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Abstract

Most randomized controlled trials evaluating medical interventions have a pre-specified hypothesis, which is
statistically tested against the null hypothesis of no effect. In diagnostic accuracy studies, study hypotheses are
rarely pre-defined and sample size calculations are usually not performed, which may jeopardize scientific rigor and
can lead to over-interpretation or “spin” of study findings. In this paper, we propose a strategy for defining
meaningful hypotheses in diagnostic accuracy studies. Based on the role of the index test in the clinical pathway
and the downstream consequences of test results, the consequences of test misclassifications can be weighed, to
arrive at minimally acceptable criteria for pre-defined test performance: levels of sensitivity and specificity that
would justify the test’s intended use. Minimally acceptable criteria for test performance should form the basis for
hypothesis formulation and sample size calculations in diagnostic accuracy studies.

Introduction
The randomized controlled trial (RCT) has become the
undisputed cornerstone of evidence-based health care
[1]. RCTs typically evaluate the benefits and harms of
pharmaceuticals (and other interventions) by comparing
health outcomes between one group of participants who
receive the drug to be evaluated, and a second group of
participants who receive a placebo or an alternative drug
[2]. Most RCTs have as a pre-specified hypothesis that
the intervention under evaluation improves health out-
comes, which is statistically tested against the null hy-
pothesis of no effect (Table 1). The sample size of the
trial is then calculated based on this pre-specified hy-
pothesis and on the desired magnitude of the type I and
type II errors [3]. Based on the collected data, investiga-
tors then typically calculate a test statistic and the corre-
sponding p value. This is done alongside estimating
effect sizes, such as the mean difference, relative risk, or
odds ratio, and their precision, such as confidence
intervals.

The situation is very different for diagnostic tests.
Comparative trials that focus on the effects of testing on
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patient outcomes are relatively rare [4]. There is, in gen-
eral, no requirement to demonstrate a reasonable
benefits-to-harms balance for new tests before they can
be introduced to the market [5]. The clinical perform-
ance of medical tests is often evaluated in diagnostic ac-
curacy studies. Such studies evaluate a diagnostic test’s
ability to correctly distinguish between patients with and
without a target condition, by comparing the results of
the test against the results of a reference standard
(Table 2) [6].

Diagnostic accuracy studies typically report results in
terms of accuracy statistics, such as sensitivity and speci-
ficity. Many fail to report measures of statistical preci-
sion [8]. Somewhat surprisingly, most diagnostic
accuracy studies do not pre-specify a study hypothesis;
they are usually reported without any explicit statistical
test of a null hypothesis. In an analysis of 126 published
diagnostic accuracy studies, Ochodo and colleagues ob-
served that only 12% reported any statistical test of a hy-
pothesis somewhat related to the study objectives, and
no more than 11% reported a sample size justification
[9]. Similar evaluations found that only 5% of diagnostic
accuracy studies published in eight leading medical jour-
nals reported a sample size justification, and 3% of diag-
nostic accuracy studies of depression screening tools,
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Table 1 Commonly used terminology in statistics of
randomized controlled trials

Term Explanation

Claims that there is no difference in outcome
across two or more groups (e.g., drug A is as
good as placebo)

Null hypothesis

Claims that there is a difference in outcome
across two or more groups (e.g., drug A is
better than placebo)

Alternative hypothesis

Type 1 error (a) Rejection of a true null hypothesis (i.e, a

false-positive result)

Type 2 error (B) Failure to reject a false null hypothesis (i.e,

a false-negative result)

Effect size A quantitative measure of the magnitude
of the effect (e.g, mean difference, relative
risk, or odds ratio)

p value Probability of obtaining the identified result

(or something more extreme) under the
assumption that the null hypothesis is true

and 3% of diagnostic accuracy studies in ophthalmology
[10-12].

