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Abstract

Background: In response to the global COVID-19 pandemic, many in vitro diagnostic (IVD) tests for SARS-CoV-2
have been developed. Given the urgent clinical demand, researchers must balance the desire for precise estimates
of sensitivity and specificity against the need for rapid implementation. To complement estimates of precision used
for sample size calculations, we aimed to estimate the probability that an IVD will fail to perform to expected
standards after implementation, following clinical studies with varying sample sizes.

Methods: We assumed that clinical validation study estimates met the ‘desirable’ performance (sensitivity 97%,
specificity 99%) in the target product profile (TPP) published by the Medicines and Healthcare products
Regulatory Agency (MHRA). To estimate the real-world impact of imprecision imposed by sample size we
used Bayesian posterior calculations along with Monte Carlo simulations with 10,000 independent iterations of
5,000 participants. We varied the prevalence between 1 and 15% and the sample size between 30 and 2,000.
For each sample size, we estimated the probability that diagnostic accuracy would fail to meet the TPP
criteria after implementation.

Results: For a validation study that demonstrates ‘desirable’ sensitivity within a sample of 30 participants who
test positive for COVID-19 using the reference standard, the probability that real-world performance will fail to
meet the ‘desirable’ criteria is 10.7–13.5%, depending on prevalence. Theoretically, demonstrating the
'desirable' performance in 90 positive participants would reduce that probability to below 5%. A marked
reduction in the probability of failure to hit ‘desirable’ specificity occurred between samples of 100 (19.1–
21.5%) and 160 (4.3–4.8%) negative participants. There was little further improvement above sample sizes of
160 negative participants.
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Conclusion: Based on imprecision alone, small evaluation studies can lead to the acceptance of diagnostic
tests which are likely to fail to meet performance targets when deployed. There is diminished return on
uncertainty surrounding an accuracy estimate above a total sample size of 250 (90 positive and 160 negative).

Keywords: COVID-19, Diagnostic accuracy, Research methodology, Statistical study design, Sample size

Background
Amid the global COVID-19 pandemic caused by the
novel coronavirus SARS-CoV-2, there is an urgent need
to validate the diagnostic accuracy of new in vitro diag-
nostics (IVDs) both to increase testing capacity and to
increase the availability of rapid tests for different con-
texts of use. Diagnostic accuracy must be evaluated prior
to clinical implementation of each test. As of January
2021, the Foundation for Innovative New Diagnostics
(FIND) lists over 1,000 commercially supplied IVDs for
COVID-19 [1]. The scale of the clinical validation exer-
cise is therefore vast.
The sample size for a clinical validation study examin-

ing diagnostic accuracy is driven by the required preci-
sion around the estimates of sensitivity and specificity
(i.e. the width of the 95% confidence intervals). However,
a plethora of factors beyond precision influence the real-
world performance which cannot be understood using
evaluation studies alone, due to their artificial nature.
An understanding of the translation of results between
the evaluation study and real-world setting is essential to
avoid implementation of sub-par IVDs.
The desired characteristics of new IVDs for COVID-

19 have been stipulated by the Medicine Healthcare
products Regulatory Agency (MHRA) in target product
profiles (TPPs) [2]. For point of care tests to detect
SARS-CoV-2, the MHRA TPP states that the desirable
sensitivity of tests is 97% (with a 95% confidence interval
(CI) ranging from 93 to 100%), whereas the desirable
specificity is 99% (95% CI: 97–100%). However, the
MHRA TPP also states that the ‘acceptable’ sensitivity
for such tests is 80% (95% CI: 70–100%) and the ‘accept-
able’ specificity is 95% (95% CI: 90–100%) [2]. Recent le-
gislation in the United Kingdom requires that IVDs used
to facilitate transportation (e.g. air travel) are required to
achieve the ‘desirable’ sensitivity and specificity stated in
the MHRA TPP when evaluated on 150 ‘positive’ cases
(those with COVID-19) and 250 ‘negative’ cases (those
without COVID-19) [3].
However, in order to provide ‘derogation’ (the equiva-

lent of emergency use authorization), the Medicines and
Healthcare products Regulatory Agency (MHRA) re-
quires companies to provide data from at least 30 posi-
tive cases and 30 negative cases. The World Health
Organisation (WHO) suggests that new tests for
COVID-19 should be evaluated in studies that include at
least 250 positive and 1,000 negative cases [4].

