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Abstract

Background: Premature mortality is an important population health indicator used to assess health system
functioning and to identify areas in need of health system intervention. Predicting the future incidence of
premature mortality in the population can facilitate initiatives that promote equitable health policies and effective
delivery of public health services. This study protocol proposes the development and validation of the Premature
Mortality Risk Prediction Tool (PreMPoRT) that will predict the incidence of premature mortality using large
population-based community health surveys and multivariable modeling approaches.

Methods: PreMPoRT will be developed and validated using various training, validation, and test data sets
generated from the six cycles of the Canadian Community Health Survey (CCHS) linked to the Canadian Vital
Statistics Database from 2000 to 2017. Population-level risk factor information on demographic characteristics,
health behaviors, area level measures, and other health-related factors will be used to develop PreMPoRT and to
predict the incidence of premature mortality, defined as death prior to age 75, over a 5-year period. Sex-specific
Weibull accelerated failure time models will be developed using a Canadian provincial derivation cohort consisting
of approximately 500,000 individuals, with approximately equal proportion of males and females, and about 12,000
events of premature mortality. External validation will be performed using separate linked files (CCHS cycles 2007–
2008, 2009–2010, and 2011–2012) from the development cohort (CCHS cycles 2000–2001, 2003–2004, and 2005–
2006) to check the robustness of the prediction model. Measures of overall predictive performance (e.g.,
Nagelkerke’s R2), calibration (e.g., calibration plots), and discrimination (e.g., Harrell’s concordance statistic) will be
assessed, including calibration within defined subgroups of importance to knowledge users and policymakers.

Discussion: Using routinely collected risk factor information, we anticipate that PreMPoRT will produce population-
based estimates of premature mortality and will be used to inform population strategies for prevention.
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Background
Premature mortality is an indicator that represents the
concept of an unfulfilled life expectancy and is meaningful
in the context of public health as premature deaths are
largely amenable to targeted policy and programmatic in-
terventions [1, 2]. As such, premature mortality is an im-
portant indicator of population health that has been used
to assess health system functioning and to identify areas in
need of targeted health system intervention. The Canadian
Institute of Health Information defines Canadian prema-
ture mortality using an age cut-off of 75 [3], which is con-
sistent with the age range adopted to capture premature
mortality in other industrialized countries [4–6]. Prema-
ture mortality is an important metric for evaluating which
population sub-groups are benefitting from public health,
medical care, and health policy and which groups are be-
ing left behind. For example, in recent years, premature
mortality rates have stagnated in Canada [7] and appear to
be increasing in the USA [8] and Europe [9, 10] after his-
torically experiencing steady declines. Gaps in premature
mortality across socioeconomic status are widening both
in Canada [11–15] and internationally [16–18]. Addition-
ally, premature mortality rates can be used to compare
population health status between groups, regions, and
health systems [4]. As one of the foremost goals of public
health, reductions in premature mortality have been iden-
tified by the United Nations sustainable development
goals for 2030 as a major priority that focuses on preven-
tion and promotion of health and well-being [19].
Health system decision-makers are increasingly inter-

ested in using population-level data to strategically inform
which interventions may result in the greatest benefit to
the population [20, 21]. The ability to predict population
subgroups or geographic regions with high risk of future
premature mortality is a considerable advantage from a
public health planning perspective and can facilitate initia-
tives that promote equitable health policies and effective
delivery of public health services. The majority of existing
research using population health survey data has focused
on characterizing risk factors for all-cause mortality, in-
cluding in Canada [22] and the UK [23]. Several character-
istics that are commonly associated with elevated
premature mortality risk include disease indicators (e.g.,
chronic disease), health behaviors (e.g., smoking, physical
inactivity, alcohol consumption, and poor diet), socioeco-
nomic measures (e.g., income), and psychosocial factors
(e.g., self-reported health status) [22–26]. Previous re-
search suggests that well-known and modifiable risk fac-
tors explain a large amount of premature mortality
emphasizing the importance of population-based efforts
to reduce the burden of premature mortality [27].
To date, the majority of prediction models have fo-

