intercepts and
slopes can also be used for calculation of the c-mbc,
which is the expected concordance probability under the
assumption that the random effect estimates of the cali-
bration intercept and slope are valid, i.e., outcomes are
generated according to the calibrated regression model.
Similar to the cluster-specific random intercept and
slope estimates, we may expect the cluster-specific
c-mbc to be more stable than the c-index.
We aimed to study this new approach for assessment

of discriminative ability in clustered data, especially for
small clusters. We compare the cluster-specific c-mbc—
based on random effect estimates of calibration inter-
cepts and slopes—with the naïve cluster-specific c-index
in a case study with substantial variation in calibration
slopes across small clusters. We study the trade-off be-
tween variance and bias of the cluster-specific c-index
and c-mbc in a simulation study.

Methods
The (calibrated) model-based concordance
The recently proposed mbc (equations in Appendix)
estimates a logistic or proportional hazards regression
model’s concordance probability at apparent validation
[6]. The mbc is asymptotically equivalent to the
c-index, with exact equality when the model contains
only one categorical predictor. This mbc is a function
of the regression coefficients and the covariate distri-
bution and does not use observed outcomes. Conse-
quently, in an external validation population, the mbc
is not influenced by the validity of the regression coef-
ficients and merely assesses the expected discrimina-
tive ability of the model, similar to a previously
proposed case-mix corrected c-index [10]. To assess
the influence of overall regression coefficient validity
on the concordance probability, we first estimate the
calibration intercept γ0 and the calibration slope γ1 in
the validation data, i.e., the regression coefficients of a

model that regresses the observed outcomes on the
linear predictors Xβ in the validation data [12]. If γ̂1
¼ 1, the regression coefficients are on average valid in
the validation data. In contrast, γ̂1 < 1 indicates a
weaker association between the linear predictor and
the outcomes in the validation data. The mbcðγ̂0 þ γ̂1
XβÞ , which we label calibrated model-based concord-
ance (c-mbc), incorporates both the influence of
case-mix heterogeneity and the overall validity of the
regression coefficients β on the discriminative ability
of the prediction model. Variance estimates of the mbc
and the c-mbc in model development and external val-
idation settings are easily available as well [6].

The calibrated model-based concordance in clustered data
When data is clustered, we denote with xik the baseline
characteristics vector for patient i in cluster k, and with
zik ¼ xTikβ the corresponding linear predictors of a logis-
tic regression model with regression coefficients β and
intercept β0. We can incorporate calibration intercepts
γ0k and slopes γ1k for individual clusters in a multilevel
logistic regression model [9]:

logit pikð Þ ¼ offset β0
� �þ γ0k þ γ1kzik

γk ¼
γ0k
γ1k

� �
� N

γ0
γ1

� �
;

σ20 ρσ0σ1
ρσ0σ1 σ21

� �� � ð1Þ

The best linear unbiased predictors γ̂0k and γ̂1k repre-
sent random effect estimates of the calibration intercept
and the calibration slope in cluster k. Although the nam-
ing and interpretation of γ̂0k and γ̂1k has been debated, we
will loosely call them random effect estimates—accom-
panied by confidence intervals—because we will repeat-
edly compare them with fixed effect estimates [13, 14].
The random effects estimates of the intercept and slope in
cluster k can be plugged into Eq. 7. With Zk =Xkβ the lin-
ear predictors of patients in cluster k, we obtain the c-mbc
of a multilevel logistic regression model in cluster k:

