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Abstract

Background: Obtaining accurate estimates of the risk of COVID-19-related death in the general population is
challenging in the context of changing levels of circulating infection.

Methods: We propose a modelling approach to predict 28-day COVID-19-related death which explicitly accounts
for COVID-19 infection prevalence using a series of sub-studies from new landmark times incorporating time-
updating proxy measures of COVID-19 infection prevalence. This was compared with an approach ignoring
infection prevalence.
The target population was adults registered at a general practice in England in March 2020. The outcome was 28-
day COVID-19-related death. Predictors included demographic characteristics and comorbidities. Three proxies of
local infection prevalence were used: model-based estimates, rate of COVID-19-related attendances in emergency
care, and rate of suspected COVID-19 cases in primary care.
We used data within the TPP SystmOne electronic health record system linked to Office for National Statistics
mortality data, using the OpenSAFELY platform, working on behalf of NHS England.
Prediction models were developed in case-cohort samples with a 100-day follow-up. Validation was undertaken in
28-day cohorts from the target population. We considered predictive performance (discrimination and calibration)
in geographical and temporal subsets of data not used in developing the risk prediction models. Simple models
were contrasted to models including a full range of predictors.
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Results: Prediction models were developed on 11,972,947 individuals, of whom 7999 experienced COVID-19-related
death. All models discriminated well between individuals who did and did not experience the outcome, including
simple models adjusting only for basic demographics and number of comorbidities: C-statistics 0.92–0.94. However,
absolute risk estimates were substantially miscalibrated when infection prevalence was not explicitly modelled.

Conclusions: Our proposed models allow absolute risk estimation in the context of changing infection prevalence
but predictive performance is sensitive to the proxy for infection prevalence. Simple models can provide excellent
discrimination and may simplify implementation of risk prediction tools.

Keywords: Risk prediction, Risk stratification, Mortality, COVID-19, Infectious disease, Statistical methodology

Key messages

� Evolving policies regarding restrictions on social
contact and return to work require good
information regarding risks of severe COVID-19
outcomes in the general population; however,
obtaining accurate risk estimates is challenging in
the context of changing levels of circulating infec-
tion, which standard risk prediction models com-
monly ignore.

� We describe methods for risk prediction adopting a
landmarking approach to dynamically incorporate
time- and region-dependent information on infec-
tion prevalence.

� We compare the discrimination and calibration of
models that do and do not incorporate changing
infection prevalence over time in different
geographical and temporal settings, and compare
simpler models to more richly specified ones.

� Our study suggests that models that ignore the
infection prevalence provide poorly calibrated
estimates of absolute risk; models that include time-
varying measures of the infection prevalence can
provide more accurate estimates.

� Simple models based only on a number of
comorbidities and basic demographics performed
almost as well as more complex risk prediction
models, both within models including infection
prevalence and models that ignore this, suggesting
that policies targeting population-level reduction of
COVID-19 mortality risk may not need to distin-
guish between all comorbidities in detail.

Introduction
Characterised as a pandemic by the World Health
Organization on 11 March 2020 [1], globally, the cumu-
lative number of cases of COVID-19 has exceeded 180
million with almost 4 million deaths attributed to the
virus at the time of writing [2]. Evolving policies such as
return-to-work strategies and restrictions on social con-
tact are heavily informed by the estimated risk of severe

outcomes from COVID-19. Policy-making is often in-
formed by absolute risks in the general population. This
risk reflects the result of two processes: being infected
and dying once infected, thus depends critically on infec-
tion prevalence. Transporting estimates of absolute risk
from one context to another, such as a different time
period or geographical region, is particularly challenging
in COVID-19 due to substantial variation in the infec-
tion prevalence over time and by geography [3].
Prediction models that do not explicitly model the

underlying infection prevalence may provide inaccurate
estimates of absolute risk. Whether such models pro-
duce transportable rankings of risk, to different temporal
and geographical contexts, is uncertain. Some predictors
identified in these models, such as geographical region
and characteristics that differ substantially by region,
may be indirectly capturing differences in infection
prevalence; models explicitly including the infection
prevalence may allow simpler predictive models with
equally good performance.
Incorporating the underlying infection prevalence is

not straightforward because direct estimates are typically
not available within small geographical areas. Whether
easily accessible proxy measures are sufficiently accurate
to produce reasonable risk estimates remains uncertain.
In this study, we compare modelling strategies to pre-

dict 28-day COVID-19 death which do and do not allow
for dynamic predictions and illustrate the impact that
these methodological choices have, in terms of model
discrimination and calibration, using data from the first
wave of COVID-19 in England held in the OpenSAFELY
platform [4] on almost 12 million adults in England. Our
overarching goal is to inform subsequent development
of risk prediction models in this context, rather than to
develop a risk prediction model to inform policy-
making. Specifically, we aim to answer the following: (1)
Do risk prediction models which do not explicitly model
the underlying infection prevalence perform well in dif-
ferent geographical and temporal contexts? (2) Can
transportable estimates of absolute risk of COVID-19
death be obtained by explicitly incorporating proxy esti-
mates of the changing infection prevalence? (3) Can
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simpler prediction algorithms be used for predicting risk
without losing substantial predictive ability, compared
with more richly specified models?