We believe the logic of having clear and pre-specified
study hypotheses could and should extend to diagnostic
accuracy studies. Scientific rigor is likely to benefit from
this, as explicitly defining study hypotheses forces re-
searchers to express minimally acceptable criteria for ac-
curacy values that would make a test clinically fit-for-
purpose, before initiating a study. A clearly defined study
hypothesis also enables an informed judgment of the ap-
propriateness of the study’s design, sample size, statis-
tical analyses, and conclusions. It may also prevent the
authors from over-interpreting their findings [9, 13, 14],
as the absence of a pre-specified hypothesis leaves ample
room for “spin”: generous presentations of the study
findings, inviting the readers to conclude that the test is

Table 2 Diagnostic accuracy studies

In diagnostic accuracy studies, a series of patients suspected of having a
target condition undergo both an index test (i.e, the test that is being
evaluated) and the clinical reference standard (i.e., the best available
method for establishing if a patient does or does not have the target
condition) [6].

Assuming that the results of the index test and reference standard are
dichotomous—either positive or negative—we can present the results
of the study in a contingency table (or “2 x 2 table”), which shows the
extent to which both tests agree (Fig. 1). Discrepancies between the
results of the index test and the reference standard are considered to
be false-positive and false-negative index test results.

Although it is possible to generate a single estimate of the index test's
accuracy, such as the diagnostic odds ratio [7], it is usually more
meaningful to report two statistics: one for patients with the target
condition, or sensitivity, and one for patients without the target
condition, or specificity (Fig. 1). One reason is that the clinical
consequences of misclassifications from false-positive and false-negative
test results usually differ. As a visual aid, we can picture a test's sensitivity
and specificity as a point in the receiver operating characteristic (ROC)
space, which has these two dimensions: sensitivity (y-axis) and 1-
specificity (x-axis) (Fig. 2).
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useful, even though the estimates of sensitivity and spe-
cificity do not support such a conclusion.

Below, we propose a strategy for defining meaningful
hypotheses in diagnostic accuracy studies, based on the
consequences of using the test in clinical practice. With
the exposition below, we invite researchers who are de-
signing diagnostic accuracy studies to derive meaningful
study hypotheses and minimally acceptable criteria for
test accuracy: targeted test evaluation.

Meaningful hypotheses about diagnostic accuracy
Since there are typically two measures of accuracy in a
diagnostic accuracy study (Table 2 and Fig. 1), we need
a joint hypothesis, with one component about the test’s
sensitivity and a second about its specificity. Having a
hypothesis about sensitivity only is usually pointless for
quantitative tests, since one can always arbitrarily set the
test positivity rate, by changing the positivity threshold,
to match the desired sensitivity. That, in itself, does not
guarantee that the corresponding specificity is suffi-
ciently high for the test to be clinically useful. The same
applies to only having a hypothesis about specificity.

Informative tests produce a higher rate of positive test
results in patients with the target condition than in those
without the target condition. In ROC (receiver operating
characteristic) space, the combination of sensitivity and
specificity for these tests will then be in the upper left
triangle (Fig. 2). Yet, in contrast to RCTs of interven-
tions, where a null hypothesis of “no effect” works quite
well in most cases, a null hypothesis of “not informative”
is not very useful for evaluations of the clinical perform-
ance of diagnostic tests. Such a hypothesis may be rele-
vant in the early discovery phase of biomarkers, but it
will no longer be informative when a test has been de-
veloped, based on that marker, and when that test is
evaluated for its added value to clinical practice. By the
time a diagnostic accuracy study is initiated, one usually
already knows that the test to be evaluated is more in-
formative than just throwing a dice.

For many tests, both sensitivity and specificity will
be higher than 0.50. A very simple study hypothesis
then stipulates that both sensitivity and specificity be
at least 0.50:

H;: {Sensitivity > 0.50 and Specificity > 0.50}

This could be evaluated against the following joint null
hypothesis:

Hy: {Sensitivity < 0.50 and/or Specificity < 0.50}

This hypothesis is also not very helpful in evaluations
of the clinical performance of tests, because it can be
too lenient in some cases and too strict in others. For
example, if a test is meant to rule out disease, the num-
ber of false negatives should clearly be low. This means
that a very high sensitivity is required, and a value barely
exceeding 0.50 will not be enough. A useful triage test



Korevaar et al. Diagnostic and Prognostic Research

(2019) 3:22

Page 3 of 10

Reference standard

Reference standard

positive negative
Index test
True positive (t False positive
positive p (tp) p (fr)
Index test
False negative (fn True negative (tn
negative g (Fn) g (tn)

ACCUI’GC)/ measures:

. Sensitivity: tp/(tp+fn)

. Specificity: tn/(tn+fp)