c�mbck ¼ mbcðβ0 þ γ̂0k þ γ̂1kZkÞ ð2Þ

Results
Case study of traumatic brain injury
Case study design
We present a case study of predicting mortality after
traumatic brain injury (TBI). We used patients enrolled
in the Medical Research Council Corticosteroid Ran-
domisation after Significant Head Injury trial (registra-
tion ISRCTN74459797), who were recruited between
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1999 and 2004 [15]. This was a large international
double-blind, randomized placebo-controlled trial of the
effect of early administration of a 48-h infusion of meth-
ylprednisolone on outcome after head injury. We con-
sidered patients with moderate or severe brain injury
(GCS total score ≤ 12) and observed 6-month Glasgow
Outcome Scale (GOS) [16, 17]. Patients (n = 1716) who
were treated in one of 19 European centers with more
than 10 patients experiencing the event were included in
the analysis. A logistic regression model was fitted—ig-
noring clustering—with age, GCS motor score and pupil
reactivity as covariates, similar to previously developed
risk models [18, 19]. To assess the performance of this
model’s linear predictors within each cluster, we esti-
mated the cluster-specific calibration intercept, calibra-
tion slope, and c-index. We compared the estimates
with random effect estimates of the calibration intercept
and slope (multilevel logistic regression model in Eq. 1)
and the c-mbc (Eq. 2), respectively. All the analyses were
done in R software, and multilevel regression analysis
was done with the lme4 package [20, 21].

Case study results
At internal validation, we found substantial heterogeneity
in calibration intercepts and slopes (σ0 = 0.82; σ1 = 0.16;
ρ = − 0.76). The mean of the cluster-level calibration in-
tercepts (γ0 = 0.24) and the mean of the cluster-level cali-
bration slopes (γ1 = 0.96) were close to the apparent
estimates of the calibration intercept (≡ 0) and the calibra-
tion slope (≡ 1). As expected, random effects estimates of
the calibration intercept and slope were less heteroge-
neous and had narrower 95% confidence intervals than
fixed effect estimates (left and middle panels of Fig. 1;
Additional file 1: Table S1). Similarly, the c-mbc based on
random effect estimates was less heterogeneous and had
narrower 95% confidence intervals than the cluster-spe-
cific c-index (right panel of Fig. 1).
At external validation, for patients who were treated in

one of 36 non-European centers with more than 10 pa-
tients experiencing the event (n = 3135), the intercept was
poorly calibrated (γ0 = 1.44) and the linear predictors
slightly overfitted (γ1 = 0.90). The heterogeneity in the cali-
bration intercept and slope was very similar to the
European setting (σ0 = 0.81; σ1 = 0.15; ρ = − 0.79). Differ-
ences between fixed effect estimates and random effects es-
timates and between the c-index and the c-mbc were
comparable to the European setting (Fig. 2; Additional file 1:
Table S2).

Simulation study
Design of the simulation study
To study the trade-off between variance and bias of the
cluster-specific c-index and the c-mbc, we simulated

validation studies of a logistic regression model in 40
clusters of 200 patients. To incorporate heterogeneity
in true intercepts and slopes across clusters, we drew
once for each cluster k a true calibration intercept γ0k
and a true calibration slope γ1k from independent nor-
mal distributions with means γ0 = 0 and γ1 = 1, respect-
ively, and standard deviations σ0 = σ1 = 0.2.
In each of 2000 replications, we generated for pa-

tient i in cluster k a continuous baseline linear pre-
dictor zik from a standard normal distribution and a
binary outcome from a Bernoulli distribution with
success probability [1 + exp {−(−2 + γ0k + γ1kzik)}]

−1.
With such an average intercept of − 2, the expected
event rate in a typical cluster (γ0k = 0; γ1k = 1) is 15.5%.
We produced cluster-specific (fixed effect) estimates
of the calibration intercept and slope and the
cluster-specific c-index in each replication. Further-
more, we produced random effect estimates of the
calibration intercept and slope (multilevel logistic re-
gression model of Eq. 1) and the c-mbc (Eq. 2) in each
replication.
We summarized the cluster-specific estimates of the

calibration intercept, the calibration slope and the con-
cordance probability with the average deviation from the
true value (bias), the standard deviation (square root of
the variance), and the root of the average squared differ-
ence with the true values (root mean squared error
[rmse]). To obtain the true concordance probability
within each cluster k, we used mbc(−2 + γ0k + γ1kZk),
with Zk the vector of linear predictors for patients in
cluster k, because it is equal to the mean c-index in in-
finitely many replications of cluster k assuming that γ0k
and γ1k are true [6].

