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Abstract

Background: In diagnostic evaluation, it is necessary to assess the clinical impact of a new diagnostic as well as its
diagnostic accuracy. The comparative interrupted time series design has been proposed as a quasi-experimental
approach to evaluating interventions. We show how it can be used in the design of a study to evaluate a point-of-care
diagnostic test for C-reactive protein in out-of-hours primary care services, to guide antibiotic prescribing among
patients presenting with possible respiratory tract infection. This study consisted of a retrospective phase that used
routinely collected monthly antibiotic prescribing data from different study sites, and a prospective phase in which
antibiotic prescribing rates were monitored after the C-reactive protein diagnostic was introduced at some of the sites.

Methods: Of 8 study sites, 3 were assigned to receive the diagnostic and 5 were assigned as controls. We obtained
retrospective monthly time series of respiratory tract targeted antibiotic prescriptions at each site. Separate ARIMA
models at each site were used these to forecast monthly prescription counts that would be expected in the
prospective phase, using simulation to obtain a set of 1-year predictions alongside their standard errors. We show how
these forecasts can be combined to test for a change in prescription rates after introduction of the diagnostic and
estimate power to detect this change.

Results: Fitted time series models at each site were stationary and showed second-order annual seasonality, with a
clear December peak in prescriptions, although the timing and extent of the peak varied between sites and between
years. Mean one-year predictions of antibiotic prescribing rates based on the retrospective time series analysis differed
between sites assigned to receive the diagnostic and those assigned to control. Adjusting for the trend in the
retrospective time series at each site removed these differences.

Conclusions: Quasi-experimental designs such as comparative interrupted time series can be used in diagnostic
evaluation to estimate effect sizes before conducting a full randomised controlled trial or if a randomised trial is
infeasible. In multi-site studies, existing retrospective data should be used to adjust for underlying differences between
sites to make outcome data from different sites comparable, when possible.
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Background

The development of diagnostic tests is central to im-
proving the timely diagnosis and subsequent treatment
of disease. Before a new diagnostic test can become fully
established in practice, it is necessary to demonstrate its
diagnostic performance in clinical settings, its potential
to improve patient outcomes, and its cost-effectiveness
[1]. The evaluation cycle from demonstrating analytical
performance to cost-effectiveness and broader impact
can take a long time: the median time for point-of-care
tests has been estimated as 9 years [2], with the range of
evidence necessitating a variety of different studies with
different designs [3, 4].

Diagnostic accuracy is only a single component in the
comprehensive evaluation of a new diagnostic, as recog-
nised in overviews of the field [5, 6], and so it is important
to also consider downstream consequences, which might
include the effect on treatment prescribing, cost, patient
outcomes and adverse effects. These have been collectively
termed ‘clinical impact’ [7]. The 2017 European Union
regulation on In Vitro Diagnostic Medical Devices (Regu-
lation (EU) 2017/746) specifies that evidence of clinical
performance should be demonstrated in order for a CE
mark to be gained, a change from the earlier directive 98/
79/EC [8].

As such, it has become necessary for studies of new
diagnostic devices to include clinical impact measures as
outcome variables. Although the randomised controlled
trial (RCT) has historically been regarded as the highest
quality design for demonstrating the effectiveness of in-
terventions [9], many diagnostic RCTs may be under-
powered [10] and the time required can delay the
adoption of rapidly evolving technologies, suggesting
other designs should be considered.

One such design that has been proposed is the ‘con-
trolled before/after’ study, a quasi-experimental design
that can be analysed using methods for comparative
interrupted time series (CITS), such as segmented re-
gression. In this design, the diagnostic device can be in-
troduced into a number of locations, and outcomes
compared both between the locations using versus those
not using the diagnostic; and between the time period
after versus the time period before the diagnostic was in-
troduced. As this design partly uses retrospective (so-
called ‘real-world’) data, it can reduce the time and cost
of conducting such a study, the aim being to provide a
plausible estimate of the effect of the diagnostic that can
be used subsequently in the design of a full randomised
controlled trial of clinical impact.