. Positive predictive value: tp/(tp+fp)

. Negative predictive value: tn/(fn+tn)

. Diagnostic odds ratio: (tp x tn)/(fn x fp)

Fig. 1 Typical output of a diagnostic accuracy study: the contingency table (or “2 x 2 table”)
A

may combine a sensitivity of 0.999 with a specificity of
0.30, since it would mean that the triage test prevents
further testing in 30% of those without the target condi-
tion, while missing only 1 in a 1000 in those with the
target condition. If one wants a new, expensive test to
replace an existing, inexpensive test, the accuracy of that

new test should substantially exceed that of the existing
test. Simply concluding that sensitivity and specificity
exceed 0.50 will not be enough.

From these examples, we can conclude that the re-
quired levels of sensitivity and specificity will depend on
the clinical context in which the new test will be used.

-
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Fig. 2 Receiver operating characteristic (ROC) space with “target region” based on minimally acceptable criteria for accuracy. ROC space has two
dimensions: sensitivity (y-axis) and 1-specificity (x-axis). When the sum of sensitivity and specificity is = 1.0, the test's accuracy will be a point
somewhere in the upper left triangle. The “target region” of a diagnostic accuracy study will always touch the upper left corner of ROC space,
which is the point for perfect tests, where both sensitivity and specificity are 1.0. From there, the rectangle extends down, to MAC for sensitivity,
and extend to the right, towards MAC for specificity. The gray square represents the target region of a diagnostic accuracy study with a MAC
(sensitivity) of 0.70, and a MAC (specificity) of 0.60. MAC, minimally acceptable criteria
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This implies that we should explore that context expli-
citly when specifying hypotheses. Therefore, what would
be more useful to know is not whether tests are inform-
ative, but whether they are informative enough, or in
other words, whether the test meets “minimally accept-
able criteria” (MAC) for a pre-defined test performance,
i.e., levels of sensitivity and specificity that would justify
the intended use. The study hypotheses then become:

H;: {Sensitivity > MAC (Sensitivity) and Specificity >
MAC (Specificity)}

Hy: {Sensitivity < MAC (Sensitivity) and/or Specificity <
MAC (Specificity)}

In ROC space, this can be defined as a rectangle in the
upper left corner that corresponds to MAC (Fig. 2). The
test will be considered acceptable if both the sensitivity
and specificity are in this rectangle, which we will refer
to as the “target region” in ROC space.

A diagnostic accuracy study will produce point esti-
mates of sensitivity and specificity, along with confidence
intervals around it. If we position these in ROC space,
then both the point estimates and the confidence inter-
vals should be completely positioned in the target re-
gion. If MAC for sensitivity is set at 0.85 and MAC for
specificity at 0.90, the lower limit of the confidence
interval for sensitivity should exceed 0.85, and for speci-
ficity, it should exceed 0.90.

Targeted test evaluation: defining minimally
acceptable criteria for diagnostic accuracy

Below, we provide a series of steps that could be used
for defining minimally acceptable criteria for diagnostic
accuracy (Fig. 3). A case example for each of the steps is
reported in Table 3 and Fig. 4.
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Identify the existing clinical pathway in which the index
test will be used

The diagnostic accuracy of a test is not a fixed property:
it typically varies depending on the clinical setting in
which it is applied, and on how the test is used [21].
Consequently, the sensitivity and specificity of a single
test are likely to differ across settings and applications.
Consequences of testing may also vary across different
settings. Tests, therefore, should be evaluated in a setting
that mirrors the clinical context in which they will be
used. This can only be done by first defining the existing
clinical pathway.

The identification of a clinical pathway is recom-
mended in the evaluation of a diagnostic test by agen-
cies such as the US Preventive Services Task Force
(USPSTF); the Agency for Healthcare Research and
Quality (AHRQ); the Grading of Recommendations,
Assessment, Development and Evaluation (GRADE)
Working Group; and the Cochrane Collaboration [22,
23]. Likewise, the STARD (Standards for Reporting
Diagnostic Accuracy) 2015 statement recommends au-
thors to report the intended use and clinical role of the
index test [24, 25].