cused on all-cause mortality [28], all-cause mortality in
defined population subgroups (i.e., infant mortality,

maternal mortality, trauma patients) [29–31], or use data
sources (i.e., electronic health records, biological speci-
mens) that are not publicly available [32]. To our know-
ledge, no population-level risk prediction algorithm,
using routinely collected public available data, has been
developed for premature mortality. To guide population-
level preventative action, we propose the development
and validation of a population-level risk prediction algo-
rithm, the Premature Mortality Population Risk Tool
(PreMPoRT). This tool will be developed using a multi-
variable modeling approach, linking self-reported risk
factor data collected by a large population-based com-
munity health survey in Canada linked to vital statistics
databases. This study protocol is presented to prespecify
the predictive variables and analytic plan to increase the
robustness, validity, and transparency of the model.

Methods
Data sources
PreMPoRT will use national population-based survey
data from the Canadian Community Health Survey
(CCHS) linked to the Canadian Vital Statistics Database
(CVSD). The CCHS is a cross-sectional survey con-
ducted by Statistics Canada that began in 2000 that col-
lects information on health status, health care
utilization, and health determinants among the Canadian
population 12 years and older [33]. The CCHS features a
multistage, stratified cluster survey design where the
household is the final sampling unit. Overall, the CCHS
represents just over 98% of the Canadian population
with an average response rate of 80.5%. Certain popula-
tion subgroups are excluded from the sampling frame
including people living on First Nation Reserves and
Crown Lands, institutional residents, and full-time mem-
bers of the Canadian Forces. The survey was conducted
through interviews by telephone and in person, and all
survey responses were self-reported. All self-reported
predictors for PreMPoRT will be obtained from the
CCHS. Details of survey methodology for the CCHS
have been previously published elsewhere [33].

Study design
PreMPoRT will include two sex-specific models that will be
derived and validated using population-based provincial
data in Canada available through Statistics Canada [34]. All
analyses will be sex stratified given important sex differ-
ences related to mortality and risk factors [13, 35]. All
CCHS respondents in Canadian provinces from the first six
cycles, who consented to have their responses linked to the
CVSD, will be included. The derivation cohort will consist
of the first three cycles of the CCHS—cycles 1.1 (conducted
2000–2001), 2.1 (conducted 2003–2004), and 3.1 (con-
ducted 2005–2006). External validation will be performed
using the CCHS cycles from 2007–2008, 2009–2010, and
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2011–2012. The external validation will examine the pre-
diction models’ performance in the same source population
but using different individuals surveyed over a different
time period. For both development and validation cohorts,
respondents will be excluded if they were under the age of
18 or older than 74 years as of the CCHS interview date.
Respondents who are pregnant will also be excluded due to
the inability to accurately ascertain baseline body mass
index (BMI). Among the small proportion of survey
respondents who had multiple CCHS survey responses
(< 2%), the earliest record after the age of 18 years will be
used. Bootstrap replicate survey weights will be incorpo-
rated for development and validation to account for the
CCHS’s complex survey design and to produce estimates
that reflect the population demographics of Canada. Sam-
pling weights will be used during the regression estimation
such that the beta coefficients generated account for the
sampling design and non-response through a weighting
procedure. Variance estimates will be calculated as recom-
mended by Statistics Canada using bootstrap methodology
using balanced repeated replication using the 500 boot-
strap weights provided by Statistics Canada [36].

Outcome—premature mortality
Individuals will be followed up longitudinally through
linked population-based data (i.e., CCHS linked to
CVSD) for the incidence of premature mortality. Adult
premature mortality will be defined to include all deaths
between the ages of 18 and 74 as registered in the
CVSD. This definition aligns with the Canadian Institute
of Health Information [3], which is consistent with the
definition adopted in reporting of premature mortality
in other industrialized nations [4–6, 37]. Respondents
will be followed for a maximum of 5 years from the date
of the CCHS interview (i.e., the index date) until the
earliest of premature mortality, age 75 years, or end of
study follow-up (December 31, 2017).