Main results of the simulation study
The cluster-specific c-index was unbiased (Table 1).
The bias of the c-mbc increased with the deviation of
the true cluster-specific concordance probability from
the overall average. Due to a positive trade-off with
variance (lower standard deviation), the rmse of the
c-mbc was generally lower than the rmse of the c-index.
Similar plots as for the case study (Figs. 1 and 2) could
be drawn for each replication of the simulation study.
We plotted the estimates from the first replication, in-
cluding true cluster-specific values (Fig. 3). Again, ran-
dom effects estimates of calibration intercept and slope
and the c-mbc were less heterogeneous and had nar-
rower 95% confidence intervals than fixed effect esti-
mates and the c-index, respectively.

Sensitivity analyses
We varied simulation settings to visualize the impact
on our proposed approach. Without between-cluster
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heterogeneity of the true intercept and slope, the
random effects estimates and the c-mbc were much
closer to the true value than the fixed effect estimates
and the c-index (Fig. 4). As a consequence of the
unbiasedness of the c-mbc, the rmse of c-mbc was
substantially lower compared to the c-index
(Additional file 1: Table S3). When we doubled the
number of patients in each cluster to 400, the

standard deviation of the c-index, the bias of the
c-mbc, and the average difference between the rmse
of the c-mbc and the rmse of the c-index all were
lower than in the simulations with 200 patients in
each cluster (Additional file 1: Table S4).
We studied the impact on the simulation results when

the regression model was misspecified and when the as-
sumption of normally distributed calibration slopes was

Fig. 1 Performance measures at internal validation across 19 centers of the CRASH trial. Closed dots represent fixed effect intercept estimates;
fixed effect slope estimates; and c-indexes in the first, second, and third panel, respectively. Open dots represent random effects intercept estimates,
random effects slope estimates, and calibrated model-based concordance estimates in the first, second, and third panel, respectively. Gray vertical lines
represent effect estimates of intercept (0) and slope (1) in the original regression model, together with the expected pooled concordance (0.85). Black
vertical lines represent fixed effect estimates of intercept (0.24) and slope (0.96) in a multilevel regression model, together with the expected pooled
concordance (0.84). The number of patients in each center is indicated on the right y-axis
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violated, respectively. To mimic model misspecification,
we first generated binary outcomes based on a dichoto-
mized version of the continuous baseline linear predictor
zik, i.e., from a Bernoulli distribution with success prob-
ability ½1þ expf−ð−0:5þ γ0k þ 2:75 γ1k Ifzik>1gÞg�−1 .
The average intercept (− 0.5) and the average slope
(2.75) of the outcome generation model were chosen
such that the average intercept and slope estimated

by the misspecified model based on continuous
predictors zik were similar to the base-case scenario
(− 2 and 1, respectively). Regardless of misspecifica-
tion of the regression model, the rmse of the c-mbc
was consistently lower than the rmse of the c-index
(Additional file 1: Table S5). Second, we decreased
the normally distributed calibration slopes in half of
the clusters with 0.2 (weaker association between

Fig. 2 Performance measures at external validation across 36 centers of the CRASH trial. Closed dots represent fixed effect intercept estimates;
fixed effect slope estimates; and c-indexes in the first, second, and third panel, respectively. Open dots represent random effects intercept estimates,
random effects slope estimates, and calibrated model-based concordance estimates in the first, second, and third panel, respectively. Gray vertical lines
represent effect estimates of intercept (0) and slope (1) in the original regression model, together with the expected pooled concordance (0.83). Black
vertical lines represent fixed effect estimates of intercept (1.44) and slope (0.90) in a multilevel regression model, together with the expected pooled
concordance (0.78). The number of patients in each center is indicated on the right y-axis
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Table 1 Simulation characteristics (2000 replications) of c-index and c-mbc across 40 centers of 200 patients