To help define the existing clinical pathway, we
propose a number of guiding questions that authors of
diagnostics accuracy tests can use:

o What is the target condition to be diagnosed? The
target condition can be defined as the disease,
disease stage, or severity or, more generally, the
condition that the investigated test is intended to
detect.

o Who are the targeted patients? The patients
undergoing testing can be those presenting with

Identify the existing clinical pathway in which the index test will be used

\Z

Define the role of the index test in the clinical pathway

\Z

Define the expected proportion of patients with the target condition

\Z

Identify the downstream consequences of test results

\Z

Weigh the consequences of test misclassifications

\Z

Define the study hypothesis by setting minimally acceptable criteria (MAC) for sensitivity and specificity

\Z

Perform a sample size calculation

\Z

Arrive at meaningful conclusions

Fig. 3 Defining minimally acceptable criteria (MAC) for diagnostic accuracy
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Table 3 Working example on how to define minimally
acceptable criteria (MAC) for diagnostic accuracy
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Table 3 Working example on how to define minimally
acceptable criteria (MAC) for diagnostic accuracy (Continued)

Identify the existing clinical pathway in which the index test will be
used

In children with pharyngitis, about one third of cases are due to
bacterial infection with group A Streptococcus (GAS); the remainder
are caused by viral infections [15]. Because of overlapping symptoms,
the distinction between GAS and viral pharyngitis is clinically difficult.
Cohen and colleagues aimed to externally validate existing clinical
prediction rules that combine signs and symptoms for diagnosing
GAS pharyngitis [16]. The existing clinical pathway is defined as
follows:

- Target condition. GAS pharyngitis.

- Targeted patients. Children aged 3-14 years, with a diagnosis of
pharyngitis, who have not yet received antibiotics.

- Setting. Private office-based pediatricians.

- Tests in the existing clinical pathway. Existing guidelines are not uniform
on the clinical pathway for diagnosing and treating GAS pharynagitis.
French guidelines recommend that all patients with pharyngitis
undergo rapid antigen detection testing or throat culture to
distinguish between GAS and viral pharyngitis [17]. North American
guidelines, however, recommend that clinicians select patients for
additional testing based on clinical and epidemiologic ground [18]. In
clinical practice, children with pharyngitis are often treated with
antibiotics without any additional testing [19].

Define the role of the index test in the clinical pathway

In case of a GAS pharyngitis, clinical guidelines recommend treatment
with antibiotics. Misdiagnosis of GAS pharyngitis, however, could lead
to unnecessary initiation of antibiotic treatment. Rapid antigen
detection testing has a high specificity, but a sensitivity around 86%,
which may lead to false-negative results [20]. Throat culture is consid-
ered the reference standard for GAS pharyngitis, but it may take up
to 48 h before results are available, which causes delays in the initi-
ation of treatment. The aim of clinical decision rules (the index test) is
to identify patients at very low or very high risk, in whom additional
testing can be safely avoided. In this setting, such a decision rule
would serve as triage test.

Define the expected proportion of patients with the target condition

In establishing MAC for sensitivity and specificity, the authors
assumed “a prevalence of group A streptococcal infection of 35%”"
[16], referring to a meta-analysis on the prevalence of GAS pharyngitis
in children [15].

Identify the downstream consequences of test results

The aim of the study is to identify a clinical decision rule that is able
to accurately detect patients at low risk or at high risk of GAS
pharyngitis [16]. Patients at low risk will not receive antibiotics, as GAS
pharyngitis is ruled out with a sufficiently high level of certainty;
patients at high risk will receive antibiotics. No additional testing will
be performed in either of these groups. This implies that patients
falsely considered at high risk (i.e,, false-positive results due to sub-
optimal specificity) will unnecessarily receive antibiotics with the in-
herent risk of adverse drug reactions, costs, and antibiotic resistance.
Patients falsely considered as at low risk (i.e, false-negative results due
to suboptimal sensitivity) will be withheld from adequate treatment
with the risk of complications (e.g. retropharyngeal abscess, acute
rheumatic fever, rheumatic heart disease), longer duration of symp-
toms, and risk of transmission of bacteria to others. Patients at inter-
mediate risk based on the clinical prediction rule (neither at high risk
nor at low risk for GAS pharyngitis) would still be selected to undergo
additional testing (rapid antigen detection testing or throat culture),
and a clinical prediction rule would not affect their clinical outcome.

