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Abstract

Background: The effect of extended adjuvant aromatase inhibition in hormone-positive breast cancer after
sequential tamoxifen, aromatase inhibitor treatment of 5 years was recently investigated by the DATA study.
This study found no statistically significant effect of prolonged aromatase therapy. However, subgroup analysis
showed post hoc statistically significant benefits in certain sub-populations. The trans-DATA study is a translational
sub-study aiming to identify DNA methylation markers prognostic of patient outcome.

Methods: Patients from the DATA study are included in the trans-DATA study. Primary breast tumour tissue
will be collected, subtyped and used for DNA isolation. A genome-wide DNA methylation discovery assay will be
performed on 60 patients that had a distant recurrence and 60 patients that did not have a distant recurrence using
the Infinium Methylation EPIC Bead Chip platform. Differentially methylated regions of interest will be selected based
on Akaike’s Information Criterion, Gene Ontology Analysis and correlation between methylation and expression levels.
Selected candidate genes will subsequently be validated in the remaining patients using qMSP.

Discussion: The trans-DATA study uses a cohort derived from a clinical randomised trial. This study was designed to
avoid common pitfalls in marker discovery studies such as selection bias, confounding and lack of reproducibility. In
addition to the usual clinical risk factors, the results of this study may identify predictors of high recurrence risk in
hormone receptor-positive breast cancer patients treated with sequential tamoxifen and aromatase inhibitor therapy.

Keywords: Breast cancer, Predictive factors, Prognostic factors, Adjuvant treatment, Hormone receptor-positive,
Endocrine treatment

Introduction
Breast cancer is one of the leading causes of cancer-re-
lated death for women, although mortality has steadily
decreased over the last decade [1, 2]. The improved out-
come can be explained by increased early detection in
national screening programmes as well as improved
systemic treatment options [3]. In the overviews from
the Early Breast Cancer Trialist Collaborative Group
(EBCTCG) for hormone receptor-positive breast cancer,
it was shown that 5 years of adjuvant tamoxifen therapy

reduces the risk of breast cancer recurrence by approxi-
mately 40% [4]. Treating patients with 5 years of aroma-
tase inhibitor or with 2 to 3 years of tamoxifen followed
by aromatase inhibitor (sequential therapy) results in a
further reduction of 5-year recurrence rates with 30%
compared to tamoxifen alone [5]. However, although
much has been achieved, the risk of recurrence persists
despite the use of adjuvant endocrine therapy with an
annual hazard of recurrence for post-menopausal pa-
tients of 2–3% from 10 to 20 years after diagnosis [6].
In daily practice, the risk of recurrence and the

need of adjuvant systemic therapy are generally estab-
lished by considering factors such as nodal status,
tumour size, histological grade and/or KI-67, HER2
status and hormone receptor status [7]. For this
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purpose, nomograms such as the UK-based PREDICT
tool [8] or the recently renewed new adjuvant online
website may be used to support the shared decision-
making process [9].
In recent years, it became evident that biomarkers

based on tumour biology may have additional value
in predicting patient outcome when combined with
parameters that merely reflect anatomical issues [10].
Biomarker (panels), either analysed by immunohisto-
chemistry [11], expression arrays [12], qRT-PCR [13]
or nCounter [14] have been developed. Epigenetic al-
teration, and DNA methylation in particular, have
been shown to be common and early events in can-
cer biology [15, 16]. DNA methylation profiles can
be used to identify molecular subclassifications of
breast tumours [17–20]. Recent studies have sug-
gested that DNA methylation markers may be of
prognostic [18, 21, 22] or predictive [23] value in
breast cancer. DNA methylation markers may there-
fore provide additional information, which may be
useful in assessing the risk of recurrence and the
most appropriate therapy to administer. In current
daily practice, however, no biomarkers have been identi-
fied or implemented yet to assess the remaining risk of
developing a distant recurrence for the group of patients
with hormone receptor-positive disease treated with adju-
vant endocrine treatment [24].
The Dutch DATA study is an open-label phase III