These sample sizes differ massively, whilst the optimal
choice remains unclear. Clearly, the larger the sample size
for a particular evaluation, the greater the certainty sur-
rounding the estimate of accuracy. However, prospective
clinical studies with large sample sizes take a long time to
reach the recruitment targets, particularly when the preva-
lence is low or when there is high competition for limited
research resource. This increased time is particularly im-
portant given the urgent demand for COVID-19 tests dur-
ing the current pandemic and the large number of tests
that still require prospective evaluation.
We aimed to estimate the impact of using evaluations

with the different sample sizes, including those specified
by the MHRA and WHO, by evaluating the probability
that tests will fail to meet target specifications post-
implementation, given the clinical validation study met
the TPP. We contextualise the results by highlighting
the performance under the existing sample size require-
ments and describing the recruitment rates observed for
evaluations of current COVID-19 diagnostic
technologies.

Methods
We evaluated the Bayesian posterior distribution when
assuming an uninformative uniform prior, U (0, 1), com-
bined with the data observed in the evaluation study.
Namely, for an evaluation study with e+ positive samples
and e− negative samples, where n+ positive samples were
correctly detected and n− negative samples were cor-
rectly detected, assuming independent priors, the Bayes-
ian posteriors for sensitivity α and specificity β are

α j eþ; nþ � Beta nþ þ 1; eþ−nþ þ 1ð Þ;
β j e−; n− � Beta n− þ 1; e−−n− þ 1ð Þ:

These posterior distributions were used to obtain the-
oretical estimates of performance, including the reliabil-
ity of the true sensitivity/specificity being greater than or
equal to the required threshold for passing the evalu-
ation study, given the result observed in the evaluation
study. In addition, we conducted a Monte Carlo simula-
tion study in R version 3.6.1 [5] to examine the probabil-
ity that the real-world performance is below target even
though it passed the diagnostic test evaluation. We se-
lected sample sizes for each evaluation ranging from 30
to 2,000 for both positive and negative cases (increasing
in increments of 10). We then assumed that the
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evaluation met or exceeded the MHRA TPP diagnostic
accuracy, as these are the only evaluations that should
be deployed in the United Kingdom. We considered the
scenario where the diagnostic test achieved the mini-
mum accepted performance under the specified
TPP since this corresponds to a worst-case scenario. We
applied both the MHRA TPP acceptable (sensitivity 80%,
95% CI: 70–100% and specificity 95%, 95% CI: 90–100%)
and desirable characteristics (sensitivity 97%, 95% CI:
93–100% and specificity 99%, 95% CI: 97–100%).
Given the assumed values of sensitivity and specificity,

we then evaluated the corresponding number of true posi-
tives and true negatives that would have been observed in
the evaluation sample to obtain these values, rounded up
to whole numbers. These informed the parameters of the
Beta distributions for sensitivity and specificity from which
we estimate the theoretical probability estimates and sam-
ple for the simulated population.
The theoretical probability estimates were calculated

according to the following:

1. Suppose p is the minimum performance threshold
for sensitivity (e.g. 97% corresponds to p = 0.97) and e
is the number of positive lab samples in the
evaluation study. Then the minimum performance
corresponds to correctly identifying ⌈p × e⌉ of the e
positive evaluation tests, where ⌈x⌉ is the smallest
whole number greater than or equal to x, often termed
the ceiling function.

2. Use this observed performance to determine the
posterior distribution of the diagnostic performance
measure, e.g. α~Beta(⌈p × e⌉ + 1,
⌊(1 − p) × e⌋ + 1), where ⌊x⌋ is the largest whole
number less than or equal to x, often termed the
floor function.