Methods
Our statistical approach is based on a model for 28-day
COVID-19-related death detailed in the Supplementary
Appendix. Our reporting adheres to the TRIPOD state-
ment for reporting of multivariable prediction models
[5].

Data
Study population
The target population is adults in England living in the
community; residential settings are excluded since risks
experienced in institutions such as care homes are likely
to be very different to those in smaller households.

Data source
Primary care records managed by the GP software pro-
vider TPP were linked to Office for National Statistics
(ONS) death data through OpenSAFELY, a data analyt-
ics platform created by our team on behalf of NHS Eng-
land to address urgent COVID-19 research questions
(https://opensafely.org). OpenSAFELY provides a secure
software interface allowing the analysis of pseudony-
mised primary care patient records from England in near
real-time within the electronic health record vendor’s
highly secure data centre, avoiding the need for large
volumes of potentially disclosive pseudonymised patient
data to be transferred off-site. This, in addition to other
technical and organisational controls, minimises any risk
of re-identification. Similarly, pseudonymised datasets
from other data providers are securely provided to the
electronic health record vendor and linked to the pri-
mary care data. Data includes pseudonymised data such
as coded diagnoses, medications, and physiological pa-
rameters. No free text data are included.

Base cohort
A base cohort was defined, comprising males and fe-
males aged 18 years or older registered as of 1 March
2020 in a general practice employing the TPP system,
followed up for 100 days (1 March 2020 until 8 June
2020). Individuals with missing age, sex, postcode, ethni-
city, a recorded age over 105 years, or living in house-
holds of >10 people were excluded.

Outcome
The outcome was COVID-19-related death, defined by
ICD-10 codes U07.1 or U07.2 anywhere on the death
certificate.

Predictor variables
We selected candidate predictors based on known or
plausible associations with exposure to COVID-19 infec-
tion, risk of severe illness or respiratory tract infection,
and factors associated with healthcare access or level of
care. Potential predictors were age, sex, ethnicity,
deprivation, number in household, presence of young
children in household, a rural indicator, obesity, smok-
ing, blood pressure, and comorbidities (details in Supple-
mentary Appendix).
Three different proxy measures of COVID-19 infec-

tion prevalence, measured daily, were available: (1)
model-based estimates [6] available by region and age
group, (2) rate of COVID-19-related A&E (emergency)
attendances over the last week by local geographic area,
and (3) rate of suspected COVID-19 cases over the last
week by local geographic area (details in Supplementary
Appendix).

Development of risk prediction algorithms
Our goal is to predict the risk of 28-day COVID-19
death. Note that this is not death within 28 days of in-
fection, but the risk of experiencing COVID-19 death
within a 28-day period for individuals in our target
population. Two approaches were adopted: approach
A—models which do not explicitly account for the time-
changing prevalence of COVID-19 infection, and ap-
proach B—landmarking models [7], which use a series of
sequential overlapping 28-day sub-studies incorporating
time-updating proxy measures of infection prevalence.
Risk prediction models were developed using data from
the base cohort. Case-cohort sampling was required to
enable model fitting for approach B (the stacked sub-
studies contain nearly 900 million rows of data). To re-
duce computational burden and increase comparability
between approaches, case-cohort sampling was used to
fit models for both approaches.
To develop models within approach A, follow-up

began 1 March 2020 and ended at the first of COVID-
19-related death or 8 June 2020. The outcome was
COVID-19-related death (any time during the 100-day
follow-up). No censoring was applied at death due to
non-COVID causes, to target the sub-distribution hazard
[8]; no other censoring events occurred. The analysis
sample included all cases of COVID-19-related death
and a random age-stratified sample of the base cohort
(the ‘sub-cohort’) [9, 10], with sampling fractions of 0.01
in the age group 18–<40, 0.02 in 40–<60, 0.025 in 60–<
70, 0.05 in 70–<80 and 0.13 in 80+ years.
Four approach A models were fitted, using different