study, in which we randomly assigned 1912 postmen-
opausal women with hormone receptor-positive breast
cancer after 2–3 years of adjuvant tamoxifen to either
3 or 6 years of anastrozole therapy, with disease-free
survival as the primary endpoint. In the DATA study,
we observed a post hoc significant benefit from ex-
tended use of aromatase inhibitors in the subgroup of
patients at increased risk of recurrence based on a
positive nodal status and who had both oestrogen re-
ceptor (ER)- and progesterone receptor (PR)-positive
disease [25]. But, in addition, we observed that many
of these patients still developed distant recurrences
even though they had used (extended) hormonal
treatment, demonstrating the need for new bio-
markers that might identify these particular women
and that might be used to develop new targeted
therapies.
In the trans-DATA study, we will collect paraffin

tumour blocks from patients included in the afore-
mentioned DATA study. Here, we present the study
protocol of the trans-DATA study, which aims to
identify and validate DNA methylation markers that
are associated with distant disease recurrence in pa-
tients with hormone receptor-positive breast cancer
treated with tamoxifen followed by an aromatase
inhibitor.

Patients and methods
Study objective
The aim of the trans-DATA study is to identify DNA
methylation markers associated with the distant recur-
rence-free interval (DRFI) [26], in patients with hormone
receptor-positive disease who underwent adjuvant endo-
crine treatment within the scope of the DATA trial.
First, we will identify candidate methylation markers

in a discovery cohort, irrespective of assigned or
delivered adjuvant endocrine treatment duration, by ana-
lysing tumour tissue of patients with versus without a
distant breast cancer recurrence within the first 6 years
after randomization. Next, we will assess whether the
identified markers are associated with DRFI in a second,
validation cohort. For the validation cohort, the 6-year
DRFI will be calculated from the date of randomization
in the Dutch DATA study, again irrespective of adjuvant
endocrine treatment duration. Events ending a period of
DRFI are distant breast cancer recurrences. Patients will
be censored in case of death from non-breast cancer
causes and at end of follow-up. Local or regional recur-
rences will not be considered as an event and will also
not be a reason for censoring.

DATA study
For the trans-DATA study, patients are derived from
the DATA study (ClinicalTrials.gov; number
NCT00301457.), an open-label, multicentre, phase III
study, performed in 79 hospitals in the Netherlands
[25]. In the DATA study, 1912 postmenopausal
women with hormone receptor-positive breast cancer
were randomly assigned to 3 years or 6 years of ana-
strozole therapy after 2 to 3 years of tamoxifen treat-
ment from June 28, 2006, to August 10, 2009. Of
these, 1860 are eligible for the primary study
endpoint analysis which was defined as disease-free
survival starting beyond 3 years after randomisation
(adapted disease-free survival). The 5-year adapted
disease-free survival was 83.1% in the 6-year and
79.4% in the 3-year group, yielding a hazard ratio of
0.79 (95% CI 0.62 to 1.02). Post hoc exploratory
subgroup analysis of patients with oestrogen receptor and
progesterone receptor-positive expression having node-
positive disease showed a 5-year adapted disease-free sur-
vival of 84·4% in the 6-year versus 76·2% in the 3-year
group (n = 849; HR 0·64 [95% CI 0·46–0·89], p = 0·0075).

Patients
For the trans-DATA study, we select patients from the
DATA study of whom formalin-fixed paraffin-embedded
(FFPE) tissue blocks could be collected (N = 963).
Patients are excluded when the tumour block was ER
negative (N = 16), when insufficient tumour tissue is
available for DNA extraction (N = 121), or when tumour
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staging is incomplete (N = 12). This results in 814 trans-
DATA study participants (Fig. 1). Ethical approval for
the trans-DATA study was granted by the Medical
Ethical committee Arnhem-Nijmegen (MEC registra-
tion 2014/02). Samples and patient data used in this
study are anonymised and handled according to the
Dutch code of conduct for responsible use of human
tissue [27, 28].