In medical research, the existing interrupted time
series methodology primarily focuses on evaluations of
treatments or public health interventions rather than
diagnostics [11] and on a single time series from a popu-
lation rather than multiple time series from different
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locations [12]. As the CITS design has rarely been used
in the evaluation of diagnostics (one example is [13]),
there is scope for this design and its associated analytic
methods to be explored as a way to evaluate the impact
of diagnostics and accelerate the adoption of new tech-
nologies into clinical practice.

Point-of-care (POC) diagnostic devices are suitable
candidates for evaluations of this form, as they can be
introduced to different primary or secondary care ser-
vices for which relevant clinical impact outcome mea-
sures are often already routinely collected. In this paper,
we describe the design of study for a POC diagnostic for
C-reactive protein (CRP) testing in out-of-hours primary
care, and outline how this design affects analytical con-
siderations. Results from the prospective phase of the
study will be reported in a subsequent publication.

This paper is structured as follows. First, we give
details of the study evaluating POC CRP testing that
motivated this work. We then describe a general meth-
odological approach that can be used to design evalua-
tions of this nature, before showing how this was applied
to the study in question. The paper concludes with a dis-
cussion of relevant issues when using these methods to
design studies of diagnostic impact.

Example: point-of-care C-reactive protein testing
This work was motivated by the design of a study to as-
sess the impact of introducing POC CRP machines to
out-of-hours primary care services under the governance
of Practice Plus Group. The use of CRP to support anti-
biotic prescribing decisions for suspected lower respira-
tory tract infection was supported by the National
Institute for Health and Care Excellence Clinical Guide-
line CG191 (withdrawn after the start of the COVID-19
pandemic) and has been discussed elsewhere [14, 15]. A
previous evaluation of out-of-hours primary care services
found that as many as 15% of consultations resulted in
the issuing of an antibiotic prescription [16], but a
systematic review in 2013 estimated a reduction in anti-
biotic prescribing at consultation in primary care of
around 25% when CRP testing had been used [17].

The study aimed to assess the short-term impact of
introducing POC CRP machines on antibiotic prescrib-
ing in this healthcare setting, with the results potentially
being used to inform a longer-term follow-up study or a
full cluster randomised controlled trial if there was indi-
cation of an improvement in prescribing decisions. It is
necessary to obtain an estimate of the effect size for a
possible intervention effect as the basis for designing a
randomised controlled trial. The CRP study consisted of
two phases: a retrospective phase that analysed historic
antibiotic prescribing data, and a prospective phase that
assessed prescribing data after the introduction of POC
CRP machines at certain sites. These machines were
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provided to OOH clinicians with no restrictions on their
clinical use. Guidance on the CRP thresholds above
which antibiotics should be considered in patients with
suspected lower respiratory tract infection followed
NICE guidance at that time. Although many tests were
linked to this indication, CRP testing was also used for
decision-making in a wider array of clinical contexts, at
the discretion of the clinician. The prospective phase
used a parallel cluster design, with the periods of meas-
urement at each base coinciding. Figure 1 shows a flow
diagram of the whole study design.

Practice Plus Group is contracted to deliver out-of-
hours services via a number of primary care ‘bases’ in
several regions of England [18]. As the number of
machines available for inclusion in the prospective
phase of this study was limited to three, an important
design decision was how to allocate primary care
bases as either receiving POC CRP machines (to per-
form the diagnostic test), or not receiving machines
for POC CRP testing, with the latter group acting as
comparators or controls. The choice of sites that
received POC CRP machines was made in a non-
randomised manner. This decision was informed by
examination of the retrospective monthly time series
of antibiotic prescription numbers, available separately
for each base, and more details are provided in the
Results section. The retrospective time series were
used in the design to determine the magnitude of
change that may have been attributable to the intro-
duction of a POC CRP machine.