sets of predictor variables. The first used penalised re-
gression (lasso) [11] to select a parsimonious model (the
“selected” model; models were subsequently re-fitted in-
cluding only the selected variables). The second included
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age group (10-category), sex and their interaction (“age-
sex” model). The third additionally included grouped
number of comorbidities (0, 1, 2, 3+), ethnicity and
rural/urban (“comorbidities” model). The fourth in-
cluded all 36 potential predictors and all possible inter-
actions with age and sex (“full” model, details in the
Supplementary Appendix).
Cox proportional hazards model were fitted including

the relevant predictors using time in study as the time-
scale with Barlow weights to account for the case-cohort
design and robust standard errors [9, 10]. The baseline

survivor function was estimated at day 28 (Ŝ28 ) and the

estimated log hazard ratios (β̂) were extracted. For an in-
dividual with predictor values xi, the predicted risk is

then given by [12]: pi ¼ 1− Ŝ
expðβ̂

T

xiÞ
28 .

To develop models within approach B, using land-
marking models [7], a series of 73 overlapping sequential
sub-studies were extracted from the base cohort. The
sub-studies started 0, 1, 2, 3, 4…, 72 days after 1 March
2020 (Fig. 1). Follow-up started at the sub-study start
date and ended at the first of COVID-19-related death
or 28 days after sub-study entry. Individuals were not
censored at deaths due to other causes. The outcome
was COVID-19-related death during the 28-day period.
Each sub-study had a case-cohort design, including all
eligible individuals (those in the base cohort still alive at
the sub-study start) who experienced a COVID-19-
related death during the sub-study period and an age-
stratified random sample of sub-study eligible

individuals, with age group-specific sampling fractions
equal to 1/70 of the sampling fractions for approach A.
Data from all sub-studies were combined for analysis.
Predictor variables were assessed at day 0 of each sub-
study.
Functional forms for the proxy measures of COVID-

19 infection prevalence were selected using Akaike’s In-
formation Criterion, with our selection of candidate
functional forms guided by our proposed model for
COVID-19 death (Supplementary Appendix).
A Poisson model for 28-day COVID-19-related death

was fitted to the combined dataset using Barlow weights
and robust standard errors, incorporating predictors—
chosen via the lasso for the “selected” model, pre-
specified for the “age-sex”, “comorbidities” and “full”
models—and proxy measures of COVID-19 infection
prevalence. In each case, 3 models were fitted: one for
each proxy measure.
The predicted risk is given by the same equation as for

the Cox model, replacing the hazard ratios by incidence
rate ratios and obtaining the baseline survivor function
from the estimated constant coefficient.

Model validation
Calibration and discrimination were assessed for 17 risk
prediction algorithms (5 approach A; 12 approach B).
For approach A, this was the “selected”, “age-sex”, “co-
morbidities” and “full” models, as well as the existing
COVID-AGE risk tool (10th update) [13, 14]. For ap-
proach B, this was the “selected”, “age-sex”,

Fig. 1 Schematic showing the design of the 28-day landmarking sub-studies (approach B)
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“comorbidities” and “full” models incorporating each of
the 3 proxy measures of infection prevalence.

Overall internal validation
From the base cohort, three validation cohorts were de-
fined each lasting 28 days. The three validation cohorts
covered periods with higher and lower infection preva-
lence (Fig. 2), to allow comparison of modelling strat-
egies under these different conditions. Each validation
cohort study comprised all individuals from the base co-
hort who remained alive at the start of the validation
period. Predictor variables were assessed at day 0 of the
validation cohort; predicted risk of 28-day COVID-19-
related death was obtained using each of the 17 algo-
rithms. Model performance was assessed by comparing
these predicted risks to the observed binary outcome,

28-day COVID-19-related death (death within the 28-
day period of the validation cohort).
Discrimination was assessed by Harrell’s C-statistic

[15, 16]. Calibration was assessed by estimating the cali-
bration intercept and slope and comparing observed and
predicted risk, overall and by groups of predicted risk
[16, 17]. Flexible calibration curves were drawn. Model
performance was assessed overall and within sex and
broad age groups (18–<70, 70–<80 and 80+; insufficient
events occurred in the youngest age group to split fur-
ther) and regions.
COVID-AGE is primarily a risk stratification tool, so

we did not obtain calibration measures for this tool [14].

Geographical and temporal internal validation
Although we were unable to perform external validation,
we undertook additional forms of internal validation as

Fig. 2 Schematic showing the forms of validation undertaken
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recommended by Steyerberg et al. [18]. To assess model
performance in different geographical contexts, the 16
risk prediction models developed within these data were
re-fitted after excluding all individuals from a particular
geographical region [18]. The resulting models were
used to predict risk in the subset of the 3 validation co-
horts comprising individuals from the excluded geo-
graphical region. Model performance was assessed
within the excluded region (i.e. validation was performed
using individuals whose data was not used in developing
the risk prediction models). This process was repeated
for each of the 7 regions.
To assess model performance in different temporal

contexts, the 16 risk prediction models were re-fitted
after excluding the last 28 days of data (i.e. the whole
time period of validation period 3). The resulting models
were used to predict risk in validation cohort 3. Individ-
uals who remained alive at the start of validation cohort
3 appeared in both the model development data and the
validation data, but their predictor values were updated
at the start of validation period 3; individuals who expe-
rienced the event in the development data did not ap-
pear in the validation data.