Sample work-up
All FFPE tissue blocks will be centrally reviewed by ex-
pert pathologists in order to mark areas of representative
invasive carcinoma. Subsequently, tissue microarrays
(TMAs) will be constructed of all included samples con-
taining three 0.6 mm cores from each tumour sample.
Two cores will be taken from the pushing border of the
tumour, and one core will be taken from the non-nec-
rotic tumour centre. Areas of ductal carcinoma in situ
will be avoided. These TMAs will be used to perform in-
trinsic subtyping by immunohistochemistry (IHC), ac-
cording to the 2015 St Gallens consensus [7]. IHC
scoring will be performed on 0.5-μm TMA slides. ER,
PR and Ki-67 status will be recorded as the percentage
of positive tumour cells. If 10% or more of the tumour
cells is ER or PR positive, then the tumour is considered
hormone receptor-positive. HER2 will be scored as 0,

1+,2+ or 3+, and 2+ cases will be re-evaluated using
CISH. HER2 status will be scored as positive if one out
of three cores is3+ or CISH amplified. Tumour charac-
teristics such as size, grade and TNM stage will be based
on pathology reports. For patients who received neoad-
juvant chemotherapy, the clinical T- and N-status at
diagnosis were reported if more advanced than the
pathologic status. Invasive tumour tissue will be dis-
sected using the haematoxylin and eosin-stained slide as
a guide. Next, DNA will be isolated from two–five 20-
μm consecutive tumour sections using the Maxwell
FFPE CSC automated DNA extraction kit (Promega
Corporation, Madison, USA).

Discovery and validation cohorts
To assure an equal baseline risk for known and routinely
used prognostic factors, we will match patients using a
propensity risk score approach [29]. The propensity
score will be based on age, TN stage, tumour histological
grade, hormone receptor status and HER2 status and
formulated using logistic regression comparing patients
with distant metastases from the DATA study to pa-
tients with a 6-year disease-free period. For the discovery
cohort, we will match all patients with distant metastasis
from the trans-DATA study to disease-free controls
from trans-DATA using the developed propensity

Fig. 1 Trans-DATA patient inclusion
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scores. Thereafter, we will randomly select 60 matched
pairs for biomarker discovery analyses.
All patients not included in the discovery cohort will

form the validation cohort, used for validation of se-
lected candidate markers.

Genome-wide DNA methylation analysis
Genome-wide methylation profiles of the discovery co-
hort will be acquired using the Infinium Methylation
EPIC Bead Chip platform (MEBC) (Illumina, San Diego,
USA) after DNA restoration (Illumina HD FFPE Restor-
ation kit, Illumina). DNA samples showing fragmenta-
tion < 200 base pairs, tested by electrophoresis, will be
discarded and replaced. After bisulphite conversion (EZ
DNA Methylation Gold Kit, Zymo Research, Irvine,
USA), samples undergo whole genome amplification,
followed by fragmentation and hybridisation to the Infi-
nium bead chips.
Methylation status for each probe is calculated as a β

value ranging between 0 and 1, representing the ratio of
methylated alleles. A detection p value based on the total
fluorescence intensity will be calculated for all probes.
Probes with a p value > 0.01, indicating that overall
fluorescent intensity of both the methylated and
unmethylated probes does not yield a significantly higher
intensity over background, will be excluded from the
analysis.

Marker discovery procedure
To assess differentially methylated promoter regions,
methylation profiles of patients with distant recurrent
breast cancer will be compared to profiles of patients
without distant recurrence. Promoter regions are defined
as 1000 bp upstream and 500 bp downstream of each
transcript-specific transcription start site as listed in
Ensembl GRCh37. If multiple transcripts share an identi-
cal set of probes in their promoter region, only one is
retained. Only promoter regions overlapping with CpG
islands are selected. For statistical analyses, probe β
values will be transformed into M values using the

following formula: M ¼ logð β
1−βÞ [30]. A p value will be

calculated for each individual probe based on a paired,
non-parametric test (Wilcoxon rank-sum test). Per
promoter region, a single p value will be calculated by
combining these p values for all probes within this pro-
moter region using Fisher’s method [31]. To account for
multiple hypothesis testing, a false discovery rate (FDR)
method will be applied converting promoter p values
into q values as proposed by Benjamini and Hochberg
[32]. Promoter regions with q values < 0.001 are consid-
ered differentially methylated.
To find promoter regions associated with survival,

