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Abstract

Background: We suggest an adaptive sample size calculation method for developing clinical prediction models, in
which model performance is monitored sequentially as new data comes in.

Methods: We illustrate the approach using data for the diagnosis of ovarian cancer (n = 5914, 33% event fraction)
and obstructive coronary artery disease (CAD; n = 4888, 44% event fraction). We used logjistic regression to develop
a prediction model consisting only of a priori selected predictors and assumed linear relations for continuous
predictors. We mimicked prospective patient recruitment by developing the model on 100 randomly selected
patients, and we used bootstrapping to internally validate the model. We sequentially added 50 random new
patients until we reached a sample size of 3000 and re-estimated model performance at each step. We examined
the required sample size for satisfying the following stopping rule: obtaining a calibration slope = 0.9 and optimism
in the c-statistic (or AUC) < = 0.02 at two consecutive sample sizes. This procedure was repeated 500 times. We
also investigated the impact of alternative modeling strategies: modeling nonlinear relations for continuous
predictors and correcting for bias on the model estimates (Firth's correction).

Results: Better discrimination was achieved in the ovarian cancer data (c-statistic 0.9 with 7 predictors) than in the
CAD data (c-statistic 0.7 with 11 predictors). Adequate calibration and limited optimism in discrimination was
achieved after a median of 450 patients (interquartile range 450-500) for the ovarian cancer data (22 events per
parameter (EPP), 20-24) and 850 patients (750-900) for the CAD data (33 EPP, 30-35). A stricter criterion, requiring
AUC optimism < = 0.01, was met with a median of 500 (23 EPP) and 1500 (59 EPP) patients, respectively. These
sample sizes were much higher than the well-known 10 EPP rule of thumb and slightly higher than a recently
published fixed sample size calculation method by Riley et al. Higher sample sizes were required when nonlinear
relationships were modeled, and lower sample sizes when Firth’s correction was used.

Conclusions: Adaptive sample size determination can be a useful supplement to fixed a priori sample size calculations,
because it allows to tailor the sample size to the specific prediction modeling context in a dynamic fashion.
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Background

Clinical prediction models, such as diagnostic and prog-
nostic models, are ubiquitous in the literature [1-3]. A
prerequisite for developing a robust and useful prediction
model is to have a sufficient sample size that allows for
adequate model complexity but avoids overfitting the de-
velopment data. An overfit model captures random noise
in the data to generate risk estimates, because the noise
was misinterpreted as predictive signal. A well-known rule
of thumb is to have a minimum of 10 events per variable
(EPV) in the smallest outcome group [4], although EPV >
20 has also been suggested [5]. Strictly, these rules refer to
events per considered model coefficient (excluding inter-
cept) in a regression analysis, although it is sometimes
incorrectly interpreted in terms of events per variable in
the final model (i.e., excluding variables eliminated by any
data-driven variable selection procedure). We will use the
term “events per candidate predictor parameter” (EPP)
instead, in line with a recent publication [6].

The 10 EPP rule of thumb has shortcomings [4, 6-13].
Most importantly, the rule does not guarantee decent risk
model performance [9]. For example, the rule does not re-
flect the impact of the event fraction of the outcome (preva-
lence or incidence) and the underlying predictive strength
on the required sample size [14]. Recently, a comprehensive
method for a priori fixed sample size calculations for
prediction model development was proposed, integrating
the number of candidate parameters, the assumed event
fraction and the anticipated Cox-Snell R-squared [6]. This
is an important advance, because it requires more detailed
argumentation of the anticipated modeling context and it
focuses specifically on prediction model performance.

We aimed to extend a priori fixed sample size calcula-
tions with an adaptive approach that dynamically learns
from model performance as new data comes in. As such,
sample size can be tailored gradually to all specifics of
the prediction modeling context at hand. This adaptive
method requires that a model development strategy is
prespecified (e.g., which predictors to consider, how to
select predictors, how to address nonlinearity, how to
deal with possible interactions between predictors) be-
fore data are collected and that the data can be accessed
and analyzed while data collection is ongoing.

We apply the approach to two case studies. The case
studies involve the diagnosis of ovarian cancer and the
diagnosis of obstructive coronary artery disease (CAD).
We empirically study the stability of the proposed adaptive
method and illustrate it for different model development
strategies.

Methods

Case studies

The first case study involves the development of a
prediction model to diagnose malignancy in women
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presenting with an ovarian tumor who were selected for
surgical removal of the tumor. Such a model can support
decisions about type and location of surgery, e.g., whether
referral to a specialized gynecological oncology unit is
warranted. We use a dataset including 5914 women
recruited between 1999 and 2012 into cohort studies from
the International Ovarian Tumor Analysis (IOTA) con-
sortium [15]. In total, 1931 women had a malignant mass
(33% prevalence). We developed a model using 7 a priori
selected predictors: age (years), maximum lesion diameter
(mm), maximum diameter of the largest solid component
(mm), number of papillations (0, 1, 2, 3, > 3), presence of
acoustic shadows (binary), presence of ascites (binary),
and presence of bilateral masses (binary) (see Table 1).