Sample size
We anticipate the derivation cohort to consist of 329,
000 respondents and the validation cohort to consist of
approximately 310,000 respondents, respectively. As per
CCHS sampling methodology [33], we expect there to
be an approximately equal number of males and females
among the derivation and validation cohorts. We antici-
pate approximately 12,000 premature deaths in both the
derivation and validation cohorts combined with a
slightly higher number of premature deaths attributable
to males than females [34]. In an effort to minimize
overfitting and to ensure precise estimation of key pa-
rameters in PreMPoRT, we calculated the minimum
sample size necessary following the criteria proposed by
Riley et al. To calculate sample size, we specified the
prevalence of the outcome in our population, the

number of candidate predictor variables, shrinkage (de-
fault, 0.90) and the expected model performance in
terms of overall model fit (R2) [38, 39]. Using the c-stat-
istic for sex-specific models in a prior population-based
Mortality Risk Prediction Tool (MPoRT), we derived
PreMPoRTs anticipated Cox–Snell R2. We used the R
package pmsampsize to compute the minimum sample
size to be 6933 and 8009 for the male and female
models, respectively. Our expected sample sizes are well
above these minimum values.

Statistical analysis plan
The proposed analytic plan was supported by the guide-
lines provided by Harrell [40] and Steyerberg [41]. We
have specified the analytic plan in advance of model fit-
ting and exploration of relationships between predictor
variables and the outcome. Statistical overfitting repre-
sents a concern when developing prediction models,
which occur when a model captures nuances of the de-
velopment data that do not appear in other applications
[40, 41]. In this situation, the reliability or calibration of
the model is affected and it is likely to perform poorly in
other populations. Given the goal is to generalize our
predictive model to Canada to help inform population-
wide intervention efforts, it is important to prevent over-
fitting. Therefore, this study protocol is presented to
improve the transparency of research, to reduce bias,
and to enhance replicability of the study [42]. This study
protocol has been guided by the recommended checklist
of items (TRIPOD) for multivariable predictive models
and will form the basis for reporting of our model esti-
mation results [42, 43].
This prespecified analytic plan was developed with the

understanding that PreMPoRT will be used by know-
ledge users (e.g., regional health authorities, public
health departments, policymakers, and other health sys-
tem decision-makers), and therefore, we made efforts to
formally incorporate considerations related to the prac-
tical application and user experience of PreMPoRT. Spe-
cifically, in order to enhance usability, we plan to ensure
that inputs of the model are readily available using
population data that is accessible by our intended users,
that the interpretation of results is meaningful across the
Canadian population and by important sub-groups (i.e.,
socioeconomic groups), and that the model can be con-
sistently applied across time and geography. To that ef-
fect, practical considerations and consultation with
knowledge users will inform model development includ-
ing areas such as predictor selection, operationalization
of the model, approach to handling missing data, model
specification, model estimation, model validation, and
model presentation. All analyses will be conducted using
SAS V.9.4. and Harrell’s HMisc [44] and rms package of
functions in R, among others [45].
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Identification of predictive variables
Predictor variables were identified through screening
available data collected across CCHS cycles and prov-
inces in combination with a review of existing literature
for the association with premature mortality. Additional
candidate predictor variables were selected through con-
sultation with knowledge users and our group’s previous
experience developing predictive algorithms [28, 46–51].
At this stage, predictors were excluded as a result of nar-
row distribution or limited variability. Additionally, vari-
ables were excluded when redundancy in the
information contained in the predictor was observed. A
total of thirty-seven predictor variables were identified,
including four health behaviors, eleven sociodemo-
graphic characteristics, seventeen chronic conditions,
and five area-based measures.
Four of the area-based measures are from the Canad-

ian Marginalization Index (CAN-Marg) which was devel-
oped using iterative factor analysis of Census data
collected at the area-level [52]. CAN-Marg is an index
with four domains of sociodemographic characteristics
including residential instability, material deprivation, de-
pendency, and ethnic concentration [52]. The fifth area-
based measure is a binary indicator of rurality using
population counts from the nearest census [53]. Infor-
mation collected in the CCHS that pertains to health be-
haviors will be used to create summary predictors for
each risk factor (further outlined below in the “Coding
and cleaning of predictor variables” section). Consistent
with our prior work in prediction modeling, a validated
BMI correction equation will be applied to reduce bias
in self-reported height and weight [54]. We will consider
interactions with age and will be mindful of the possibil-
ity for interaction terms to increase over-fitting [46].