The main outcomes were the monthly numbers of
respiratory tract targeted antibiotic prescriptions in
adults, and total antibiotic prescriptions issued.
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Therefore, all patients who attended one of the in-
cluded primary care bases and who was considered
for an antibiotic prescription could potentially
contribute data. A list of included respiratory tract
targeted antibiotics appears in the Additional file 1.
Secondary outcomes (not discussed further in the
current paper) included total non-topical antibiotic
prescriptions, the proportion of patients requiring fur-
ther general practitioner contact or hospital admission
within 14 days, the time required for testing and the
test failure rate. A qualitative substudy, also to be
reported elsewhere, aimed to explore clinicians’
perspectives of the use of POC CRP tests in out-of-
hours services.

Methods: adaptation of comparative interrupted
time series design

The CITS design is an extension of the interrupted
time series design that has been widely used as a
quasi-experimental approach for the evaluation of
health policies or other interventions for which ran-
domisation may be infeasible, such as those in educa-
tion settings [19-22].

Some papers have investigated sample size and power
considerations for these types of designs. Cruz et al. de-
scribed power considerations for interrupted time series
models, but their model was aimed at change-point
detection, which is less relevant when the time of intro-
ducing a diagnostic test is known [23]. Zhang et al.
examined the relationship between power and the num-
ber of time-points in the available time series, also for a
single time series, and they restricted their model to be
of autoregressive (AR and ARCH) form [24].

90 bases excluded
107 out-of-hours bases (no longer operational or
considered for inclusion low/intermittent rates of
prescribing) =
m
=
=
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Fig. 1 Flow diagram showing the design of the CRP study. Data from the retrospective phase are considered in detail in the current paper
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The general ARMA(p,q), or autoregressive moving
average, model for the time series (y,:£=1, ..., n) has the
form

y, =06+ <¢1yt_l + ot ¢pyz_p> + (Or€e-1 + . + Ogery) e

(1)

In this equation, § represents the mean level of the
outcome (y), (¢y,...,¢,) are parameters that reflect its
dependence on previous values of the time series (the auto-
regressive component), (¢y, ...€,,) are random variables that
are assumed to be independent errors, and (6, ...,6,) are
parameters that reflect the dependence of the time series on
previous error terms (the moving average component). The
parameter J is assumed constant in the formulation above
but can be supplemented with another functional form,
such as a linear or non-linear time trend, if required.

In this paper, we use the more general ARIMA(p,d,q),
or autoregressive integrated moving average model,
which extends [1] to allow for situations in which the
time series is not stationary (i.e. if the assumption that
its mean, variance and autocorrelation do not fluctuate
over time does not hold). Further details of the models
are provided in the Additional file 1 and Chapters 3.4.6
and 4.6 of the book by Chatfield [25].

Alternatives to these models include simpler linear
models that may not allow for autocorrelation [19, 26],
and dynamic models that model this autocorrelation via
correlated, temporally evolving random processes [27].

A flexible implementation of this class of models is
provided by the automatic ARIMA time series package
for R, which selects a best-fitting model among the class
required using the Akaike Information Criterion or
Bayesian Information Criterion [28].

Methods of prediction from ARIMA models for fore-
casting individual values of y, for £>n + 1 using the Kal-
man filter have previously been described [29, 30] and
implemented in the simulate.ets() function in the R ‘fore-
cast’ package [28, 31]. For the purpose of the present
work, interest lies in simulating values of Sy = Z;’;’f 1V
where 7, are forecasted values of the time series and, for
example, k=12 if ¢ represents time in months and the
follow-up period is scheduled to last for 1 year. Thus S
represents the sum of forecasted values over the subse-
quent year. In such a case, the y, will typically be positively
correlated, and using the mean and standard error of the
predictive distributions of each y, independently to esti-
mate the standard error of S; will underestimate the latter
if this correlation is not accounted for. Instead, the mean
and standard error of the predictive distribution of S; can
be estimated by repeated direct simulation: simulating a
complete vector (, : £ =n+1,...,n+ k), using the sum
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as a single estimate of Sy, repeating, and then calculating
the mean 71, and standard deviation §; over all calculated
estimates of S;.