The second case study deals with the development of a
prediction model to diagnose obstructive CAD in symp-
tomatic patients. Such a model can support selection of
patients for coronary angiography. We use the Coronary
Artery disease Risk Determination In Innsbruck by diaG-
nostic ANgiography (CARDIIGAN) dataset, a cohort study
consisting of 4888 patients with suspected CAD, of which
2127 (44%) had obstructive CAD [16]. A model with 11 a
priori selected predictors was developed: sex (binary), age
(vears), diabetes mellitus (binary), HDL cholesterol (mg/
dL), LDL cholesterol (mg/dL), logarithm of fibrinogen
(mg/dL), c-reactive protein > 1.00 mg/dL (binary), hyper-
tension (binary), dyslipidaemia (binary), chest pain (binary),
and ever smoking status (categorical) (see Table 1). Some
predictors suffered from missing data. We used single sto-
chastic imputation (based on fully conditional specifica-
tion) for illustrative purposes. We stress that multiple
imputation is preferable over single stochastic imputation
in many applications. We therefore also address the issue
of combining the adaptive sample size procedure with
multiple imputation of missing values.

Adaptive procedure for sample size determination

Upon commencement of a model development study,
the modeling strategy needs to be prespecified. The
adaptive procedure is as follows:

i. Determine an initial estimation of the required
sample size (Np). This is best done using the
recently suggested fixed sample size determination
procedure from Riley and colleagues, based on the
number of candidate parameters, the assumed
outcome event fraction, and the anticipated Cox-
Snell R-squared [6].

ii. Determine a sample size Ny (< Np) at which
performance is estimated for the first time, and
recruit Ny, patients in the study. This is the first
model development dataset.

ili. Apply the prespecified modeling strategy on the
development dataset to obtain model Mp, evaluate
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Table 1 Descriptive characteristics of the variables from the ovarian cancer and coronary artery disease datasets

Predictor Statistics Result Missing values (%)
Ovarian cancer case study
Age (years) Mean (range) 48 (8-96) 0
Maximum lesion diameter (mm) Mean (range) 82 (8-760) 0
Maximum diameter of solid part (mm) Mean (range) 28 (0-380) 0
Number of papillations (0-4) Mean (range) 04 (0-4) 0
Acoustic shadows (no/yes) N yes (%) 743 (13%) 0
Ascites (no/yes) N yes (%) 720 (12%) 0
Bilateral masses (no/yes) N yes (%) 1141 (19%) 0
Coronary artery disease case study
Age (years) Mean (range) 64 (18-89) 0
HDL cholesterol (mg/dL) Mean (range) 56 (15-188) 312 (6.4%)
LDL cholesterol (mg/dL) Mean (range) 128 (21-341) 310 (6.3%)
Logarithm of fibrinogen (log(mg/dL)) Mean (range) 59 (4.6-7.3) 119 (4.1%)
Sex (male/female) N male (%) 3028 (62%) 0
Chest pain (no/yes) N yes (%) 2987 (61%) 0
Diabetes mellitus (no/yes) N yes (% 757 (16%) 0
Hypertension (no/yes) N yes (%) 3730 (76%) 0
Dyslipidaemia (no/yes) N yes (%) 3115 (64%) 0
c-Reactive protein > 1.00 mg/dL (no/yes) N yes (%) 681 (14%) 96 (2%)
Smoking status 640 (13%)
Never N (%) 2304 (54%)
Former N (%) 1088 (26%)
Current N (%) 856 (20%)

iv.

and store apparent performance measures (PMp;
i.e., performance on exactly the same data that were
used to obtain Mp).

Perform internal validation; we use Harrell’s
enhanced bootstrap, a recommended method that
has been shown to perform well [17-19]. The
enhanced bootstrap works as follows:

a. Draw a bootstrap sample with replacement from
the development dataset.

b. Apply the complete modeling strategy on the
bootstrap sample resulting in a bootstrap model
(Mg).

c. Store the performance measures of the model
when evaluated on the bootstrap dataset (PMp).

d. Evaluate the bootstrap model Mg on the
development dataset and store the performance
measures (PMg).

e. Calculate the optimism as the difference PMp —
PM, for each performance measure.

f. Repeat a—e B — 1 times, and calculate the
average of the B optimism estimates.

g. Subtract the average optimism from the

apparent performance PMp, to obtain internally
validated performance estimates for model

Mp—denoted as “bootstrap-corrected”
performance estimates in this study.

v. Recruit N,qq new patients, add them to the
development dataset, and repeat steps iii and iv.

vi. Repeat step v until a prespecified stopping rule has
been reached (see below); the model Mp for which
the stopping rule has been reached is the final
prediction model.

Prediction modeling in the presence of missing data
forms an extra challenge. Prevailing methods such as mul-
tiple imputation in combination with bootstrapping adds
a layer of computational complexity. We suggest an exten-
sion of the adaptive sample size procedure in combination
with multiple imputation for missing values in the predic-
tors in Additional file 1: Appendix A, following the recom-
mendation that multiple imputation should be embedded
in the bootstrapping procedure [20, 21].

Resampling study

To evaluate the adaptive sample size procedure, we con-
ducted a resampling study using the two case studies.
We sampled without replacement from the available
datasets, with Ny« = 100, B = 200, and N,qq = 50. We
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continued until a sample size of 3000 was reached, even
when the stopping rule was reached earlier. Learning
curves were constructed, which are visual displays of
model performance by increasing sample size. In a real-
life application, there will only be one learning curve on
which to base the sample size. To empirically assess
stability of the procedure, we repeated this process 500
times. In the end, an average learning curve was calcu-
lated. Continuing to a sample size of 3000 allowed us to
show learning curves of fixed length.

For the CAD dataset, we also implemented the adap-
tive procedure including multiple imputation of missing
data. For computation time reasons, we illustrate the
result using a single learning curve repetition only.

Modeling strategies

The basic prediction modeling strategy in our resampling
study involved a standard maximum likelihood logistic re-
gression on a prespecified set of predictors. Continuous
variables were assumed to have a linear relation with the
(logit of the) outcome. This implied 7 parameters for the
ovarian cancer study and 12 parameters for the CAD
study.