Weigh the consequences of test misclassifications

In weighing the consequences of test misclassifications for sensitivity,
the authors refer to expert opinion in previous literature: “Clinicians
do not want to miss GAS cases that could transmit the bacterium to
other individuals and/or lead to complications. [...] Several clinical

experts consider that diagnostic strategies for sore throat in children
should be at least 80-90% sensitive” [16]. They weigh the
consequences of test misclassifications for specificity as follows:
“Assuming a population of a 100 children with pharyngitis and a GAS
prevalence of 35%, a diagnostic strategy with 85% sensitivity would
lead to 30 prescriptions for antibiotic therapy for 100 patients. We
aim to identify a diagnostic strategy that could reduce the antibiotics
consumption (baseline 260%). If we set the maximum acceptable
antibiotics prescription rate to 40%, then the maximum acceptable
number of antibiotics prescribed for GAS-negative patients would be
10 for 65 patients, for a specificity of 85%."

Define the study hypothesis by setting minimally acceptable criteria
(MAQ) for sensitivity and specificity

The authors define MAC for sensitivity and specificity as follows: “After
reviewing the literature and discussing until consensus within the
review team, and assuming a prevalence of GAS infection of 35% and
a maximally acceptable antibiotics prescription rate of 40%, we
defined the target zone of accuracy as sensitivity and specificity
greater than 85%. For each rules-based selective testing strategy, we
used a graphical approach to test whether the one-sided rectangular
95% confidence region for sensitivity and specificity lay entirely within
the target zone of accuracy” [16]. This means that the null hypothesis
in this study can be defined as:

Ho: {Sensitivity < 0.85 and/or Specificity < 0.85}

Perform a sample size calculation

Since the aim of the study was to externally validate clinical
prediction rules in an existing dataset, no sample size calculation was
performed, which the authors acknowledge as a limitation in their
discussion section: “A further limitation lies in the absence of an a
priori sample size calculation. One of the clinical prediction rules met
our target zone of accuracy based on the point estimates alone
(Attia’s rule), but it was considered insufficient because the
boundaries of the confidence intervals for sensitivity and specificity
went across the prespecified limits for significance. This could be due
to lack of power, and our results should be considered with caution
until they are confirmed with a larger sample of patients” [16].

When using the calculator proposed in Additional file 1, the sample
size calculation could have looked as follows. The MAC for sensitivity
and specificity was set at 0.85; the authors provided no information
on the expected sensitivity and specificity. This can, for example, be
based on previous literature or on a pilot study. Assuming an
expected sensitivity of 0.92 (with a*=0.05, and 3*=0.90), 179
participants with the target condition (i.e, GAS infection) need to be
included to ensure that the lower limit of the one-sided confidence
interval for sensitivity is at least 0.85. Assuming an expected specificity
of 0.95, 76 participants without the target condition (i.e, no GAS in-
fection) need to be included to ensure that the lower limit of the
one-sided confidence interval for specificity is at least 0.85. Taking into
account an expected prevalence of GAS infection of 35% in the inves-
tigated population, this means that a total of at least 511 (=179 %
0.35) participants with suspected GAS pharyngitis need to be
included.

Arrive at meaningful conclusions

In their article, the authors graphically illustrate the performance of
the investigated clinical prediction rules in ROC space (Fig. 4) [16].
The graphic shows that for five of the prediction rules, either
sensitivity or specificity is outside the “target region”; for one
prediction rule, both sensitivity and specificity are within the target
zone, but the confidence intervals reach outside, which means that
the null hypothesis cannot be rejected. Based on this, the authors
conclude: “On external validation, none of the rules-based selective
testing strategies showed sufficient accuracy, and none were able to
identify patients at low or high risk whose condition could be man-
aged without microbiologic testing.”
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Fig. 4 External validation of the diagnostic accuracy of rules-based
selective testing strategies (figure derived from Cohen and
colleagues [16]). Graph shows sensitivity and specificity estimates
with their one-sided rectangular 95% confidence regions. Numbers
indicate the rules-based selective testing strategies

certain signs or symptoms, or those having
undergone specific previous tests, or just selected
based on age, sex, or other risk factors, as in
screening.

o In which setting will the test be used? The setting
may be primary, secondary, or tertiary care, or,
more specifically, the emergency department,
outpatient clinic, or in the general community.

o What are the other tests in the existing clinical
pathway? The test under evaluation may be
positioned before or after other tests in the specific
clinical setting as defined in the guiding question
above. Also, a number of additional testing
procedures may need to be considered, depending
on the results of testing, before the diagnostic work-
up can be closed and a clinical decision on further
management is taken.