Cluster True Bias SD rmse

Concordance C-index c-mbc C-index c-mbc C-index c-mbc

1 0.664 0.002 0.051 0.055 0.027 0.055 0.057

2 0.666 0.001 0.047 0.059 0.027 0.059 0.054

3 0.695 0.001 0.032 0.053 0.024 0.052 0.040

4 0.699 0.000 0.025 0.056 0.024 0.055 0.034

5 0.702 0.000 0.026 0.054 0.024 0.053 0.034

6 0.705 − 0.001 0.030 0.049 0.025 0.048 0.038

7 0.710 − 0.002 0.022 0.051 0.023 0.050 0.031

8 0.712 − 0.001 0.015 0.056 0.024 0.055 0.027

9 0.712 0.001 0.028 0.048 0.024 0.047 0.035

10 0.718 0.002 0.020 0.051 0.023 0.050 0.029

11 0.726 0.001 0.004 0.056 0.024 0.055 0.022

12 0.727 − 0.001 0.001 0.058 0.024 0.057 0.022

13 0.727 0.000 0.017 0.047 0.023 0.046 0.027

14 0.727 0.001 0.010 0.051 0.023 0.050 0.023

15 0.731 0.001 0.008 0.049 0.022 0.048 0.021

16 0.735 − 0.001 − 0.001 0.053 0.023 0.053 0.021

17 0.735 0.001 0.006 0.050 0.022 0.049 0.021

18 0.738 0.000 0.001 0.052 0.023 0.051 0.020

19 0.741 0.001 0.006 0.047 0.022 0.046 0.020

20 0.744 0.001 0.007 0.045 0.022 0.043 0.020

21 0.750 0.000 0.002 0.046 0.021 0.045 0.019

22 0.751 0.001 − 0.004 0.049 0.022 0.047 0.019

23 0.755 0.001 0.006 0.043 0.023 0.041 0.021

24 0.755 0.000 − 0.008 0.049 0.022 0.048 0.020

25 0.757 0.002 − 0.007 0.046 0.021 0.045 0.020

26 0.757 0.002 − 0.013 0.051 0.022 0.049 0.023

27 0.763 − 0.002 − 0.015 0.050 0.022 0.049 0.024

28 0.763 0.000 − 0.014 0.048 0.021 0.047 0.023

29 0.765 0.000 0.000 0.041 0.022 0.040 0.019

30 0.770 0.001 − 0.009 0.043 0.022 0.042 0.020

31 0.772 0.002 − 0.011 0.043 0.021 0.041 0.021

32 0.774 0.001 − 0.015 0.044 0.021 0.042 0.023

33 0.780 0.000 − 0.015 0.042 0.021 0.041 0.024

34 0.787 − 0.001 − 0.029 0.046 0.022 0.044 0.034

35 0.788 0.000 − 0.036 0.048 0.023 0.047 0.041

36 0.791 0.001 − 0.018 0.039 0.022 0.038 0.026

37 0.795 − 0.001 − 0.028 0.041 0.022 0.040 0.033

38 0.798 − 0.001 − 0.031 0.041 0.021 0.040 0.035

39 0.798 0.001 − 0.027 0.040 0.022 0.038 0.033

40 0.803 0.000 − 0.033 0.040 0.022 0.039 0.038

Average 0.745 0.000 0.001 0.048 0.023 0.047 0.028
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predictor and outcome) and increased the calibration
slopes with 0.2 in the other half of the clusters
(weaker association). Although the bias of the c-mbc
was recognizable—upwards in the cluster with de-
creased calibration slope and downwards in the other
half—the rmse of the c-mbc was again consistently
lower than the rmse of the c-index (Additional file 1:
Table S6).

Finally, we varied the case-mix heterogeneity across
clusters by drawing the standard deviation of the nor-
mally distributed predictor in cluster k (zik) from a uni-
form distribution between 0.75 and 1.25, and we
reduced overall predictive ability by a true slope of 0.75.
Both scenarios were well presented in cluster-specific es-
timates, by more variation in c-mbc (Fig. 5) and lower
mean c-mbc (Fig. 6), respectively.

Fig. 3 Performance measures across 40 centers of 200 simulated patients. Gray squares represent true values of intercept, slope, and concordance
probability. Closed dots represent fixed effect intercept estimates; fixed effect slope estimates; and c-indexes in the first, second, and third panel,
respectively. Open dots represent random effects intercept estimates; random effects slope estimates; and calibrated model-based concordance
estimates in the first, second, and third panel, respectively. Gray vertical lines represent effect estimates of intercept and slope in the original regression
model, together with the expected pooled concordance. Black vertical lines represent fixed effect estimates of intercept and slope in a multilevel
regression model, together with the expected pooled concordance
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Discussion
We proposed a new approach for assessing discrim-
inative ability of prediction models in clustered data.
The measure is a modification of the previously pro-
posed calibrated model-based concordance (c-mbc)
that is the expected concordance under the assump-
tion that the estimates of calibration intercept and
slope of the prediction model are true. The c-mbc

for clustered data uses the random effect estimates
of the calibration intercept and slope per cluster pro-
vided by a multilevel logistic regression model with
the linear predictor as only covariate. The c-mbc was
less extreme in distribution than the c-index in a
case study. In simulations with a heterogeneous cali-
bration slope, the random effect estimates of calibra-
tion intercept and slope and thus the c-mbc were