Three alternative prediction modeling strategies were
investigated. The first alternative strategy differs from
the basic strategy by modeling possibly nonlinear rela-
tions of continuous predictor variables with the outcome
using restricted cubic splines with three knots (i.e., one
additional parameter per predictor) [17]. This implies 3
additional parameters for the ovarian cancer study (age,
maximum diameter of lesion, maximum diameter of lar-
gest solid component) and 4 additional parameters for
the CAD study (age, HDL and LDL cholesterol, and
logarithm of fibrinogen). The second strategy differs
from the basic strategy because logistic regression with
Firth’s correction was used, but without addressing the
functional form for continuous predictors [22]. In short,
Firth’s correction is targeted at the reduction of the first-
order bias in maximum likelihood estimates of coefficients
when we fit logistic regression models on small sample
sizes. In that manner, problems related to separation are
bypassed, and coefficients are shrunk. With the use of this
approach, we aimed to investigate how bias-reduction
methods affect the model performance at the initial low
sample sizes of our methodology when compared to our
basic strategy. No intercept correction was applied,
because it has no impact on the adopted performance
measures in this study (see below). Note that such correc-
tion is required in real-life applications. The third strategy
differed from the basic strategy by performing backward
variable elimination with the default alpha 5%, so requir-
ing statistical significance of predictors as p < 0.05. This
strategy may generally be considered degenerate, but is
still occasionally found in the medical literature, most
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likely due to its easy implementation [23]. We imple-
mented it as follows. For the ovarian cancer data, we
forced the variable age in the model, so that it could not
be eliminated. For the CAD data, age and gender were
forced in the model. Age (and gender for CAD) are basic
predictors of clinical importance for these prediction
problems. In addition, including these key predictors
avoids the computational burden of a resulting “empty”
model (i.e. with no selected predictors).

We fitted these models in R version 4.0.0, using pack-
ages stats, rms, brglm, and ModelGood. In Additional
file 1: Appendix B, we describe the occurrence and
handling of warning and error messages

Performance measures at internal validation

The key performance criteria for prediction models
relate to discrimination (the extent to which the risk
estimates are higher for patients with the event than for
patients without) and calibration (the accuracy of the
risk estimates). We assessed discrimination using the
area under the ROC curve (AUC) or c-statistic. Opti-
mism in the AUC was calculated as the apparent AUC
minus the bootstrap-corrected AUC as estimated using
Harrell’s enhanced bootstrap method. At internal valid-
ation, calibration can be investigated with the slope of
the linear predictor, which may serve as a shrinkage
factor for future predictions [24—27]. A slope below 1
suggests that the estimated risks are too extreme (ie.,
too close to 0 and 1). Conversely, a slope above 1
suggests that the estimated risks are too modest (too
close to the event fraction). We only used the calibration
slope in our study, because the calibration intercept is
less relevant at internal validation [28].

Stopping rules

Formal sample size calculations depend on performance
criteria that are specified a priori. For prediction model
development, the aim is to avoid suboptimal and opti-
mistic model performance. Therefore, we consider it
sensible to base stopping rules on AUC optimism and
the calibration slope, both of which are assessed on in-
ternal validation. With ever increasing sample size for
model development, model optimism will disappear
(calibration slope will approach 1, AUC optimism will
approach 0). Riley and colleagues reasonably suggested
to aim for a shrinkage factor > 0.9; hence, we targeted a
calibration slope of = 0.9 [6, 27]. Regarding AUC opti-
mism, a value of at most 0.02 may be a reasonable tar-
get. Therefore, a stopping rule could be to reach a
calibration slope of at least 0.9 and a AUC optimism of
at most 0.02. To reduce the impact of random variation
caused by reassessing performance after every 50 new
patients, we added the requirement that the calibra-
tion slope and AUC optimism targets should be
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reached on two consecutive performance assessments
(stopping rule 1). Regarding AUC optimism, a more strict
maximum of 0.01 has been used before [29]. Therefore,
we assessed the performance of another stopping rule that
requires calibration slope > 0.9 and AUC optimism < 0.01
on two consecutive performance assessments (stopping
rule 2).

For each of the 500 repetitions, we determined the
sample size at which a stopping rule is satisfied and
summarized the final sample size, bootstrap-corrected
AUC, and bootstrap-based calibration slope of the final
prediction model through their median and interquartile
range across the 500 repetitions.

Holdout performance

As an additional evaluation, we assessed performance of
the developed model at each sample size on the patients
that were never used for model development in that spe-
cific repetition. Each repetition added patients until a
sample size of 3000 was reached. This implied that 2914
(ovarian cancer) and 1888 (CAD) patients were not sam-
pled at any stage of a given repetition. These patients
served as a holdout sample. We evaluated the AUC and
calibration slope of the developed model at each stage
on the holdout sample. We compared the average learn-
ing curve of internally validated performance with the
average performance on the holdout data. Note that this
validation step is not possible when applying the meth-
odology in practice.

Results

10 EPP rule and Riley’s methods for initial sample size
estimates

For the ovarian cancer data, with 7 predictive parameters
and 33% (1931/5914) outcome prevalence, 10 EPP will
be reached after on average 215 patients (10*7*(5914/
1931)). For the CAD data, with 12 predictive parameters
and 44% outcome prevalence, 10 EPP will be reached
after on average 276 patients (10*12*(4888/2127)). When
using Riley’s method [6], the minimally required sample
size was 314 (15 EPP) for the ovarian cancer data and
669 (25 EPP) for the CAD data (Additional file 1: Ap-
pendix C). Hence, Riley’s method advises a 46% higher
sample size for the ovarian cancer data and a 142%
higher sample size for the CAD data than the EPP
10 method. Note that we add 50 patients at a time, such
that stopping when 10 EPP is reached will lead to
slightly higher observed EPP. For Riley’s method, recruit-
ment is stopped after 350 patients for the ovarian cancer
data and 700 for the CAD data.