the prognostic value of each individual probe will be

assessed using a Cox’ proportional hazards model.
Each probe M value will be converted into a binary
value indicating methylation or no methylation. Bin-
ary cut-off values will be calculated for individual
probes based on the optimal sensitivity and specificity
to identify patients who developed recurrent breast
cancer, by determining the maximum Youden index
[33]. Individual probe p values will be combined into
a single p value per promoter region by Fisher’s
method and converted into FDR q values. Promoter
regions with a Cox’ proportional hazards derived q
value < 0.001 are considered statistically significantly
associated with 6-year DRFI. Promoter regions that
were both differentially methylated and significantly
associated with 6-year DRFI are considered as poten-
tial candidate biomarkers.
To further select the most promising markers,

Akaike’s Information Criterion (AIC) and Gene ontology
analysis will be used. The AIC will be used to identify
the combination of potential markers that best predict
recurrence, applying a forward selection approach. In
addition, a gene ontology analysis will be performed by
determining pathways enriched for potential candidate
markers according to gene ontology biological process
terms and Kyoto Encyclopaedia of Genes and Genomes
(KEGG) pathway enrichment analyses using Database
for Annotation, Visualization and Integration Discovery
(DAVID; https://david.ncifcrf.gov/home.jsp). Pathways
are considered statistically significantly enriched at an
FDR < 0.1.
To assess the area of interest within the promoter

region, graphical inspection will be used; this area of
interest must contain at least three subsequent differ-
entially methylated probes (p < 0.01). Finally, the cor-
relation between DNA methylation in these promoter
regions and gene mRNA expression in breast cancer
will be assessed using publically available Human-
Methylation 450K bead chip and Illumina Hi-seq data
downloaded from the TCGA database. A p value of
0.05 is chosen as a cut-off for statistical significant
correlation between methylation and expression. Only
areas of interest in which methylation of all probes is
significantly associated with expression will be se-
lected as final markers (Fig. 2).
This discovery method will be performed using

three different patient subsets: one including all dis-
covery patients (overall subset N = 60 patient pairs),
one including patient pairs that underwent recurrence
within 3 years (early subset, N = 43 patient pairs) and
one including patients with time to event longer than
3 years (late subset, N = 17 patient pairs.) Markers
identified by applying the previously described discov-
ery procedure to these subsets will all be further
analysed.
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Validation method
To minimise the risk of false-positive results, a validation
analysis of the identified markers in a validation set
consisting of all patients that are not part of the MEBC
analysis will be done. Quantitative methylation-specific
PCR (qMSP) will be used as a validation assay after
bisulphite conversion (Epitect 96 wells bisulphite con-
version kit, Qiagen, Hilden, Germany). qMSP will be
performed using 20 ng of DNA per sample, an in vitro
methylated DNA (IVD) standard curve will be included
in each reaction to assess absolute methylation levels
and a methylation-specific primer set for beta-actin
(ACTB) to correct for variation input. A percentage of
fully methylated reference (PMR) value will be calculated
for each sample and marker according to the following

formula: Sqðmarker sampleÞ=Sqðmarker IVDÞ
SqðACTB sampleÞ=SqðACTB IVDÞ � 100 . PMR values

will be interpreted as either methylated or unmethylated
using a cut-off value calculated for each marker based
on the optimal Youden index in the discovery set.
Markers for which no working q-MSP assay can be con-
structed will be discarded.
Kaplan-Meier curves and log-rank tests are used to es-

timate the prognostic influence of individual markers.
Hazard ratios and corresponding 95% confidence

intervals are assessed using a Cox proportional hazard
model, adjusted for known prognostic covariates. Pos-
sible confounders included in the model are age, pT and
pN stage, tumour grade according to modified Bloom
Richardson score [34], PR-status and HER2 status in
addition to the biomarker. Finally, a Cox proportional
hazards model will be developed by including all prog-
nostic clinical factors and q-MSP marker results. We will
perform a backward elimination procedure using the
likelihood-ratio test to build a multivariate prediction
model containing multiple methylation markers; a liberal
α of 0.10 will be applied to prevent exclusion of poten-
tially important predictors from the model [35]. Model
performance will be assessed using Harrell’s C-statistic
and AIC. The preferred model is the one with the lowest
AIC and the highest C-statistic. To correct for a too op-
timistic estimation of the C-statistic, the preferred model
will be internally validated using bootstrapping (number
of bootstraps: 1000) [35]. Results from this validation
step will be used to penalise the C-statistic for optimism
to prevent too optimistic predictions for future patients.