3. Evaluate the mean, 95% confidence interval and
reliability from the posterior distribution, i.e.

Mean : E α½ � ¼ p� ed e þ 1
eþ 2

2:5th percentile : l where
Z l

0

x p�ed e 1−xð Þe− p�ed e

B p� ed e þ 1; e− p� ed e þ 1ð Þ dx ¼ 0:025

97:5th percentile : u where
Z u

0

x p�ed e 1−xð Þe− p�ed e

B p� ed e þ 1; e− p� ed e þ 1ð Þ dx ¼ 0:975

Reliability : Pðα≥pj ⌈p� e⌉ correctly detected out of e positive lab samplesÞ

¼
Z 1

p

x⌈p�e⌉ð1−xÞe−⌈p�e⌉

Bð⌈p� e⌉þ 1; e−⌈p� e⌉þ 1Þdx

where Bða; bÞ ¼ ΓðaÞΓðbÞ
ΓðaþbÞ , Γ is the gamma function and α

is the true sensitivity. Similar equations are derived for
the specificity where e represents the number of negative
lab samples and p is the minimum performance for the
specificity aspect of the TPP.

For the Monte Carlo simulations, we simulated the dis-
ease status for each individual in the population according
to a specific value of prevalence using a binomial distribu-
tion. These were dichotomised into true positives/false neg-
atives and true negatives/false positives according to the
binomial distributions using the simulated values of the
sensitivity and specificity, respectively. From this, we calcu-
lated the simulated real-world sensitivity and specificity es-
timates of the diagnostic test. Details for the simulation
procedure in which a diagnostic test was assumed to have
met the desirable TPP are given in Algorithm 1 and the R
code is available at https://github.com/csammutpowell/
EvaluationSampleSize.
This simulation was run for real-world scenarios of 5,000

patients 10,000 times per sample size per prevalence sce-
nario. This simulation size was calculated to be sufficient
for a type I error of < 5% for detecting a difference outside
the desirable TPP confidence interval, assuming a 1%
prevalence. The described variations of the different TPPs
(acceptable and desirable) resulted in two simulation set-
tings (Table 1).
We modelled sensitivity and specificity independently

and ran our simulation across multiple prevalence scenar-
ios (1%, 5%, 10%, 15%) representative of those observed
nationally and within hospital presentations. We highlight
the results corresponding to evaluation sample sizes sug-
gested in current guidelines: MHRA derogation (30 posi-
tive/30 negative), MHRA TPP (150 positive/250 negative)
and WHO (250 positive/1,000 negative).
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To evaluate the real-world impact of introducing new
tests following evaluations with each of those sample sizes,
we report the 95% confidence intervals for the estimates of
sensitivity and specificity and the reliability i.e. the posterior
probability that the true sensitivity and specificity are
greater than or equal to the minimum accepted perform-
ance for the specified TPP. We compared this with the
lower bound of the 95% Wilson interval. We also report
the change in the lower bound of the estimated 95% confi-
dence intervals as this parallels the poorest expected per-
formance in practice. Further, we report the proportion of
estimates that failed to meet the TPP with an observed per-
formance outside the corresponding TPP confidence inter-
val, i.e. for the desirable TPP, a simulation with a sensitivity
below 93% would fail to meet the TPP. These proportions
represent the probability that an approved test would fail to
meet the TPP in practice, herein termed 'failure'.