Mimicking practice: single learning curve
In practice, we can only draw one learning curve to base
the required sample size for a study on. Figure 1 shows
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single learning curves of bootstrap-corrected AUC, AUC
optimism, and calibration slope for both case studies.
We show the curve for the first of the 500 random repe-
titions. For both case studies, these plots suggest that a
large sample size is required before performance is
plateauing. Better prediction was achieved in the ovarian
cancer data (bootstrap-corrected AUC at N = 3000
slightly above 0.9) than in the CAD data (AUC slightly
above 0.7).

Figure S1 (Additional file 1: Appendix D) shows learn-
ing curves for the CAD case study where we used mul-
tiple imputation to address missing values rather than a
single imputation.

Assessing stability for the basic modeling strategy

Across the 500 repetitions, there was considerable vari-
ability at low sample sizes. As expected, this variability
reduced with larger sample size (Fig. 2).

The adaptive stopping rules required more patients
than Riley’s initial estimate (Tables 2 and 3). Specifically,
the median sample size required to observe a calibration
slope = 0.9 and AUC optimism < 0.02 on two consecu-
tive evaluations was 29% higher for the ovarian cancer
data (N = 450 vs N = 350) and 21% higher for the CAD
data (N = 850 vs N = 700). The impact of using a stop-
ping rule with a stronger requirement for AUC opti-
mism (< 0.01 instead of < 0.02) depended on the case
study. For the ovarian cancer data, this added 11% to the
median sample size (N = 500 vs N = 450), whereas for
the CAD data this added 76% (N = 1500 vs N = 850).

The method to determine sample size had impact on
performance. The 10 EPP rule resulted in a median cali-
bration slope around 0.8. Riley’s method resulted in a
median slope that approached 0.9. The adaptive rules
had a median slope above 0.9, in line with the stopping
rules that were used. The additional requirement of an
AUC optimism < 0.01 resulted in higher slopes only for
the CAD data.

Holdout estimates of the AUC and calibration slope
were in reasonable agreement with bootstrap-corrected
estimates (Fig. 3). At low sample size, the bootstrap-
corrected AUC estimates were on average higher than
holdout estimates, and bootstrap-corrected calibration
slopes were on average closer to 1 than holdout esti-
mates. As sample size increased, the differences between
holdout and bootstrap-corrected performance became
very small.

Evaluation of alternative modeling strategies

When addressing functional form using restricted cubic
splines, the number of parameters increased from 7 to
10 for the ovarian cancer case study and from 12 to 16
for the CAD case study. For 10 EPP, 307 patients are
required for the ovarian cancer data (+ 43% compared to
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the basic strategy) and 368 for the CAD data (+ 33%).
Riley’s method suggested sample sizes of at least 436
(ovarian cancer, + 39%) and 874 (CAD, + 31%) for this
strategy. For the adaptive method, the median required
sample size increased by 20-22% (depending on the
stopping rule) for the ovarian cancer data and by 23-29%
for the CAD data in comparison to the basic modeling
strategy. Learning curves are shown in Figure S2,
summary results in Fig. 4 and Tables 2 and 3. Hence, in
the ovarian cancer data, the extra parameters for the
spline functions were “cheaper” than in the CAD data.
For example, for the first stopping rule 64 (450/7) pa-
tients per parameter were required for the basic strategy
in the ovarian cancer data. For the three spline

parameters, (550-450)/3 = 33 patients per parameter
were needed, or 33*0.33 = 11 EPP. In the CAD data, the
first stopping rule required 71 (850/12) patients per par-
ameter for the basic strategy and (1100-850)/4 = 63 pa-
tients per spline parameter (or 63*0.44 = 28 EPP).

The use of Firth’s correction led to a lower required
sample size (Figure S3, Fig. 4, Tables 2 and 3) compared
to the basic modeling strategy. However, we observed
differences between the two case studies, with a larger
reduction for the ovarian cancer data than for the CAD
data. The sample size reduction was larger for the first
stopping rule than for the second stopping rule. Of note,
the median sample size decreased by 44% for the first
stopping rule in the ovarian cancer study (250 vs 450),
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J

but did not change for the second stopping rule in the
CAD study (1500 vs 1500). On average, the model per-
formance improved with the use of Firth’s correction.
The inclusion of backward variable elimination re-
sulted in similar or lower required sample sizes com-
pared with the basic strategy (Figures S4-5, Fig. 4,
Tables 2 and 3). In the ovarian cancer data, the median
sample size decreased by 22% for the first stopping rule
(350 vs 450) and by 20% for the second stopping rule
(400 vs 500). In the CAD data, the median sample size
decreased by 6% for the first stopping rule (800 vs 850)
and increased by 3% for the second stopping rule (1550
vs 1500). Figures S6—S7 present the selection proportion

of each predictor at each sample size update for both
case studies.

For alternative modeling strategies, we again observed
that bootstrap-corrected performance was typically
higher than holdout performance at low sample size, but
that differences quickly became very small with increas-
ing sample size (Figures S8—S10).