After observing the follow-up data values (y,:t=n+1,
..., n+k), a standardised measure of the increase in ob-
served values over the expected values based on the
retrospective time series can be calculated as

7 — Z:li;ftlyt_ﬁ”k (2)
Sk

Tests can be combined as a global z-test using stand-
ard methods [32], treating the individual test statistics as
realisations from a Normal distribution with known
mean 0 and variance 1. In a study with # intervention
regions and m control regions, if Z; and Zc are the
means of the Z-statistics in the intervention regions and
the control regions, respectively, then a test statistic for
the difference in means is

Z-Zc
vl +ml

Equations (2) and (3) allow estimation of the power to
detect a change in the number of prescriptions relative
to the trend in the retrospective time series. Consider a

(3)

test for a single site, as given by [2].If V = Z:’I}f 1y, fol-
lows a Normal distribution with mean »" and standard
deviation s°, then a hypothesis test of size a based on [2]
will detect a reduction from the trend based on the
retrospective time series if V < -8 @ '(1-a/2),
where @(z) is the cumulative distribution function of the
standard Normal distribution. This occurs with probabil-
ity (power)

@ ((th—m*)—ék ! (1—“/2)> (4)

S*

Derivation of (3) and (4) is shown in the Additional file 1.

Results
To adapt the method described above to the POC CRP
study, we first obtained the time series of respiratory
tract targeted antibiotic prescription data for each of the
107 out-of-hours bases that were candidates for inclu-
sion, and examined these graphically. The majority of
these (90 bases) could be immediately excluded from
consideration either because service alterations meant
that the base was no longer in operation, or because pre-
scription counts were extremely low or variable over
time, and therefore unlikely to be comparable with those
from larger bases.

The time trends for the remaining 17 bases (Fig. 2)
were further assessed by two of the authors (TF and
PT), and nine of these were subsequently excluded,
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either because counts were judged too low to be
comparable with the remainder (Aylesbury, Harrow,
Colchester, Worcester Call Centre, Evesham, Malvern),
because of known alterations to service provision that
resulted in a markedly unusual time trend (the two High
Wycombe bases), or because the demography of users
and service provision in London (Hillingdon) was
thought to be non-comparable with that in sites outside
London. Of the remaining eight bases, three (Kiddermin-
ster, Redditch, Worcestershire Royal) were allocated
to receive the point-of-care device, and five were
assigned as control bases (Stoke Mandeville, Clacton,
Bury St. Edmunds, Nuneaton, Warwick). This was a
pragmatic, non-randomised allocation as it was
desirable that all bases receiving point-of-care devices
should lie within the same administrative region
(Worcestershire).

There was no clearly consistent increasing or decreas-
ing trend across all eight retained bases, but rather some
variation between bases in the nature of the trend and
the level of total prescribing, suggesting that separate
models for each time series may be appropriate. There
was seasonality in prescribing rates, with a clear winter
peak and in particular a spike in prescribing rates during
December (Fig. 3).

Table 1 shows the form of the fitted resulting time
series models at each base. Autocorrelation function
plots used to check the model fit are available in the
Additional file 1. The fitted models show no evidence of
non-stationarity in the time series at any of the bases.
Each shows second-order annual seasonality, suggesting
correlation of the seasonal peak with those in the two
previous years, and at most first order autocorrelation or
correlated errors in the deseasonalised time series.

Autocorrelation functions plots for the eight original
time series, and for the residuals from the fitted models,
show that the models adequately account for the auto-
correlation in the original time series (Additional file 1,
Supplementary Fig. 1).

Here, p is the order of the autoregressive term, ¢ is the
order of the moving average term, and d the degree of
differencing, with P, Q, and D defined similarly in
relation to a seasonal component of period M months
(see Additional file 1 for details).

Figure 4 shows forecasts for an additional 12 months
for all eight bases, and shows variation between the
bases in their forecasted monthly values.

Of note, the mean annual expected number of pre-
scriptions in the three intervention bases was 1452,
while the mean number in the five control bases was
only 1401, whereas if the intervention has no impact on
prescribing rates compared to control, by (2) the ex-
pected change in the prescribing rates between the
retrospective and the prospective phases at each site is 0.
Under the same assumption, the expected value of (4) is
also 0.