Results
The theoretical performances indicate that evaluations
with fewer than 100 cases have much wider confidence in-
tervals and a high probability that the true performance is
below the lower bound of the desirable TPP confidence
interval. For specificity, the probability of failure when
using only 30 cases is 38.9%, even though no errors can be
observed in order to pass the evaluation. This is consider-
ably reduced to 1.9% by increasing the number of negative
cases to 250. A similar pattern is observed for sensitivity,
with a 10.9% probability of failure in 30 positive cases
compared to 1.7% in 150 positive cases.
Further, our results demonstrate that the minimum

number of negative evaluation samples needed to achieve
a probability of at least 0.95 that the true specificity is
equal to or exceeds 99% and 97% are 300 and 100, re-
spectively (Fig. 1). Similarly, the minimum number of
positive evaluation samples to achieve at least 0.95 prob-
ability that the true sensitivity is at least 95% and 80% are
60 and 30, respectively (Fig. 1). Across these circum-
stances, only in the latter case is there room for misclassi-
fication within the specified evaluation sample size; for the
evaluations relating to specifity, 100% detection is required
for the reliability to be above 0.95 under these sample
sizes. This was reiterated from the plots comparing

reliability with the lower bound of the 95% Wilson interval
estimated from the observed data (Supplementary Fig. S1).
Due to the fixed simulation sample size, the simulated

‘real-world’ 95% confidence intervals for sensitivity were
affected by the prevalence of the disease, with the
confidence interval shrinking as the prevalence increased
(Fig. 2 and Table 2). In particular, in the scenario assum-
ing a prevalence of 1%, the final sample size corresponds
to a mean of 50 positive cases in the population, therefore
any inaccuracy corresponds to a larger proportion than in
other prevalence scenarios. This influences both the confi-
dence intervals and probability of failure. For example,
when evaluating the performance of a study with 2,000
‘positive’ participants (with COVID-19) in Setting 1
(Dmin), the lower bound of the 95% confidence interval for
sensitivity was approximately 91% for a prevalence of 1%,
whereas it was over 95% for a prevalence of 15% (Table 2).
The corresponding results for the acceptable TPP (Amin)
are detailed in Supplementary Table S1.
Prevalence has a marked impact on the probability of

‘failure’, i.e. the proportion of simulations in which a test
had shown at least ‘desirable’ sensitivity and/or specificity
in the study, but failed to achieve ‘desirable’ performance
once implemented, when the simulation sample size is
fixed (Figs. 2 and 3 & Supplementary Figs. S2 and S3). For
example, at a prevalence of 1%, the probability of ‘failure’
improved only marginally (from 13.5% to 10.7%) after in-
creasing the sample size from 30 to 150 ‘positive’ partici-
pants. However, when the prevalence was 10%, there was
a marked improvement (from 10.7% to 2.9%).
In the scenario with an assumed sensitivity of 97% and

specificity of 99% (MHRA desirable TPP), the theoretical
confidence interval with the smallest lower bound and
highest probability of failure occurs at the sample size of
40. This is because to achieve a 97% sensitivity with 30
samples, there cannot be any incorrectly classified re-
sults. However, when this is increased to 40, a sensitivity
of 97% requires to 39/40 to be correctly specified. Con-
sequently, this corresponds to a smaller observed sensi-
tivity in the evaluation tests, which is reflected in the
confidence interval and inflated probability of failure.
Considering sample size for ‘negative’ cases (patients

without COVID-19), there was a substantial reduction in

Table 1 Description of the simulation setting assumptions made based on the Target Product Profiles (TPPs), where Dmin

corresponds to the scenario where the minimum number of cases were correctly detected to satisfy the desirable TPP and Amin

corresponds to the scenario where the minimum number of cases were correctly detected to satisfy the acceptable TPP

Setting Setting 1 (Dmin) Setting 2 (Amin)

N (simulation population size) 5,000 5,000

Iterations 10,000 10,000

Evaluation performance assumption Equal to desirable characteristics
(97% sensitivity and 99% specificity)

Equal to acceptable characteristics
(80% sensitivity and 95% specificity)