Discussion

The proposed adaptive sample size determination pro-
cedure is specific for the development of a clinical pre-
diction model in the modeling and data context at hand.
Our adaptive stopping rules led to much higher sample
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sizes than the 10 EPP rule, even more than 20 EPP was
needed. These results are consistent with the finding
that EPP requirements increase with the event fraction
[8]. The required sample size was also slightly larger
than when using the fixed calculation method by Riley
and colleagues [6]. The choice of both modeling strategy
and the specific stopping rule had impact on the re-
quired sample size, but the impact depended on the
modeling context. We observed considerable variability
in model performance, particularly at low sample sizes.
Perhaps surprisingly, the inclusion of variable selection
reduced the sample size for the ovarian cancer data. This
may be caused by strong preselection of predictors
(Figure S6) and by the relationship between the
maximum diameters of the lesion and the largest solid
component. These diameters are clearly correlated, with
the latter diameter bounded by the former. The variable
selection typically excluded the maximum lesion diameter.

The adaptive sample size procedure monitors model
performance during data collection. The main strength
of the adaptive procedure is that it is able to incorporate
more complex modeling scenarios than the existing
methods for sample size estimation. It can for example

account for imputation of missing data, modeling of
nonlinear relations, variable selection, and penalization al-
gorithms. Thus, one can tailor the estimate of the required
sample size to the specific modeling context. Moreover,
our method can nicely complement Riley’s a priori fixed
calculation method. We recommend to provide a reason-
able estimate of the minimum sample size upfront (N, in
the adaptive procedure above), so that the feasibility of
collecting this amount of data is ensured. Riley’s method
is an important tool to do so. Then, the adaptive approach
can be used to adjust the initial estimate if needed.
Whereas this upfront calculation focuses on the minimal
sample size at which desired performance can be ex-
pected, adaptive sample size monitoring can help to find
the sample size at which there is empirical support for the
desired performance.

The adaptive procedure requires several parameters to
be set, such as Nii.rt» Nagar and the stopping rules. These
values can be chosen depending on the situation, the key
issue being that the choices should be transparent. To
set Ny and N,qq, arguments such as Ny, the antici-
pated or even the actual recruitment rate, and the effort
needed to prepare data for analysis can be used. Other
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stopping rules than the ones we have used can be de-
rived. The calibration slope directly focuses on overfit-
ting in terms of the accuracy of the estimated risks and
may therefore be seen as perhaps the most important
measure. AUC optimism is also useful regarding overfit-
ting, but, as the case studies also indicated, smaller AUC
optimism is easier to obtain when the true underlying
AUC value is high. As overall measures of performance,
Brier score or R-squared may be used to define stopping
rules as well [6, 18].

Analogous to the use of interim analyses in random-
ized trials, halting recruitment because a stopping rule
has been met bears a risk of stopping too early, leading
to models with lower performance on new data from the
same population. In our view, this risk can be controlled
with the following measures. First, the modeling strategy
and preferably also the stopping rule should be specified
in advance, and the learning curves should be reported.
Second, it makes sense to perform a reasonable a priori

fixed sample size calculation to have an indication of the
approximate minimum sample size. Third, it is sensible
to include a requirement that the target performance
(e.g. in terms of AUC optimism and calibration slope) be
met on more than one consecutive assessment. The spe-
cifics of this may depend on the chosen value of N,qg;
the larger N,qq, the lower the need for such a require-
ment may be. A true steady state implies that the cali-
bration slope approaches 1 and optimism in AUC
approaches 0. As long as resources permit, it is advisable
to continue increasing the sample size even when the
stopping rules have been met. The learning curves are
helpful in providing such insight.

Apart from application in prospective studies, this pro-
cedure can also be applied to retrospective studies on
existing patient cohorts. Preparing data from existing co-
horts for prediction modeling is not always straightfor-
ward, for example when biomarkers have to be
quantified on available blood samples or when extensive
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Table 2 Performance of the ovarian cancer models based on the determined sample size for various fixed and adaptive sample size
methods. Results are shown as medians (with interquartile ranges) across 500 repetitions

Sample size Bootstrap-corrected performance
Sample size method N EPP AUC Slope
Basic strategy
Fixed® 10 EPP 250 (250-250) 11 (11-12) 914 (0.901-0.926) 3 (0.776-0.845)
Fixed™ Riley's method 350 (350-350) 16 (16-17) 916 (0.904-0.927) 0.884 (0.860-0.899)
Adaptive: stopping rule 10 450 (450-500) 22 (20-24) 916 (0.907-0.926) 0.921 (0.914-0.930)
Adaptive: stopping rule 2 500 (450-550) 23 (21-24) 918 (0.908-0.927) 0.924 (0.916-0.933)
Restricted cubic splines
Fixed® 10 EPP 350 (300-350) 1(10-11) 0.925 (0.915-0.935) 0.840 (0.813-0.859)
Fixed® Riley's method 450 (450-450) 15 (14-15) 0.926 (0.917-0.935) 0.893 (0.878-0.903)
Adaptive: stopping rule 1° 550 (500-600) 18 (17-19) 0.928 (0.919-0.935) 7 (0.900-0.945)
Adaptive: stopping rule 2P 600 (550-600) 19 (18-20) 0.928 (0.920-0.935) 0.921 (0.914-0.927)
Firth’s correction
Fixed®: 10 EPP 250 (200-250) 11 (10-12) 914 (0.897-0.929) 0.944 (0.927-0.959)
Fixed®: Riley's method 350 (350-350) (16-17) 915 (0.903-0.927) 0.958 (0.949-0.968)
Adaptive: stopping rule 1° 250 (200-250) 11 (10-12) 916 (0.901-0.930) 0.947 (0.933-0.964)
Adaptive: stopping rule 2 400 (350-450) 18 (17-21) 916 (0.906-0.928) 0.964 (0.956-0.973)
Including backward selection
Fixed® 10 EPP 250 (250-250) 11 (11-12) 0.909 (0.894-0.925) 0.892 (0.875-0.907)
Fixed™ Riley's method 350 (350-350) 16 (16-17) 3 (0.903-0.925) 0.907 (0.904-0.928)
Adaptive: stopping rule 10 350 (300-400) 16 (13-18) 3(0.901-0.926) 8 (0.910-0.926)
Adaptive: stopping rule 2 400 (350-450) 18 (15-21) 5 (0.905-0.927) 0.926 (0.918-0.935)