Coding and cleaning of predictor variables
Prior to examination of predictor-outcome relation, data
cleaning and predictor variable coding will be com-
pleted. Histograms and box plots will be created to
graphically represent the data and to visualize the width
of distributions and examine values outside of a reason-
able range. We will focus on minimizing loss of predict-
ive information, where we will pre-specify BMI as
continuous using restricted cubic splines and knots
placed based on the World Health Organization classifi-
cations [55]. Derived predictors will also take into con-
sideration how our group has defined predictors in prior
population-based prediction models [28, 46–51]. We
may also group or exclude candidate predictors based
on the categories with a small proportion of respondents
(i.e., < 5%) to avoid instability in regression modeling.
Consistent with previous model development ap-
proaches, we will derive some related predictors based
on a combination of survey questions in the CCHS. For

example, smoking status will be defined based on ques-
tions that probe whether a respondent has smoked at
least 100 or more cigarettes in their lifetime, whether
the respondent currently smokes cigarettes, how many
cigarettes are smoked each day/month, and whether the
respondent has previously quit smoking. Additional de-
tails about the questions and response options used to
collect information about health behaviors including al-
cohol consumption, fruit and vegetable consumption,
cigarette smoking, and leisure-time physical activity can
be found in Supplementary Table 1, Additional file 1.

Approach to missing data
To avoid limitations associated with available case ana-
lysis [41], we will use multiple imputation methods to
assign missing values on select predictor variables, using
the approach recommended by Rubin and Schenker
[56]. In our experience using the CCHS for predictive
modeling [28, 46–51], no predictor variable is expected
to have ≥ 10% missingness in the six combined cycles.
The statistical approach used for imputation will include
the full set of predictor variables, time to event and cen-
soring variables, and secondary variables (i.e., variables
that are not candidate predictors but may be valuable in
producing imputed estimates). Five copies of the mul-
tiple imputed data sets will be used and combined
using Rubin’s rules to provide an overall estimate for
each regression coefficient or measure of interest (e.g.,
c statistic, calibration plot) that takes into account the
uncertainty in the imputed estimates [57]. We will im-
plement multiple imputation using the multivariate im-
putation by chained equations (mice) algorithm in R
[56, 58] and include the Nelson–Aalen estimator of the
baseline hazard for premature death [59].

Model estimation
The probability of 5-year premature mortality will be
assessed from the interview date until the incidence of
premature mortality, censoring for death, or end of the
follow-up period. The initial models will be estimated
using the Weibull accelerated failure time model, a type
of parametric regression that can also be specified as a
proportional hazards model. We chose this model for
several reasons: (1) the user can predict survival time for
a variety of follow-up periods; (2) the full maximum like-
lihood can be used for parameter estimation; and (3)
parameter estimates provide intuitive estimates of effect
[60]. In addition, our group’s previous experience with
the development and validation of population-based
prediction models [28, 46–51] demonstrates that the
Weibull model performs well for prediction tasks.
To assess the adherence to parametric assumptions of

the Weibull model, we will use stratified Kaplan–Meier
curves whereby a graph of the log survival time versus
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log [–log(KM)] will display parallel and linear lines if the
model is appropriate [60]. The proportional hazards as-
sumption will also be checked for each predictor using
stratified plots of the log cumulative hazard and examin-
ation of Schoenfeld residuals. In the case where the Weibull
distribution results in inaccurate predictions and/or model
convergence concerns given that the hazard function of the
model contains a different shape (e.g., U-shape, J-shape), al-
ternative model specifications and flexible parametric sur-
vival model will be examined. Model overfitting will be
assessed based on the log-likelihood ratio X2 statistic for
the full model, with evidence of overfitting being a shrink-
age < 0.90. Before finalizing our model, we will also assess
the fit of the Royston–Parmar model, which allows baseline
hazards to be modeled more flexibly. We do not anticipate
this model to offer advantages in this context based on our
previous experience with other population risk outcomes
for chronic disease, where we observed no advantage given
the linear baseline hazard [61, 62]. It also offers a significant
drawback for users of the model, who will not have the
ability to re-estimate the baseline hazard given that they do
not have access to the linked data [61, 62]. Population-level
survey weights provided by Statistics Canada will be used
to allow estimates to be representative of the population.
The model will then be used to derive a survival risk func-
tion to predict the probability of premature mortality dur-
ing a 5-year follow-up period.