Failure criterion less than the lower bound of 95% confidence interval
(93% sensitivity and 97% specificity)

less than the lower bound of 95% confidence interval
(70% sensitivity and 90% specificity)
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the probability of ‘failure’ in specificity between sample
sizes of 30 ‘negatives’ (theoretical: 38.9%, simulated:
39.1–39.5%) and 160 ‘negatives’ (theoretical: 4.4%, simu-
lated: 4.3–4.8%). Increasing sample size had a similar ef-
fect on the 95% confidence intervals.
A consistent pattern was observed when increasing the

evaluation sample size; an elbow was observed in the plots
when the evaluation sample size was approximately 250.
The elbow occurred in both the 95% confidence intervals
and in the proportion that failed to meet the assumed
TPP. Beyond this point, there was little improvement
across all performance measures. This was apparent
across all simulation settings and fewer than 1% of the es-
timates for sensitivity and specificity failed to meet the as-
sumed TPP, except for sensitivity when the prevalence is
assumed to be 1%. Supplementary Figs. S2 and S3 demon-
strate the changes observed for evaluation sample sizes be-
tween 30 and 100 across all scenarios.

If we consider the competing guidelines in practice, we
observed that there was a considerable difference in the
expected performance in the population, particularly in
the lower bounds when the prevalence was low (Table 3).
Across all assumed values for the prevalence, the lower
bound increased by 9 percentage points between the smal-
lest (30/30) and medium (150/250) sample size guidelines
under setting 1 (Dmin). There was also a considerable re-
duction in the probability of failure to meet the TPP for
specificity, changing from 39% to 2%. When evaluating
the performance under the minimum acceptable diagnos-
tic characteristics as per the MHRA TPP (target sensitivity
80% and specificity 95%), we observed that the sensitivity
in the simulated population could be as low as 57.7% for a
prevalence of 1% (Supplementary Table S2) under the
smallest sample size guidelines. The change in perform-
ance with evaluation sample size was similar to those ob-
served for the ‘desirable’ rates; however, the confidence

Fig. 1 Reliability for each of the Target Product Profiles (TPPs), where the reliability is the probability that the true value of the performance measure is
greater than or equal to the TPP, given the result of the proportion of samples detected within a specified evaluation study sample size
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intervals often contained what may be considered un-
acceptable performances (Fig. 2 & Supplementary Fig. S2).
Our results suggest that to achieve a probability of failure
below 5%, a split of (90/160) may be sufficient (Supple-
mentary Table S3).

Discussion
This study provides an understanding of the effect of
evaluation sample size on real-world performance of a
diagnostic study. Our key findings were that 1) there
was little benefit to having a sample size above 250 and
the probability of failure to meet desirable guidelines can
be reduced to below 5% using 90 positives and 160 nega-
tives; 2) when a diagnostic test performs with 100% ac-
curacy in 30 positive cases, there is still > 10% chance
that the sensitivity will be below 93% and the > 38%
chance the specificity will be below 97% in a real-world
setting.

There is a clear difference in the sensitivity when mea-
sured in the real-world setting compared to the evalu-
ation results. The simulations imply that when
prevalence of COVID-19 in the population is high, the
probability that an IVD will fail to achieve desirable/ac-
ceptable sensitivity after implementation is smaller when
comparing across a fixed sample size (Fig. 3); however,
this is an artefact of the fixed sample size and disappears
when larger evaluation and ‘real-life’ samples are used
(see Supplementary Table S5). Hence, if a test is re-
evaluated in the target setting, the sample size needs to
be sufficient to make a fair comparison with the theoret-
ical performance.
In any research, having a sufficient sample size is cru-

cial to obtain valid results [6–8]. However, it can be dif-
ficult to obtain large samples due to several reasons. In
the COVID-19 pandemic, speed is a crucial component
to a successful response [9, 10] but this comes at a cost.
This has been observed within the prediction modelling

Fig. 2 Dmin scenario estimates of diagnostic performance from a series of Monte Carlo simulations per evaluation sample size. Each simulation
consisted of 10,000 iterations each consisting of 5,000 individuals. Here the diagnostic test was assumed to be greater than or equal to the
performance for the desirable MHRA TPP with 97% sensitivity and 99% specificity in the evaluation sample. The 95% confidence intervals are
displayed for sensitivity and specificity per initial evaluation sample size across different prevalence scenarios. The simulation was considered to
have met the TPP confidence interval criterion if the diagnostic characteristic was above the lower bound of the 95% CI specified in the TPP
(93% sensitivity and 97% specificity)
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community, where a lot of research rapidly published
has been deemed to be at a high risk of bias, including
diagnostic prediction models [11]. Key features which
were identified amongst these studies were small sample
sizes and the use of samples that were not representative
of the target population. Evaluations of diagnostic tests
are no exception to these.
Under the current emergency guidelines from the