AUC area under the receiver operating characteristic curve (or c-statistic), slope calibration slope, EPP events per parameter
*The analysis went in batches of 50 patients, therefore fixed sample sizes were rounded upwards to the next multiple of 50
bStopping rule 1: calibration slope > 0.9 and AUC optimism < = 0.02 at two consecutive assessments. Stopping rule 2: calibration slope > 0.9 and AUC optimism <

= 0.01 at two consecutive assessments

data cleaning is required. The adaptive sample size pro-
cedure can then be applied to know how many cases
have to be prepared. For retrospective applications, cases
should be added in reverse chronological order: first the
most recent Ny, cases, and then work backwards N qq
cases at a time. This avoids that the most recent avail-
able data are not used in the end.

A limitation of the adaptive procedure is that the final
sample size is not set in advance, which may lead to
practical and logistical shortcomings. For example, more
data cleaning and computational efforts are required,
and studies may take longer to complete if the stopping
rule is met at a higher sample size than anticipated. On
the other hand, although using a fixed sample size does
not have this drawback, it is uncertain how reasonable
the fixed sample size turns out to be in the end. Another
consequence of our procedure is that, for prospective
studies, continuous data monitoring and data cleaning is
required. This additional effort is probably more an ad-
vantage than a limitation, because continuous evaluation
of incoming data tends to save time later on and can

timely spot and remedy any data collection issues. Finally,
the adaptive procedure is most attractive for settings
where outcomes are immediately known (diagnostic re-
search) or within a short period of follow-up (e.g., compli-
cations after surgery or 30-day mortality).

A limitation of the resampling study may be that we
sampled from the datasets without replacement rather
than with replacement. We deliberately opted to sample
without replacement to mimic real-life recruitment.
However, this may have led to an underestimation of the
variability between learning curves (Figures S11-12).

Future research should focus on learning curves to
further study how the required sample size is impacted by
contextual characteristics such as modeling choices (type of
algorithm, amount of a priori and data-driven variable se-
lection), case mix (distribution of predictors and outcomes),
and predictive strength. Although this was not addressed
systematically in this work, predictive strength of the in-
cluded predictors, as expressed by the AUC, plays a role.
The ovarian cancer (AUC around 0.9) and CAD case study
(AUC around 0.7) are clearly different in this respect.
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Table 3 Performance of the CAD models based on the determined sample size for various fixed and adaptive sample size methods.

Results are shown as medians (with interquartile ranges) across 500 repetitions

Sample size Bootstrap-corrected performance
Sample size method N EPP AUC Slope
Basic strategy
Fixed® 10 EPP 300 (250-300) 1(10-11) 0.706 (0.684-0.726) 0.774 (0.751-0.795)
Fixed™ Riley's method 700 (700-700) 28 (27-28) 0.713 (0.701-0.726) 0.894 (0.886-0.901)
Adaptive: stopping rule 10 850 (750-900) 33 (30-35) 0.717 (0.705-0.727) 0.909 (0.905-0.914)
Adaptive: stopping rule 2° 1500 (1400-1550) 59 (56-62) 0.719 (0.712-0.725) 0.949 (0.946-0.952)
Restricted cubic splines
Fixed®™ 10 EPP 350 (350-400) 11 (10-11) 0.703 (0.684-0.721) 0.766 (0.745-0.783)
Fixed® Riley's method 900 (900-900) 26 (26-27) 0.712 (0701-0.724) 0.887 (0.877-0.894)
Adaptive: stopping rule 1° 1100 (1050-1200) 31 (28-33) 0.715 (0.705-0.724) 0.907 (0.904-0.911)
Adaptive: stopping rule 2P 1850 (1800-1900) 58 (55-60) 0.718 (0.712-0.724) 0.947 (0.945-0.949)
Firth’s correction
Fixed® 10 EPP 300 (250-300) 11 (10-11) 0.706 (0.682-0.726) 0.822 (0.797-0.846)
Fixed™ Riley's method 700 (700-700) 28 (27-28) 0.712 (0.700-0.726) 0.913 (0.904-0.923)
Adaptive: stopping rule 1° 750 (700-800) 31 (28-32) 0.713 (0.703-0.727) 0.922 (0.917-0.928)
Adaptive: stopping rule 2° 1500 (1450-1600) 59 (56-63) 0.718 (0.710-0.726) 0.958 (0.956-0.961)
Including backward selection
Fixed® 10 EPP 300 (250-300) 1(10-11) 0.690 (0.666-0.715) 0.798 (0.772-0.819)
Fixed™ Riley's method 700 (700-700) 28 (27-28) 0.708 (0.694-0.722) 0.894 (0.883-0.905)
Adaptive: stopping rule 10 800 (750-900) 33 (29-36) 0.712 (0.701-0.723) 0.909 (0.905-0.915)
Adaptive: stopping rule 2° 1550 (1400-1650) 61 (56-65) 0.716 (0.709-0.724) 0.948 (0.946-0.951)