Model specification
Separate models will be derived using the pre-specified
forms of predictor variables identified in Table 1 for
men and women. As recommended by Harrell, continu-
ous predictor variables will be modeled in a flexible
manor using restricted cubic splines with the knots
placed at fixed quantiles of the distribution, facilitating
flexibility and increased stability in the tails of the func-
tion [40]. During the model building process, alterna-
tive forms of pre-specified candidate variables may be
explored. For example, we intend on exploring physical
activity as a continuous predictor (i.e., average daily
metabolic equivalent of task as specified in Table 1)
and as an ordinal predictor (4 quartiles of physical ac-
tivity). The continuous and categorical form of the pre-
dictor will be compared in terms of measures of
predictive performance including overall fit, discrimin-
ation, and calibration in addition to the information
criterion (e.g., AIC and BIC). The variable form that
improves the overall model fit will be selected, and the
continuous and centered form of both categorical and
continuous predictors will be used. Two-way predictor
interactions between age and other variables will be ex-
plored. The initial model will be fit using the pre-
specified forms of the predictors which have 77 degrees
of freedom (Table 1).

The model building approach will include all a priori
predictors (Table 1) with a step-down model selection
that includes confirmation (i.e., assessment of impact on
predictive performance) at each step. The overall fit of
the full model will be assessed according to model fit
statistics and overall measures of predictive accuracy.
Variables will be removed from the model, one set at a
time. To verify if variable exclusions were appropriate,
variables omitted in previous model building steps will
be re-added to the model to verify whether the initial ex-
clusion was justified. In addition to the use of more trad-
itional methods of model building, we will also verify
our model building approach using the least absolute
shrinkage and selection operator (LASSO) which may
assist in avoiding model overfitting [41].

Model validation
For internal validation, we will apply a bootstrap valid-
ation in the development cohort as an internal validation
approach to generate measures of model performance
[40, 41, 63], which we have used for internal validation
in other population risk models [64]. Bootstrap samples
using 500 bootstrap repetitions [41] will be drawn, and
bootstrap models will be developed on each sample.
Each bootstrap model will then be applied to the original
data, and the difference in model performance (i.e., dis-
crimination and calibration) between the bootstrap
models and the original development model can be aver-
aged to adjust for the expected optimism of the model.
For example, using bootstrap validation, we will present
optimism-corrected performance metrics (i.e., optimism-
corrected R2 and optimism-corrected c-statistic) as rec-
ommended by Steyerberg [41]. Additionally, the degree
of model overfitting will be quantified using the heuristic
shrinkage estimator, which is based on the log-likelihood
ratio X2 statistic of the fitted model. The model will be
adjusted for overfitting if the shrinkage is below 0.9;
however, if the estimated shrinkage is greater than 0.9
and the model performs poorly, then alternative data re-
duction approaches will be considered [40]. Following
internal model validation, the model will be externally
validated in the combined CCHS cycles 2007–2008,
2009–2010, and 2011–2012 and will be evaluated ac-
cording to measures of overall predictive accuracy, dis-
crimination, and calibration. The full Canadian dataset
will be used to derive final regression coefficients, in an
effort to optimize the sample size and follow-up period
with the same predictor variables and form as specified
in the derivation model. This approach is recommended
as differences in regression coefficients between the de-
velopment and validation dataset are expected to be
small and using the full dataset facilitates stability in
regression estimates [41].
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Table 1 Pre-specification of PreMPoRT predictive variables