MHRA, companies are required to evaluate diagnostic
tests in 30 positive and 30 negative cases. To achieve the
desirable target product profile with a sensitivity of 97%
and specificity of 99%, this requires all 60 cases to be
correctly identified. However, we have shown that even
when this is achieved, the observed sensitivity of the test
in a real-world scenario could be as low as 86.5%, with a
> 10% chance of being below 93%. Similarly, the specifi-
city could be as low as 88.8%, with a > 38% chance of
being below 97%. This is assuming the evaluation sam-
ples are representative, hence when this is not the case,

we could expect a poorer performance. In practice,
obtaining this level of performance in 30 samples could
be rare, and consequently, the adequate performance
measures offer a more lenient benchmark. Should a test
perform with 80% sensitivity and 93% specificity in 30
positive and negative samples, respectively, their real-
world sensitivity and specificity could be as low as 57.7%
and 83.2%, respectively. These drops in performance
were universal across the assumed values of prevalence
and careful consideration is required to re-assess if this
is truly acceptable.
There is a diminishing return on increasing the evalu-

ation sample size to improve the certainty of an assay’s
in-practice diagnostic characteristics, particularly when
time is of the essence. We observed an exponential de-
crease in uncertainty (narrowing 95% confidence inter-
vals), across prevalence for both sensitivity and
specificity up to 250 cases (for sensitivity, 250 positive
cases: 95% CI 94.3%-98.6% vs 2,000 positive cases: 95%

Fig. 3 Amin scenario estimates of diagnostic performance from a series of Monte Carlo simulations per evaluation sample size. Each simulation
consisted of 10,000 iterations each consisting of 5,000 individuals. Here, the diagnostic test was assumed to be greater than or equal to the
minimum performance for the acceptable MHRA TPP with 80% sensitivity and 95% specificity in the evaluation sample. The 95% confidence
intervals are displayed for sensitivity and specificity per initial evaluation sample size across different prevalence scenarios. The simulation was
considered to have met the TPP confidence interval criterion if the diagnostic characteristic was above the lower bound of the 95% CI specified
in the TPP (70% sensitivity and 90% specificity)
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CI 96.2%-97.7%). Consequently, 250 may be the optimal
sample size when the cases are representative of those in
the target population and case recruitment is rapid
enough. This optimal sample size is corroborated by the-
oretical sample size calculations for diagnostic studies
presented in Bujang & Adnan 2016 [12]. However,
smaller sample sizes of 90 positives and 160 negatives
demonstrated a probability of failure of less than 5% to
meet the TPP, hence may be sufficient when larger sam-
ples are unreasonable.
Our simulation study approach provides an accessible

understanding of how the evaluation sample size influ-
ences the expected real-world performance and is gener-
alisable beyond the COVID-19 application to all
diagnostic evaluation studies. Although a formal sample
size calculation could be conducted to determine the
minimum sample size [12, 13], it requires defining the
statistical power, type I error and effect size. These are
not always easy to decide upon, nor provide the context
around confidence intervals of performance that would
be expected. Our approach to calculate sample size
based on precision is a recognised alternative [14] that
allows for an understanding of the performance in sub-
optimal samples which is likely to occur in these kinds

of evaluations due to limited resource and competing re-
cruitment. Further, we were able to evaluate how a
test which passed the criteria (an observed value
greater than or equal to the minimum accepted value)
would be expected to perform. Such scenarios are not
well defined in the theoretical sample size calculation
realm. By taking our simulation approach, we were
also able to identify interesting features within small
samples. For example, we observed an anomaly where
the confidence intervals of sensitivity increased in size
from a sample size of 30 to 40 positive cases (e+).
This is because when e+ = 30 it is not possible to
achieve the desirable sensitivity with any false nega-
tives however when e+ = 40 you can observe one. This
highlights one difficulty of arbitrary small sample
sizes, where it can give a false impression of poor
diagnostic accuracy.
The Facilitating AcceLerated Clinical Validation Of