Define the role of the index test in the clinical pathway
Defining the role of the index test in the existing clinical
pathway is critical for defining eligibility criteria for par-
ticipants for the study. This step involves defining where
in the existing clinical pathway the test under evaluation
will be positioned. There are several possible roles for
diagnostic tests relative to an existing test—triage, add-
on, replacement, or new test [26, 27]:

e A triage test is used before the existing test(s), and
its results determine which patients will undergo the
existing test.
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e An add-on test is used after an existing test to
improve the diagnostic accuracy of the testing
strategy.

o A replacement test aims to replace an existing test,
either because it is expected to have higher
diagnostic accuracy, is less invasive, is less costly, or
is easier to use than the existing test.

o A nmew test is a test that opens up a completely new
test-treatment pathway. The latter would be the case
with a new population screening strategy, for
example, where, at present, no screening for the
target condition is performed.

Define the expected proportion of patients with the
target condition

Depending on the proportion of tested patients who have
the target condition, absolute numbers of false-positive
and false-negative results will vary. If 100 patients are
tested by a test with a sensitivity of 0.90 and a specificity
of 0.90, and 50 of them have the target condition, one can
expect, on average, 5 false positives and 5 false negatives.
However, when only 10 of the 100 have the target condi-
tion, there will only be 1 false negative versus 9 false posi-
tives, even if these are tested with the very same test. As a
consequence, the potentially harmful downstream conse-
quences of the test will depend on how many of the tested
patients have the target condition.

Several strategies can be used for defining the expected
proportion of those with the target condition in a specific
clinical setting. Ideally, a systematic review is identified or
performed, to estimate this proportion, and to define rele-
vant determinants. Alternatively, or additionally, a small
pilot study can be performed, or clinical experts
consulted.

Identify the downstream consequences of test results
Bearing in mind the positioning of the index test in the
clinical pathway, the downstream consequences of test
results (i.e., test positives and test negatives) need to be
defined. These refer to clinical management decisions,
such as additional confirmatory tests patients may
undergo if they are considered positive, or treatments
that may be initiated or withheld as a result. Explicitly
defining downstream consequences of the index test is
important as they also determine the extent to which
index test misclassifications (false-positive and false-
negative results) could lead to harm to patients being
tested.

Weigh the consequences of test misclassifications

Defining MAC for sensitivity and specificity comes down
to weighing the downstream consequences of test mis-
classifications: false-positive results versus false-negative
results. Depending on what role the index test has in the
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clinical pathway, and the downstream consequences of
being falsely positive or negative, this can influence the
weight given to the consequences of being misclassified.
Take for example, triage tests aimed at ruling out dis-
ease. These typically need to have high sensitivity, while
specificity may be less important. In such a scenario, the
consequence of being false negative may have the poten-
tial of being more detrimental than being false positive
as one might not want to miss any potential true positive
cases at the triage stage of a disease especially if early de-
tection and treatment are crucial. Further down the clin-
ical pathway, however, it may be crucial to keep the
number of false positives to a minimum, since positive
test results may lead to radical treatment decisions with
potentially serious side effects. Therefore, add-on tests
generally require higher specificity than triage tests. In
other words, the weight given to the consequences of be-
ing false positive are higher in this scenario. For replace-
ment tests, sensitivity and specificity should, commonly,
be both at least as good as those of the existing test.
When weighing the consequences of test misclassifica-
tions, the following should eventually be considered:

e Considering 100 patients suspected of the target
condition, how many false-negative results are ac-
ceptable, considering the potential harms of such
misclassifications?

e Considering 100 patients suspected of the target
condition, how many false-positive results are ac-
ceptable, considering the potential harms of such
misclassifications?

Define the study hypothesis by setting minimally
acceptable criteria for sensitivity and specificity

Based on the weighted consequences of false-positive
and false-negative test results and taking into account
the expected proportion of patients with the target con-
dition (as defined earlier), MAC for sensitivity and speci-
ficity can be defined and the target region in the ROC
space can be drawn (Fig. 2).