Fig. 4 Performance measures across 40 centers of simulated 200 patients without between center heterogeneity in intercept and slope. Gray
squares represent true values of intercept, slope, and concordance probability. Closed dots represent fixed effect intercept estimates; fixed effect
slope estimates; and c-indexes in the first, second, and third panel, respectively. Open dots represent random effects intercept estimates; random
effects slope estimates; and calibrated model-based concordance estimates in the first, second, and third panel, respectively. Gray vertical lines
represent effect estimates of intercept and slope in the original regression model, together with the expected pooled concordance. Black vertical
lines represent fixed effect estimates of intercept and slope in a multilevel regression model, together with the expected pooled concordance
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biased, but less variable than the unbiased fixed ef-
fect estimates and the c-index. The trade-off between
bias and variance resulted in a generally lower root
mean squared error of the c-mbc compared to the
c-index.
We compared the c-mbc based on random effect esti-

mates of the calibration intercept and slope with the
c-index. The comparison is basically between a random

effect concordance probability estimator and a fixed ef-
fect concordance probability estimator, because the
c-index is asymptotically equivalent to the c-mbc based
on fixed effect estimates of the calibration intercept and
slope [6]. This explains the observed variance bias
trade-off which is typical for the choice between fixed ef-
fect and random effect estimates. It is well recognized
that unbiasedness is not the only property of an

Fig. 5 Performance measures across 40 centers of 200 simulated patients with varying case-mix heterogeneity. Gray squares represent true values
of intercept, slope, and concordance probability. Closed dots represent fixed effect intercept estimates; fixed effect slope estimates; and c-indexes
in the first, second, and third panel, respectively. Open dots represent random effects intercept estimates; random effects slope estimates; and
calibrated model-based concordance estimates in the first, second, and third panel, respectively. Gray vertical lines represent effect estimates of
intercept and slope in the original regression model, together with the expected pooled concordance. Black vertical lines represent fixed effect
estimates of intercept and slope in a multilevel regression model, together with the expected pooled concordance
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estimator that is important and that much could be
gained by compromising unbiasedness to improve the
precision of an estimator [10, 22].
We and others have recently suggested summarizing the

discriminative ability with random-effects meta-analysis of
the cluster-specific c-index, because the discriminative abil-
ity often varies between clusters of patients [8, 23, 24]. Ran-
dom effects meta-analytic techniques inform about the
mean and the variation in cluster-specific concordance

probabilities, ideally with a prediction interval [25]. How-
ever, meta-analytic techniques do not add information
about the concordance probability in individual clusters.
The techniques proposed in this paper enhance the
assessment of discriminative ability in individual clus-
ters of patients.
The patients in our case study were clustered in hospi-

tals. A comparable type of clustering may occur in patients
treated in different countries or in patients treated by

Fig. 6 Performance measures across 40 centers of 200 simulated patients with reduced overall predictive ability. Gray squares represent true
values of intercept, slope, and concordance probability. Closed dots represent fixed effect intercept estimates; fixed effect slope estimates; and
c-indexes in the first, second, and third panel, respectively. Open dots represent random effects intercept estimates; random effects slope estimates;
and calibrated model-based concordance estimates in the first, second, and third panel, respectively. Gray vertical lines represent effect estimates of
intercept and slope in the original regression model, together with the expected pooled concordance. Black vertical lines represent fixed effect
estimates of intercept and slope in a multilevel regression model, together with the expected pooled concordance
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different caregivers in the same center. Similarly, in public
health research, the study population is often clustered in
geographical regions like countries, municipalities, or
neighborhoods. Patients in an individual patient data (IPD)
meta-analysis are also clustered in studies. In general, we
recommend to always exploit the non-randomly clustered
nature of a dataset, through analysis and reporting of the
variation in prediction model performance across clusters.
Hence, we obtain more insight into the generalizability of a
prediction model across different settings. Even at internal
validation, the variation in model performance across
non-random clusters is more informative than the quantifi-
cation of a model’s internal validity based on random sam-
pling techniques.
We focused on measuring the performance of logistic re-