Novel Diagnostics for COVID-19 (FALCON-C19) study
is a diagnostic platform, designed to facilitate clinical
validation of multiple IVDs for COVID-19. The study
has been prioritised for delivery during the pandemic as
part of the National Institute for Health Research Urgent
Public Health portfolio and has opened to recruitment

Table 3 Dmin scenario estimated mean and 95% confidence intervals of the sensitivity and specificity of a diagnostic test, given the
test achieved 97% sensitivity and 99% specificity in the evaluation sample (Dmin), for a simulated population size of 5,000, where the
evaluation sample sizes correspond to current guidelines

Evaluation sample size Sensitivity Specificity

Positive (e+) /negative (e−) Mean 95% CI Failure (%) Mean 95% CI Failure (%)

Theoretical

30/30 96.9% 88.8% 99.9% 10.5% 96.9% 88.8% 99.9% 38.9%

150/250 96.7% 93.4% 98.9% 1.7% 98.8% 97.2% 99.8% 1.9%

250/1000 96.8% 94.3% 98.6% 0.3% 99.0% 98.5% 99.3% 0.0%

Prevalence: 1%

30/30 96.9% 86.5% 100.0% 13.5% 96.9% 88.8% 99.9% 39.5%

150/250 96.8% 89.8% 100.0% 10.7% 98.8% 97.1% 99.8% 2.1%

250/1000 96.8% 90.4% 100.0% 9.6% 98.9% 98.1% 99.5% 0.0%

Prevalence: 5%

30/30 96.9% 88.5% 100.0% 11.3% 96.9% 89.1% 99.9% 38.7%

150/250 96.7% 92.5% 99.6% 3.7% 98.8% 97.1% 99.8% 2.2%

250/1000 96.8% 93.1% 99.2% 2.3% 98.9% 98.1% 99.5% 0.0%

Prevalence: 10%

30/30 96.9% 88.5% 100.0% 10.7% 96.9% 88.9% 99.9% 39.1%

150/250 96.7% 92.8% 99.2% 2.9% 98.8% 97.1% 99.8% 2.0%

250/1000 96.8% 93.7% 99.0% 0.9% 98.9% 98.1% 99.5% 0.0%

Prevalence: 15%

30/30 96.9% 88.5% 100.0% 11.1% 96.9% 88.8% 99.9% 39.5%

150/250 96.7% 93.1% 99.1% 2.3% 98.8% 97.1% 99.8% 2.3%

250/1000 96.8% 93.9% 98.9% 0.6% 98.9% 98.1% 99.5% 0.0%
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at 67 hospital sites and 16 community testing centres
across the United Kingdom. Recruitment data from
FALCON C-19 can be used to contextualise the simula-
tion sample sizes (see ‘Supplementary methods’ and
‘Supplementary results’ in the Supplementary materials).
Evaluations run within the hospital settings suggest that
it could take between 98 and 408 days to reach a sample
size of 150 positive and 250 negative cases (Supplemen-
tary Table S4). However, a better understanding of the
recruitment strategy is needed to formally assess an ex-
pected time. For example, it may be possible to reduce
this time with additional measures and resource to ob-
tain samples. Experience with FALCON-C19 suggests
that recruitment rates are likely to be faster at commu-
nity testing centres (Supplementary Fig. S3).
The need to evaluate multiple IVDs during the pan-