Discussion
Patients with breast cancer, in particular patients with
hormone receptor-positive disease, remain at risk of
distant recurrence for many years after diagnosis. We
performed the DATA study to assess whether extended
adjuvant aromatase inhibitor therapy duration after the
initial 2–3 years of tamoxifen therapy would improve
disease-free survival in patients with hormone receptor-
positive breast cancer. In the entire study population, we
found only a non-significant trend for an improved 5
year adapted disease-free survival of 83% versus 79%, al-
though the follow-up time may be considered as still
relatively short. Interestingly, post hoc exploratory
subgroup analyses suggest that patients with baseline
clinical high-risk disease characteristics may benefit the
most from extended adjuvant endocrine therapy. Yet, to
date, there is no widely accepted method to estimate the
risk of distant recurrence after initial adjuvant endocrine
treatment in breast cancer. In the trans-DATA study, we
aim to identify DNA methylation biomarkers predictive
of distant recurrence and design a model including these
biomarkers and routinely used clinical factors, to identify
patients with hormone receptor-positive breast cancer
with an increased long-term risk of distant recurrence.
Only 0.8% of all published cancer DNA methylation

biomarkers have been translated into clinical applica-
tions for the management of cancer [36], and none have
been developed for diagnosis and prediction of prognosis
and response to therapy in breast cancer. Failure of pre-
viously identified DNA methylation markers to achieve
clinical utility can be explained by many factors, e.g.
poor identification of a particular study population,

Fig. 2 Trans-DATA marker discovery and validation
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inadequate reporting of translational research methods
and results and inadequate marker validation [37–40].
These factors may result in poor reproducibility of iden-
tified markers. The trans-DATA study is based on the
clinical phase III DATA trial population, with well-de-
scribed handling of differences in baseline characteris-
tics, and use of Fisher’s test to analyse promoter
methylation status, which may help to overcome some
of these pitfalls.
Cohorts derived from randomised control trials such

as the DATA study provide a unique opportunity for
biomarker research. These cohorts are homogenously
treated and include prospectively collected clinical fol-
low-up, limiting the influence of misclassification bias
[40]. Recent translational results from the clinical phase
III ATAC and TEAM trials have shown the potential of
translational research projects from these randomised
control trial-derived cohorts [13, 41]. For example, the
patient cohort included in the ATAC trial was
employed to study the prognostic value of biomarker
assays such as the Oncotype DX [13] and Breast
Cancer Index [24], and results from these transla-
tional studies were subsequently included in the
American Society of Clinical Oncology practical
guideline on the use of biomarkers for clinical deci-
sion making in breast cancer treatment [42].
Marker performance is also influenced by the selec-

tion of an appropriate endpoint [38]. As prevention of
distant breast cancer recurrence is the main goal of
adjuvant endocrine therapy in patients with hormone
receptor-positive disease, distant recurrence free-inter-
val should in our opinion be the primary study object-
ive of translational biomarker studies aiming at
identifying patients who might benefit from additional
adjuvant therapies. We chose to assess the 6-year
DRFI as the primary endpoint as this was the max-
imum treatment duration of adjuvant endocrine ther-
apy allowed within the framework of the DATA trial.
Of note, all patients had already received 2 to 3 years
of tamoxifen before randomisation, but in the TRANS-
DATA trial, we calculated DRFI from date of random-
isation. Hence, we actually look at patients who had a
diagnosis of breast cancer 8 to 9 years prior to the pri-
mary endpoint. Nevertheless, we know that even
though this is already a long period of observation, pa-
tients with hormone receptor-positive disease may
have recurrences for many more years. Therefore, after
the first 6-year DRFI analysis, we additionally aim to
assess the occurrence of distant recurrences until the
year 2022, and we will report on the follow-up results.
By doing so, we will assess whether the identified
markers will still hold their relevance, even after a very
long period of observation, which may then strengthen
our results even more.