Pepe and colleagues recently provided a relatively sim-
ple method for specifying MAC that is based on weigh-
ing the harms and benefits of being detected with the
target condition [28]. Their approach focuses on the
threshold for starting the next action: the minimally re-
quired probability, after testing, of having the target con-
dition that would justify subsequent management guided
by testing, such as starting treatment, or order additional
testing after a positive test result. From this threshold,
and from the proportion of those with the target condi-
tion in the group in which the test under evaluation is
going to be used, they derive minimum likelihood ratios:
the combinations of sensitivity and specificity that would
lead to the required post-test probability.
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In their article, Pepe and colleagues argue that such
thresholds can be inferred from comparisons with exist-
ing situations in which comparable actions are justified.
An example is the probability of having colorectal can-
cers or its precursors in those referred for colonoscopy
in a population screening program for colorectal cancer.
A new marker would have MAC for sensitivity and spe-
cificity that would lead to a post-test probability that at
least exceeds that probability.

The minimum positive likelihood ratio defines a spe-
cific region in ROC space: a triangle that includes the
upper left corner. This area also includes very low values
of sensitivity, which may not be clinically useful. The ap-
proach of Pepe and colleagues can be further refined by
defining the acceptable number needed to test. This is
the number of patients that must undergo testing in
order to generate one positive result. It is the inverse of
the positivity rate which depends on the proportion
tested with the target condition and on the sensitivity
and specificity. For expensive, invasive, or burdensome
tests, the acceptable number needed to test will be lower
than for simple, less costly tests.

Our framework focuses on weighing the consequences
of test classifications for arriving at MAC for sensitivity
and specificity. There are obviously other appropriate
methods to define these. One option is to perform a sur-
vey among a panel of experts, directly asking what they
would consider an appropriate MAC. Gieseker and col-
leagues, for example, evaluated the accuracy of multiple
testing strategies for diagnosing Streptococcus pyogenes
pharyngitis (“strep throat”); they performed a sample
survey of pediatricians to identify a MAC for sensitivity
and report: “67 (80%) of 84 were willing to miss no more
than 5% of streptococcal infections” [29]. A similar
method was used to identify minimally acceptable inter-
pretative performance criteria for screening mammog-
raphy [30]. In some areas, there are clearly established
MAC. In triaging strategies to safely exclude pulmonary
embolism without imaging, for example, it is now a
common practice to require that the 3-month thrombo-
embolic risk does not exceed 3% in test-negatives. This
failure rate corresponds to that observed after a negative
pulmonary angiography [31].

Perform a sample size calculation

Based on the MAC for sensitivity and specificity and the
expected proportion of patients with the target condi-
tion, a sample size calculation can be performed, which
represents the number of participants (i.e., patients sus-
pected of having the target condition) that need to be in-
cluded in the study to conclude that the point estimates
and lower limits of the confidence intervals for sensitiv-
ity and specificity fall within the “target region,” by
rejecting the null hypothesis that they do not. The
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statistical tests and methods for sample size calculations
have all been defined before in the literature [32].

Additional file 1 provides an example of a sample size
calculator that can be used for this purpose, with back-
ground information on the formula wused in
Additional file 2. Information that needs to be filled in
are a and P (see Table 1 for details), MAC for sensitivity
and specificity, and the expected value for sensitivity and
specificity. The output of the calculator is the minimal
numbers of participants with and without the target
condition that need to be included; the final sample size
will depend on the expected prevalence of the target
condition.

Arrive at meaningful conclusions

Upon completion of the study, estimates of sensitivity
and specificity are compared with the pre-defined MAC
for sensitivity and specificity. This can be done by (1)
assessing whether the point estimates of sensitivity and
specificity and the lower confidence interval limits are
above MAC, or (2) by performing formal statistical test-
ing of the null hypothesis and arriving at a p value. As
diagnostic accuracy studies have a joint hypothesis (one
for sensitivity and one for specificity), one cannot reject
the null hypothesis if only one of these fulfills the cri-
teria for MAC and the other does not. One can also not
reject the null hypothesis if the lower confidence limit of
sensitivity or specificity is below MAC. Obviously, this
“statistically negative” result does not mean that the
diagnostic test is useless. Firstly, one should consider the
possibility that the study was too small, for example, due
to incorrect assumptions during the sample size calcula-
tions, which may have led to wide confidence intervals.
Secondly, one should consider that the pre-specified cri-
teria for MAC may have been too strict, or that the test
may have added value in another clinical setting, or in a
different role in the existing clinical pathway. On the
other hand, a significant p value does not mean that the
test under evaluation is fit-for-purpose; the study may be
biased (e.g., due to many missing results) or have low
generalizability.