demic also presents a unique challenge. Recruitment to
several evaluations in parallel will slow overall recruit-
ment rates for each one, whereas recruitment in series
would limit the number of IVDs that can be evaluated in
a given timescale. A practical approach could be to per-
form interim analyses to determine whether the tests are
performing sufficiently well to justify continuing their
evaluation. This parallels with the well-established con-
cept of adaptive designs. It could avoid wasting re-
sources when diagnostic tests are considerably
underperforming, allowing the redirection of resource to
evaluations of more promising diagnostic tests. For ex-
ample, there are regions of performance which can be
identified across various sample sizes to determine if the
probability of failure to achieve a given performance
threshold is below 5% (Supplementary Figs. S5 and S6)
and it may be reasonable to conclude sufficient perform-
ance early. Similarly, it may be possible to conclude
when continuing an evaluation is futile, given a target
performance in the maximum sample size.

Limitations
The nature of simulation study provides us with a
known disease status under an assumed prevalence.
However, this information is unlikely to be available in
practice. Consequently, a joint model between preva-
lence, sensitivity and specificity may be used to estimate
sensitivity and specificity in practice which could lead to
different results.
Within the simulations, we made several assumptions.

Firstly, we assumed a fixed sample size of 5,000; how-
ever, when the prevalence is 1%, this corresponds to a
small ‘positive’ sample, resulting in a convergence to a
larger failure rate than observed in other scenarios. This
prevalence corresponds to a national scale, rather than
those that would be observed within the hospital setting;
hence, it might be more appropriate to consider a larger
simulation sample. In larger samples, we can observe

similar patterns to those observed for a larger prevalence
in this simulation (Supplementary Table S5). Secondly,
we considered the minimum performance required to
pass the TPP criteria. Therefore, our simulation results
are potentially pessimistic in the context of all tests
which pass the TPP.
For simplicity, we have not differentiated between

evaluation studies which are analytical (often using
stored or spiked samples) and clinical studies where the
samples are prospectively collected, nor their statistical
study design. The performance estimates are likely to be
more robust if generated from the latter type which will
affect how close these accuracy values are to the in-
practice performance. Even with an extremely large sam-
ple size, an evaluation which does not reflect the correct
target population or clinical context of use could gener-
ate estimates of accuracy which differ widely from the
real-world in practice accuracy, implying that the results
within our study could be considered optimistic. This
may be evident when applying a single IVD across mul-
tiple case-mix scenarios. Furthermore, we have assumed
that negative and positive samples can be collected in
isolation. Evaluations are sometimes conducted in
known positive and known negative cases, where our
method would be directly applicable. However, best
practice is for the evaluation to be conducted in the
population in which it is to be used [15]. In this case,
the target population would be suspected cases, where it
is not known if they are positive or negative. The appli-
cation of our simulation’s findings to this scenario would
likely result in the over recruitment of negative partici-
pants whilst positive cases are sought (with a prevalence
< 0.5), therefore resulting in the positive case sample size
being the pragmatic target.
In estimated time to recruitment, we have inferred that

the recruitment rate was linear for simplicity. We did
however observe a ‘warm up’ period where sites became
familiar with the technology and the recruitment rate in-
creased in the first 2 weeks. The complexities of analysing
recruitment data are vast and are beyond this scope of
work. However, it will be affected by different site sizes,
local prevalence rates, local priorities and local resources.

Conclusions
Increasing the validation sample size results in a greater
confidence in the real-world diagnostic characteristics of
the assay, under important assumptions. However, there
are diminishing returns of increasing beyond a sample
size of 250 positive and 250 negative participants. It may
be sufficient to observe a desirable performance in 90
positives and 160 negatives to expect to meet the desir-
able TPP in practice. A staged recruitment with interim
analyses could prevent wasting resource.
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Hospital recruitment is eclipsed by the fast pace of re-
cruitment at test and trace centres; however, an assay
should, ideally, be tested in the setting in which it will
be deployed. Hence there must be caution if a diagnostic
technology for the hospital is validated in the commu-
nity setting. When resources are limited, a pragmatic ap-
proach is to consider interim analysis to determine
whether to continue or cease allocating resources to the
validation according to the small sample performance.
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