gression models in clustered data, using multilevel logistic
regression and the calibration intercept, the calibration
slope, the c-index, and the c-mbc. This methodology could
easily be extended to proportional hazards regression
models, based on mixed effects Cox models or shared
frailty models, and similar definitions of the calibration
slope, the c-index, and the c-mbc in survival data [4, 6, 26].
We initially simulated validation studies of a logistic

regression with moderate heterogeneity in true inter-
cepts and slopes across 40 rather small clusters of 200
patients. Obviously, the difference in the rmse of the
c-mbc compared to the c-index depends on the charac-
teristics of the setting. With negligible heterogeneity in
true intercepts and slopes, the difference in rsme was
higher. With growing numbers of patients per cluster,
the difference in rsme was lower. Ultimately, the c-mbc
converges to the c-index with increasing numbers of pa-
tients per cluster, because the random effect estimates
converge to the fixed effect estimates [6].
The proposed approach depends on the ability of a

multilevel regression model to estimate the between-
cluster variances of the intercept and the slope. The
minimum number of clusters needed to estimate these
variances is in the order of 10 but depends on the spe-
cific setting [9].

Conclusions
The c-mbc, based on random effect estimates of the cali-
bration intercept and slope, resulted in a generally lower
root mean squared error compared to the c-index. The
c-mbc is an attractive alternative to the c-index as measure
of discriminative ability in clustered data when clusters
are of limited size.

Appendix
The model-based concordance (mbc) is a model-based
estimator of the concordance probability [6]. The con-
cordance probability is defined as the probability that a

model predicts for two randomly chosen patients with
different outcomes and a higher risk for the patient
with poorer outcome. For a given patient population
(or cluster of patients), it is the probability that a ran-
domly selected patient pair has concordant predictions
and outcomes, divided by the probability that their
outcomes are different (not “tied”). Patient i has binary
outcome Yi, baseline characteristics vector xi, linear
predictor xTi β of a logistic regression model, and pre-

diction pi ¼ logit−1ðβ0 þ xTi βÞ . The probability that a
randomly selected patient pair has concordant predic-
tions and outcomes is [27]

P concordantð Þ ¼ 1
n n−1ð Þ

X
i

X
j≠i

I pi < pj

� 	
P Y i < Y j
� �þ I pi > pj

� 	
P Y i > Y j
� �h i

ð3Þ

Similarly, the probability that a randomly selected pa-
tient pair has unequal outcomes is

P unequal Yð Þ ¼ 1
n n−1ð Þ

X
i

X
j≠i

P Y i < Y j
� �þ P Y i > Y j

� �
 �

ð4Þ
Thus, the concordance probability CP in a patient

population is obtained by dividing the probabilities of
Eqs. 3 and 4:

CP ¼

X
i

X
j≠i

I pi < pj

� 	
P Y i < Y j
� �þ I pi > pj

� 	
P Y i > Y j
� �h i

X
i

X
j≠i

P Y i < Y j
� �þ P Y i > Y j

� �
 �

ð5Þ
For a logistic regression model, the model-based prob-

abilities P(Yi < Yj) are

P Y i < Y j
� � ¼ P Y i ¼ 0ð ÞP Y j ¼ 1

� �

¼ 1

1þ eβ0þxTi β

1

1þ e− β0þxTj β
� � ð6Þ

Combining Eqs. 5 and 6 and replacing I(pi < pj) by I

ðxTi β < xTj βÞ because the predictions are an increasing

function of the linear predictor result in the model-based
concordance (mbc) for logistic regression models:
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When model predictions may be equal for some com-
binations of i and j, e.g., when x is a binary marker, we
can generalize 5 by using I(pi ≤ pj) instead of I(pi < pj).
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