As an example to illustrate the power function (4),
consider a test for the Kidderminster site based on the
simulated mean and standard deviation values shown in
Table 2. Figure 5 shows pairs (m°,s”) that are consistent
with equivalent values of the power [4] (if a = 0.05). For
example, if s” =100, the mean of the distribution of pre-
scriptions occurring at Kidderminster during the 12-
month follow-up period would need to be around 740 (a
decrement of around 367 prescriptions compared with
the predicted mean from Table 2) to reach 90% power.
Under the same conditions, for Redditch a larger
reduction would be required (to 1070 prescriptions, a
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Fig. 3 Average monthly numbers of respiratory tract targeted antibiotic prescriptions for the eight included bases and their overall average, during
the retrospective phase of the study. Bases receiving a POC CRP machine are shown as solid lines, and those not receiving a machine as dashed lines
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decrement of 572), as a result of the larger monthly vari-
ability at that site, as reflected by the value of 515.

Discussion

This paper has outlined a method for designing studies
for evaluating clinical impact of diagnostics by using a
combination of retrospective and prospectively collected
data as part of a CITS design. This approach has the ad-
vantage of enabling an estimate of a plausible effect size
to be obtained, at relatively low resource, with the view

Table 1 Estimated parameter values from fitting separate
ARIMA(p,d,q)(P,D,Q)[M] to the retrospective time series at each
site

Base p d q P D Q Period, M
Stoke Mandeville 0 0 0 2 0 0 12
Clacton 0 0 0 2 0 0 12
Bury St Edmunds 1 0 0 2 0 0 12
Nuneaton 0 0 1 2 0 0 12
Warwick 1 0 1 2 0 0 12
Kidderminster 0 0 1 2 0 0 12
Redditch 1 0 1 2 0 0 12
Worcestershire Royal 0 0 0 2 0 0 12

of carrying out a larger randomised study if it is feasible
to do so.

The design strategy outlined here uses retrospective
data on prescribing rates as a means of directly adjusting
for between-site differences. It is recommended to ob-
tain the retrospective data before initiating the prospect-
ive phase, as the current paper has shown that it can be
used both to inform an appropriate allocation of sites as
intervention or comparator regions, and to estimate stat-
istical power. Having access to relevant retrospective
data at the planning stage should therefore be seen as
highly beneficial, although not mandatory, if choosing to
adopt a CITS design of this type.

Our approach adjusts for the retrospective trend at
each site in order to make sites more comparable when
analysing their data from the prospective phase. Adjust-
ing for the modelled monthly time trend enables the ef-
fect of introducing the diagnostic to be estimated
without bias, as in the absence of any effect the expected
value of this estimate is zero. An alternative approach
would be to attempt to collect site-specific covariates, or
covariates that reflect differences in characteristics of pa-
tients attending the different sites, to perform an adjust-
ment between sites. In the present study it is unlikely
that a sufficient set of covariates could be found to
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eliminate these differences, and little patient-specific in-
formation was available in the routinely-collected data-
set. The trend seen in the retrospective phase can
therefore be seen as a proxy for a variety of unknown
characteristics that are particular to the site, the patients
attending the site, and the clinicians making prescribing
decisions, all of which might affect the observed pre-
scribing rates. A more detailed discussion of the choice
of comparator regions in designs of this type is available
elsewhere [22].

The strong seasonality shown in antibiotic prescribing
rates has been previously noted in studies in Europe [33]
and in out-of-hours services and general practice more
broadly in the UK [34]. While to a large extent this re-
flects the seasonal nature of presentation of patients with
symptoms of respiratory tract infection [35], the clear
December peak observed here may reflect a shift from
booked general practice appointments to out-of-hours

appointments resulting from seasonal general practice
service restriction or closure. As our application con-
cerned antibiotic prescribing, allowing for seasonality
was important, but the method is generalisable to any
outcome that might be measured via a CITS design, pro-
vided a suitable model for the time series in question is
used.