AUC area under the receiver operating characteristic curve (or c-statistic), slope calibration slope, EPP events per parameter
*The analysis went in batches of 50 patients, therefore fixed sample sizes were rounded upwards to the next multiple of 50
bStopping rule 1: calibration slope > 0.9 and AUC optimism < = 0.02 at two consecutive assessments. Stopping rule 2: calibration slope > 0.9 and AUC optimism <

= 0.01 at two consecutive assessments

Conclusions

Adaptive sample size determination can play an import-
ant role to obtain a context-specific estimate of the
sample size that is required for developing a robust
prediction model. Sample size determination for the
development of a clinical risk prediction model can
combine an a priori fixed calculation with the suggested
adaptive procedure to empirically monitor and deter-
mine the final sample size.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/541512-021-00096-5.

[ Additional file 1: Supplementary material. ]

Abbreviations

EPP: Events per predictor parameter; EPV: Events per variable; AUC: Area
under the receiver operating characteristic curve; RCS: Restricted cubic
splines; CAD: Coronary artery disease

Acknowledgements
Not applicable.

Authors’ contributions

EC, BVC, MVS, and EWS participated in the conception and design of the
study. DT, ME, and MW provided the dataset and supervised their
appropriate use with the respective clinical context. EC and BVC performed
the statistical analysis. EC, MVS, ME, EWS, and BVC interpreted the results. EC
and BVC wrote the initial version of the manuscript. All authors critically
revised the manuscript and approved the final version.

Funding

EC, ME, DT, and BVC were supported by Research Foundation — Flanders
(FWO) grant GOB4716N and Internal Funds KU Leuven grant C24/15/037. The
funding bodies had no role in the design of the study, data collection,
statistical analysis, interpretation of data, or in writing of the manuscript.

Availability of data and materials

For the CAD data, collaboration is welcomed and data sharing can be
agreed upon by contacting Michael Edlinger (michael.edlinger@i-med.ac.at).
The ovarian cancer dataset can be made available on reasonable request
from Dirk Timmerman (dirktimmerman@uzleuven.be).

Ethics approval and consent to participate

Both datasets originated from observational studies. For the CARDIIGAN
dataset, patients gave their written informed consent for the coronary
angiography and approval has been attained from the ethics committee of
the Medical University Innsbruck. The IOTA dataset originated from multiple
study waves. The research protocols were approved by the ethics committee
of the University Hospitals KU Leuven and by each participating center’s
local ethics committee. Following the requirements of the local ethics


https://doi.org/10.1186/s41512-021-00096-5
https://doi.org/10.1186/s41512-021-00096-5
mailto:michael.edlinger@i-med.ac.at
mailto:dirk.timmerman@uzleuven.be

Christodoulou et al. Diagnostic and Prognostic Research (2021) 5:6

committees, oral or written informed consent was obtained from the
women before their ultrasound scan and surgery.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

1Department of Development & Regeneration, KU Leuven, Leuven, Belgium.
2Julius Center for Health Sciences and Primary Care, University Medical
Center Utrecht, Utrecht, Netherlands. 3Department of Medical Statistics,
Informatics, and Health Economics, Medical University Innsbruck, Innsbruck,
Austria. “Department of Obstetrics and Gynecology, University Hospitals
Leuven, Leuven, Belgium. *University Clinic of Internal Medicine IIl -
Cardiology and Angiology, Tirol Kliniken, Innsbruck, Austria. ®Department of
Biomedical Data Sciences, Leiden University Medical Center, Leiden,
Netherlands. “EPI-centre, KU Leuven, Leuven, Belgium.

Received: 1 October 2020 Accepted: 15 February 2021
Published online: 22 March 2021

References

1. Kleinrouweler CE, Cheong-See FM, Collins GS, Kwee A, Thangaratinam S,
Khan KS, et al. Prognostic models in obstetrics: available, but far from
applicable. Am J Obs Gynecol. 2016;214(1):79-90.e36.

2. Wessler BS, Paulus J, Lundquist CM, Ajlan M, Natto Z, Janes WA, et al. Tufts
PACE Clinical Predictive Model Registry: update 1990 through 2015. Diagn
Progn Res. 2017;1(1):20-8.

3. Wynants L, Van Calster B, Bonten MMJ, Collins GS, Debray TPA, De Vos M,
et al. Prediction models for diagnosis and prognosis of covid-19 infection:
systematic review and critical appraisal. BMJ. 2020,369:m1328.

4. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstem AR. A simulation
study of the number of events per variable in logistic regression analysis. J
Clin Epidemiol. 1996;49(12):1373-9.

5. Steyerberg EW, Eijkemans MJC, Harrell FE, Habbema JDF. Prognostic
modeling with logistic regression analysis: in search of a sensible strategy in
small data sets. Med Decis Mak. 2001,21(1):45-56.

6. Riley RD, Ensor J, Snell KIE, Harrell FE, Martin GP, Reitsma JB, et al.
Calculating the sample size required for developing a clinical prediction
model. BMJ. 2020,368:m441.

7. Courvoisier DS, Combescure C, Agoritsas T, Gayet-Ageron A, Perneger
TV. Performance of logistic regression modeling: beyond the number of
events per variable, the role of data structure. J Clin Epidemiol. 2011;
64(9):993-1000.

8. van Smeden M, Moons KGM, de Groot JAH, Collins GS, Altman DG,
Eijkemans MJC, et al. Sample size for binary logistic prediction models:
beyond events per variable criteria. Stat Methods Med Res. 2019;28(8):
2455-74.