Variable category Variable Definition df1

Health behaviors Alcohol consumption 3

Non-drinker No alcohol consumption in the last 12 months or
drink frequency fewer than once a week

Light drinker Alcohol consumption frequency at least once a week
and 0–2 (females) or 0–3 (males) drinks in the
previous week

Moderate drinker 3–14 (females) or 4–21 (males) drinks in the previous
week

Heavy drinker ≥ 14 (females) or ≥ 21 (males) drinks in the previous
week, or binging behavior on a weekly basis (≥ 5
drinks on any occasion)

Daily fruit and vegetable consumption 2

Low consumption 0 to less than 3 times daily

Medium consumption 3 to less than 6 times daily

High consumption 6 or more times daily

Cigarette smoking 4

Non-smoker Never a smoker or former occasional smoker with <
100 lifetime cigarettes

Former heavy smoker Former smoker [≥ 1 pack (25 cigarettes)/day]

Former light smoker Former smoker [< 1 pack (25 cigarettes)/day]

Heavy smoker Current smoker [≥ 1 pack (25 cigarettes)/day]

Light smoker Current smoker [< 1 pack (25 cigarettes)/day]

Leisure physical activity (kcal/kg/day) 4 knot restricted cubic spline 3

Sociodemographic
characteristics and self-
perceived measures

Age (years) 5 knot restricted cubic spline 4

Ethnicity 1

White

Non-white

Immigration status 2

Canadian born

Recent immigrant Immigrated < 10 years

Non-recent immigrant Immigrated ≥ 10 years

Household income 4

Quintile 1 Lowest 20%

Quintile 2

Quintile 3

Quintile 4

Quintile 5 Highest 20%

Home ownership 1

Yes

No

Education 2

Less than secondary school graduation

Secondary school graduation

Post-secondary education (complete and partial)

Marital status 2

Single never married

Domestic partner (married/common law)
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Table 1 Pre-specification of PreMPoRT predictive variables (Continued)

Variable category Variable Definition df1

Widowed/separated/divorced

Body mass index (BMI) (kg/m2) 5 knot restricted cubic spline 4

Self-perceived general health 4

Excellent

Very good

Good

Fair

Poor

Self-perceived life stress 4

Not at all

Not very

A bit stressful

Quite a bit

Extremely stressful

Self-perceived community belonging 3

Very strong

Somewhat strong

Somewhat weak

Very weak

Chronic conditions Physician diagnosed chronic conditions 17

Including asthma, arthritis, back problems, high blood
pressure, migraines, emphysema, chronic obstructive
pulmonary disease, diabetes, heart disease, cancer,
intestinal ulcers, stroke, urinary incontinence, bowel
disease, mood disorder, or anxiety disorder

Yes; no for each individual chronic condition

Area-based measures Rurality 1

Population center Population of at least 1000 and a density of ≥ 400
people per square kilometer based on current census
population counts

Rural area Population concentration or densities below the
urban threshold based on current census population
counts

Material deprivation 4

Quintile 1 Least deprived

Quintile 2

Quintile 3

Quintile 4

Quintile 5 Most deprived

Ethnic concentration 4

Quintile 1 Least concentrated

Quintile 2

Quintile 3

Quintile 4

Quintile 5 Most concentrated

Residential instability 4

Quintile 1 Least unstable

Quintile 2
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Assessment of model performance
The overall predictive performance in both the derivation
and validation cohorts will be evaluated and reported
using overall measures of predictive accuracy, discrimin-
ation (how well a model can differentiate between low-
and high-risk respondents), and calibration (agreement
between observed and predicted outcomes). Specifically,
measures of overall accuracy will be assessed using
Nagelkerke’s R2 and Brier score. Discrimination will be
assessed with Harrell’s concordance statistic, with confi-
dence intervals calculated using bootstrapping procedures
with 10 iterations. In predicting binary outcomes such as
premature mortality, the concordance statistic is equal to
the area under the receiver operating characteristic (ROC)
curve. The calibration of our model is of primary import-
ance; therefore, calibration will be optimally assessed
through graphical inspection of calibration plots with ob-
served plotted against predicted risk.
Steyerberg [41] and Cook [65, 66] suggest that calibra-