This investigation has some limitations. As previously
noted, the approach using observational data outlined
here is not intended as a replacement for a well-
conducted and adequately-powered RCT, in situations in
which performing an RCT is feasible. In the absence of
randomisation, systematic between-site differences or
‘rising tide’ effects that might influence prescribing rates
cannot be ruled out. However, as site-specific retrospect-
ive trends are adjusted for in the analytic approach, the
effect of these confounding differences would need to
change over time, differentially between sites with and

Table 2 Estimated mean and standard deviation of 12-month forecasted number of prescriptions calculated without (columns 2
and 3) and with (columns 4 and 5) allowance for correlation in forecasted values

Directly calculated

Simulated (allowing for correlation)

Base My 512 M S12
Stoke Mandeville 1618 97 1615 98
Clacton 1485 82 1484 82
Bury St Edmunds 1505 99 1505 116
Nuneaton 1283 111 1281 135
Warwick 1114 84 112 130
Kidderminster 1106 99 1107 117
Redditch 1645 133 1642 226
Worcestershire Royal 1605 93 1606 92
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without the diagnostic, to affect conclusions. In this re-
spect, the CITS design appears stronger than both a
non-randomised before-after design that lacks control
regions, and a non-randomised design that uses data
from the prospective data collection period alone. Re-
cent research suggests that in many scenarios, well-
conducted CITS studies may give results that are com-
parable to those from intervention RCTs [26, 36], and it
should be noted further that ‘test-treatment’ randomised
trials of diagnostics may themselves be subject to bias or
other methodological limitations [37].

In this paper we have concentrated on the analysis of
the primary outcome, whereas in practice a variety of
other outcomes would typically need to be considered,
including costs associated with adopting the diagnostic.
Overall antibiotic prescribing rates, which have been
shown to be high in OOH care [38], can be readily mon-
itored and compared between different sites, but do not
reflect the success or otherwise of antibiotic treatment
for individual patients. We have also considered a single
class of models for the retrospective time series. Upon
completion of the study, the analysis of the prospective
data component may be more nuanced than that de-
scribed here: models for CITS data may allow for both a

step change and a change in trend or gradient, among
others [19], and a suitable functional form is difficult to
specify in advance, especially since this may vary be-
tween sites. We intend to explore these issues when
reporting the results of the prospective phase of the
study.

Previously, quasi-experimental studies have been used
more often for assessing interventions than for diagnostic
impact. They have gained particular popularity for studies
of policy changes that are not amenable for performing
RCTs. The deployment of non-randomised studies aligns
with the ongoing Impact Health Technology Assessment
project (www.impact-hta.eu/work-package-6), which aims
to compare treatment effects of interventions between
randomised and non-randomised studies, and the
Innovation Medicine Initiative GetReal project (www.imi-
getreal.eu), which uses real-world information for drug de-
velopment. Comparably, the Cancer Drug Fund provides
resources for faster introduction of new cancer treatments
alongside evaluation of their clinical and cost-effectiveness
by collecting data for the evaluation of new drugs during
the implementation period.

More rapid assessment of novel diagnostics remains a
research priority, and the methods described in this
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paper outline one possible approach. Of further interest
would be an adaptation to simultaneously monitor diag-
nostic accuracy measures, such as sensitivity and specifi-
city, while also evaluating clinical impact, as these steps
are often currently performed as part of separate studies.
This may be suitable for diagnostics that have already
met requirements for regulatory approval but require
ongoing assessment of diagnostic accuracy performance
as an element of regulatory post-market surveillance, for
example, or those that are being considered for use in
different populations. A comparison with other quasi-
experimental designs, such as stepped wedge designs for
RCTs, in which the time when the diagnostic is intro-
duced differs in different locations, may also be of value.

Conclusions

The method outlined here can be used in quasi-
experimental designs for diagnostic evaluation. In such
studies, models should adjust for underlying trends in
outcomes, especially in multi-site studies, for which
existing retrospective data can be used. This approach
can be beneficial in the evaluation of diagnostic impact,
which provides essential evidence in the pathway for
bringing new diagnostic devices into clinical practice.
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