9. van Smeden M, de Groot JAH, Moons KGM, Collins GS, Altman DG,
Eijkemans MJC, et al. No rationale for 1 variable per 10 events criterion for
binary logistic regression analysis. BMC Med Res Methodol. 2016;16(1):163.

10.  Riley RD, Snell KIE, Ensor J, Burke DL, Harrell FE Jr, Moons KGM, et al.
Minimum sample size for developing a multivariable prediction model:
PART Il-binary and time-to-event outcomes. Stat Med. 2019;38(7):1276-96.

11. Riley RD, Snell KIE, Ensor J, Burke DL, Harrell FE Jr, Moons KGM, et al.
Minimum sample size for developing a multivariable prediction model: part
|-continuous outcomes. Stat Med. 2019;38(7):1262-75.

12. Steyerberg EW, Schemper M, Harrell FE. Logistic regression modeling and
the number of events per variable: selection bias dominates. J Clin
Epidemiol. 2011;64(12):1464-5. https//doi.org/10.1016/jjclinepi.2011.06.016.

13. Austin PC, Steyerberg EW. Events per variable (EPV) and the relative
performance of different strategies for estimating the out-of-sample validity
of logistic regression models. Stat Methods Med Res. 2017,26(2):796-808.

14.  Collins GS, Ogundimu EO, Cook JA, Le Manach Y, Altman DG. Quantifying
the impact of different approaches for handling continuous predictors on
the performance of a prognostic model. Stat Med. 2016;35(23):4124-35.

15. Van Calster B, Van Hoorde K, Valentin L, Testa AC, Fischerova D, Van
Holsbeke C, et al. Evaluating the risk of ovarian cancer before surgery using
the ADNEX model to differentiate between benign, borderline, early and

Page 12 of 12

advanced stage invasive, and secondary metastatic tumours: prospective
multicentre diagnostic study. BMJ. 2014;349:95920.

16.  Edlinger M, Wanitschek M, Dérler J, Ulmer H, Alber HF, Steyerberg EW.
External validation and extension of a diagnostic model for obstructive
coronary artery disease: a cross-sectional predictive evaluation in 4888
patients of the Austrian Coronary Artery disease Risk Determination in
Innsbruck by diaGnostic ANgiography (CA. BMJ Open. 2017,7(4).e014467.

17. Harrell FE Jr. Regression modeling strategies: with applications to linear
models, logistic and ordinal regression, and survival analysis. Cham:
Springer; 2015.

18.  Steyerberg EW. Clinical prediction models. Cham: Springer; 2019.

19.  Steyerberg EW, Harrell FE Jr, Borsboom GJJM, Eijkemans MJC, Vergouwe Y,
Habbema JDF. Internal validation of predictive models: efficiency of some
procedures for logistic regression analysis. J Clin Epidemiol. 2001,54(8):774-81.

20. Wahl S, Boulesteix A-L, Zierer A, Thorand B, van de Wiel MA. Assessment of
predictive performance in incomplete data by combining internal validation
and multiple imputation. BMC Med Res Methodol. 2016;16(1):144.

21. Musoro JZ, Zwinderman AH, Puhan MA, ter Riet G, Geskus RB. Validation of
prediction models based on lasso regression with multiply imputed data. BMC
Med Res Methodol. 2014;14(1):116. https//doi.org/10.1186/1471-2288-14-116.

22, Firth D. Bias reduction of maximum likelihood estimates. Biometrika. 1993;
80(1):27-38.

23. Steyerberg EW, Uno H, loannidis JPA, van Calster B, Ukaegbu C, Dhingra T,
et al. Poor performance of clinical prediction models: the harm of
commonly applied methods. J Clin Epidemiol. 2018;98:133-43.

24.  Cox DR. The regression analysis of binary sequences. J R Stat Soc Ser B.
1958;20(2):215-42 Available from: http://www jstor.org/stable/2983890.

25.  Copas JB. Regression, prediction and shrinkage. J R Stat Soc Ser B. 1983;
45(3):311-35. https://doi.org/10.1111/j.2517-6161.1983.tb01258 .

26.  Van Houwelingen JC, Le Cessie S. Predictive value of statistical models. Stat
Med. 1990;9(11):1303-25. https://doi.org/10.1002/sim.4780091109.

27. Van Calster B, van Smeden M, De Cock B, Steyerberg EW. Regression shrinkage
methods for clinical prediction models do not guarantee improved
performance: simulation study. Stat Methods Med Res. 2020,29:3166-78.

28, Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ, Steyerberg
EW. A calibration hierarchy for risk models was defined: from utopia to
empirical data. J Clin Epidemiol. 2016;74:167-76.

29. van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques
are data hungry: a simulation study for predicting dichotomous endpoints.
BMC Med Res Methodol. 2014;14(1):137.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://doi.org/10.1016/j.jclinepi.2011.06.016
https://doi.org/10.1186/1471-2288-14-116
http://www.jstor.org/stable/2983890
https://doi.org/10.1111/j.2517-6161.1983.tb01258.x
https://doi.org/10.1002/sim.4780091109

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Case studies
	Adaptive procedure for sample size determination
	Resampling study
	Modeling strategies
	Performance measures at internal validation
	Stopping rules
	Holdout performance

	Results
	10 EPP rule and Riley’s methods for initial sample size estimates
	Mimicking practice: single learning curve
	Assessing stability for the basic modeling strategy
	Evaluation of alternative modeling strategies

	Discussion
	Conclusions
	Supplementary Information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