tion is of primary importance in prediction modeling
and recalibration tests (e.g., calibration-in-the-large and
calibration slope) should be routinely assessed during
model performance evaluation. Therefore, calibration
plots will be studied at fixed points in time with ob-
served survival compared to the mean predicted survival
among groups of respondents using the Kaplan–Meier
method. Overall calibration can be evaluated through
Wald or likelihood ratio test to determine if there is der-
ivation from perfect calibration (i.e., slope of one) with
the calibration plot displaying the combined effect of
systematic differences between the new data and the
model development data and overfitting from the effects
of predictor variables. Further, calibration in the small
will be assessed for predefined subgroups (i.e., provinces
and rural/urban geography) of importance to knowledge
users and decision-makers, for example by defined age
or sociodemographic groups. Consistent with guidance
[67] and previous studies [64], we define adequate cali-
bration as a relative difference of < 20% between

observed and predicted risk for sub-groups with at least
a 5% prevalence of premature mortality.

Model presentation
The final regression model for PreMPoRT consisting of
both the derivation and validation sample will be pre-
sented using beta estimates, hazard ratios, and 95% con-
fidence intervals. Model presentation will consist of the
regression formula which will form the foundation for
all Internet-based implementation and integration. Visu-
alizations of the tool will be generated to help with
knowledge translation approaches and to improve model
literacy among non-technical users.

Discussion
We have developed this protocol in consultation with
our existing partnerships in local Public Health Depart-
ments and will continue to ensure that PreMPoRT
meets the needs of the knowledge user as we engage
stakeholders at several stages of development. This inte-
gration process will enable PreMPoRT for applications
in diverse settings and regions across Canadian prov-
inces with the support of our knowledge users to assist
in predicting the incidence of premature mortality.
PreMPoRT will be used to produce estimates of future
premature mortality, to assess the contribution of spe-
cific risk factors to overall population risk, and will assist
in identifying groups at an elevated risk of premature
mortality. We anticipate that this information will be
particularly useful for planners and decision-makers
when considering intervention approaches to reduce
inequities in premature mortality.

Limitations
One notable limitation of PreMPoRT is that while the
tool will be representative of most of the Canadian
population (98%), some groups are not covered by the
CCHS sampling methodology including Indigenous
people living on First Nation reserves. This is important

Table 1 Pre-specification of PreMPoRT predictive variables (Continued)

Variable category Variable Definition df1

Quintile 3

Quintile 4

Quintile 5 Most unstable

Dependency 4

Quintile 1 Least dependent

Quintile 2

Quintile 3

Quintile 4

Quintile 5 Most dependent
1Degrees of freedom

Rosella et al. Diagnostic and Prognostic Research            (2020) 4:18 Page 8 of 11



given that these population have different risk of prema-
ture mortality than the general population [68]. An add-
itional concern related to the development of predictive
algorithms, such as PreMPoRT, include the potential for
overfitting and type 1 error, which may occur if the asso-
ciation between the predictor and outcome influence
whether the predictor is included and how the model is
developed. In an effort to reduce this risk, we have pre-
specified our analytic plan, as presented in this protocol.
Due to the use of self-reported nature of predictors cap-
tured at a single point in time, there is potential for mis-
classification error, both systematic and non-directional.
Despite this limitation, we have found self-reported data
to be robust and accurate for prediction of other out-
comes, including diabetes [69], obesity [51], all-cause
mortality [28], multiple chronic diseases [64], and high-
cost users [70]. Finally, we anticipate that further model
updating may be needed to account for the potential
change in the baseline survival in other countries, which
we will include in our recommendations.

Conclusions
To the best of our knowledge, PreMPoRT will be the
first population-based regression model to predict the
incidence of premature mortality. We anticipate that the
tool will assist in meeting the needs of knowledge users
who value evidence-informed decision-making to assist
with population-level planning. This research demon-
strates a mechanism whereby routinely collected
population-level data can be used to inform more equit-
able and impactful population health strategies.
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