Conclusions

Targeted test evaluation will usually require the expert-
ise of multiple professionals. There should be clinical ex-
perts to identify the management actions that will result
from positive or negative test results and who can weigh
the downstream consequences of test results. In some
cases, it may be desirable to also include patients or their
advocates in this process. There should also be meth-
odological and statistical experts, to avoid mistakes in
drawing the clinical pathway, to promote consistency in
the process, and to arrive at adequate sample size calcu-
lations based on the defined MAC for test accuracy.
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There is a growing recognition that explicitly specify-
ing study hypotheses and how these were specified in
the protocol-development phase of the study is crucial
in test accuracy research. The STARD 2015 statement
for reporting diagnostic accuracy studies now requires
authors to report “study hypotheses” (item 4) and the
“intended sample size and how it was determined” (item
18) [24, 25]. Similar methods for focusing on MAC of
test performance are also increasingly being imple-
mented among systematic reviews and clinical guide-
lines. The Cochrane Handbook for Diagnostic Test
Accuracy Reviews, for example, now encourages authors
to describe the clinical pathway in which the test under
evaluation will be implemented, including prior tests,
the role of the index test and alternative tests, if applic-
able [23]. A similar practice is advised by the recently
established GRADE (Grading of Recommendations
Assessment, Development and Evaluation) quality as-
sessment criteria for diagnostic accuracy studies, which
encourages guideline developers to focus on and weigh
consequences of testing [33].

The process described here is not that different
from hypothesis formulation and sample size calcula-
tions in RCTs. Even though most superiority RCTs
generally have a simple null hypothesis (i.e.,, no ef-
fect), the calculation of the required sample size de-
pends on the definition of a “minimum important
difference”: the smallest difference in the primary out-
come that the trial should be able to detect. The
DELTA (Difference ELicitation in TriAls) group re-
cently provided a systematic overview of methods for
specifying the target difference in RCTs [34]. These
methods are subdivided in those for specifying an im-
portant difference (e.g., by weighing resource costs
and health outcomes to estimate the overall net bene-
fit of the intervention), those for specifying a realistic
difference (e.g., through a pilot study), or both (e.g.,
through opinion seeking among health professionals).

We realize that our framework has some potential
shortcomings. We focused on MAC for the sensitivity
and specificity of a new test, and null hypotheses based
on these criteria, to be used in the evaluation of a single
test with dichotomous test results. Defining MAC may
be more difficult in other situations, although the gen-
eral principles should be the same. In some cases, for ex-
ample, diagnostic accuracy studies do not focus on a
single test but compare two or more tests or testing
strategies. Hayen and colleagues have described how one
can use meaningful measures and statistics in such stud-
ies, such as the relative likelihood ratios [27]. In other
situations, the index test does not produce a dichotom-
ous test result, but a continuous one. This is, for ex-
ample, often the case with laboratory tests. We believe
that our framework could, with some adaptations, also
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be useful in those cases, as evaluating continuous tests
generally comes down to finding a clinically relevant test
threshold at which the test is useful for ruling in or rul-
ing out the target condition. Currently, studies on con-
tinuous test very often select an optimal threshold for
sensitivity and specificity based on, for example, You-
den’s index. In many cases, this leads to a test threshold
that is clinically not useful as both sensitivity and specifi-
city are too low for decision-making. An alternative the-
ory would to pre-define MAC for sensitivity and
specificity, as outlined, and investigate whether there is a
test threshold that is able to fulfill these criteria.

Mainly due to technological innovations, the field of
diagnostic testing evolves quickly. Premature incorpor-
ation of new diagnostic tests into clinical practice may
lead to unnecessary testing, waste of resources, and
faulty clinical decision-making. Defining MAC before
initiating new diagnostic accuracy studies should im-
prove methodological study quality and help draw more
meaningful evidence synthesis of such studies.
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