Using propensity score matching, we chose to match
the discovery cohort patients for parameters currently
used by clinicians to assess the risk of recurrence in
breast cancer [9], to minimise differences in baseline
characteristics between the recurrent and non-recurrent
group. These differences could lead to the identification
of candidate genes related to baseline characteristics ra-
ther than disease outcome. Propensity score matching is
especially appropriate when selecting patients from a co-
hort consisting of a small portion of event subjects and a
large portion of non-event subjects, as is the case in our
discovery analysis [43].
Assaying genome-wide DNA methylation data at sin-

gle CpG resolution is of limited value and is hampered
by the need for extensive multi-hypothesis correction
[44, 45]. Due to the vast number of CpGs on the MEBC
array, only the strongest single CpG differences remain
significant, resulting in false-negative results, especially
for small effect sizes [44]. Differential methylation is
often not restricted to a single CpG site but may span
CpGs over several hundreds of base pairs [46]. We will
therefore analyse differential methylation by combining
measurements across promoter regions employing Fish-
er’s combined probability test as previously described by
Assenov et al. [31]. This method facilitates the identifica-
tion of differentially methylated areas because it is
capable of identifying grouped CpGs with small methyla-
tion differences [31]. In addition, by analysing the data
per promoter instead of per CpG, we decrease the num-
ber of hypotheses we need to correct for and focus on
biologically and clinically relevant biomarkers. Genome-
wide discovery assays are inherently noisy and imprecise
and therefore prone to false-positive results [38, 47]. To
minimise the number of false discoveries, candidate
genes must fit a stringent set of requirements in our
analyses. Candidate markers must show both differential
methylation and a significant relation to the risk of re-
currence. Moreover, we will only include markers that
show a significant correlation between DNA methylation
and gene expression in breast cancer data derived from
the TCGA database, further ensuring a possible bio-
logical relevance of the candidate markers. Finally, we
include a validation of all candidate markers in a separ-
ate subset of patients. We expect that this stringent
approach will result in biomarkers with a high chance of
reproducibility.
Despite our attempts to overcome known problems in

prognostic studies, our study has some limitations. First,
like all array-based techniques, findings by MEBC are
biased towards probe availability on the chip. It is there-
fore possible that potential markers will be missed
simply because no probes are located near these
markers. Second, even though there is no overlap
between the discovery and the validation cohort, both
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subgroups are derived from the same cohort. Markers
should be further validated in an independent cohort to
confirm their association with breast cancer outcome.
Further, in order to differentiate between a prognostic
and a predictive marker, the performance of the marker
has to be assessed in a systemically untreated as well as
a treated cohort. Prognostic markers identify patients at
risk of relapse after local treatment with curative intent,
and predictive markers identify patients that might bene-
fit from a particular (targeted) systemic treatment. In the
DATA trial, all patients received endocrine treatment,
either randomised for 3 or for 6 years of anastrozole
therapy after 2 to 3 years of tamoxifen therapy. As all
patients have received the same endocrine treatment
during the first 3 years after randomisation, the markers
that are identified to be associated with outcome can be
either of prognostic or predictive value.
We also recognise that the validation section as pro-

posed in this protocol paper does not provide a
complete validation of the selected markers as this ana-
lysis is used to further condense these markers into a
model including clinical features. In addition, the num-
ber of cases in our validation cohort is too small to draw
definitive conclusions. We consider our validation ana-
lysis a first step in assessing the prognostic value of the
marker model but recognise that any model that is pro-
vided by this study will need further independent
validation.
Despite these limitations, the trans-DATA study has

the potential to identify DNA methylation biomarkers
for risk of recurrence after adjuvant endocrine treat-
ment. These markers may be combined with routinely
used prognostic factors in a model capable of identifying
patients that benefit from prolonged adjuvant endocrine
treatment or other targeted adjuvant treatments.
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