Missing data
Ethnicity, body mass index (BMI) and smoking data are
collected in response to clinical need, thus likely to be
missing not at random. As smoking and obesity, if
present, are likely to be recorded, individuals with miss-
ing BMI were assumed non-obese and individuals with
no smoking information were assumed non-smokers. In-
dividuals with no serum creatinine measurement were
included in the “no evidence of poor kidney function”
group. Individuals with diabetes but no glycosylated
haemoglobin (HbA1c) measurement were included in a
separate “diabetes, no HbA1c” category. Analysis was re-
stricted to individuals with recorded age, sex and ethni-
city data; such complete case analysis is valid under a
range of missing not at random assumptions [19].

Sensitivity analysis
Additional sensitivity analyses were undertaken (Supple-
mentary Appendix), including refitting the approach A
“selected” model in the entire cohort (without case-
cohort sampling), leading to very similar results, and
using a Weibull model for both approaches A and B to
increase comparability between approaches, resulting in
similar conclusions about the comparison between ap-
proaches. Further details of the methods used can be
found in our pre-published protocol [20].

Software
Data management was performed using Python and
Google BigQuery, with analysis carried out using Stata

16.1/Python. All code used is openly shared online for
review and re-use under MIT open license (https://
github.com/opensafely/risk-prediction-research).

Patient and public involvement
We invite any patient or member of the public to con-
tact us regarding this study or the broader OpenSAFELY
project through our website https://opensafely.org/.

Results
The base cohort comprised almost 12 million individ-
uals, of whom 7999 experienced a COVID-19-related
death (Table 1, Fig. S1 in the Supplementary Appendix).
For model development, the approach A case-cohort
study included 7999 COVID-19-related deaths and a
sub-cohort of 319,917. Approach B sub-studies included
all 7999 COVID-19 deaths and 330,132 individuals. The
fitted models are provided in the Supplementary
Appendix.

Discrimination
In all validation periods, the C-statistic for the “selected”
models was high (0.92–0.94), indicating excellent ability
to distinguish between individuals who experienced 28-
day COVID-19 death and who did not (Table 2). No dif-
ference in discrimination was seen between approaches
A and B.
Among the oldest age group (80+ years), discrimin-

ation was much lower than in younger age groups
(Table 3), reflecting the substantial discrimination that
comes from age which is partly lost after age restriction.
For example, for the approach A “selected” model in val-
idation period 1, the C-statistic was 0.77 for females and
0.65 for males among the 80+ age group compared with
0.88 and 0.91 among the 18–<70 age group. Discrimin-
ation was similar across regions (Table S4; range of C-
statistics across regions and validation periods: approach
A 0.903–0.962, approach B 0.907–0.966, other than in
the North West region in validation period 1, which had
lower discrimination: approach A C-statistic 0.84; ap-
proach B 0.85–0.86).
Geographical internal validation showed that discrim-

ination of models was largely insensitive to the removal
of a region (Tables 4 and S7, Figure S9), with the excep-
tion of omission of the North-West region in validation
period 1, which resulted in lower discrimination for all
models. Removing validation period 3 from the develop-
ment data, in the temporal validation, did not reduce
discrimination for validation period 3.

Absolute risk estimation
For the approach A Cox model, the mean predicted and
observed risks were very similar in the first validation
period (the initial portion of the data on which the
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Table 1 Description of base cohort

N (%) COVID-19-related deaths (row %)

Total 11,972,947 (100.0) 7999 (0.07)

Age group

18–39 4,275,852 (35.7) 52 (0.00)

40–49 2,022,527 (16.9) 141 (0.01)

50–59 2,040,181 (17.0) 437 (0.02)

60–69 1,635,143 (13.7) 938 (0.06)

70–79 1,319,367 (11.0) 2025 (0.15)

80+ 679,877 (5.7) 4406 (0.65)

Sex

Female 6,232,725 (52.1) 3315 (0.05)

Male 5,740,222 (47.9) 4684 (0.08)

BMI

Underweight (<18.5) 249,294 (2.1) 306 (0.12)

Normal (18.5–29.9) 3,982,133 (33.3) 2480 (0.06)

Obese I (30–34.9) 3,690,583 (30.8) 2430 (0.07)

Obese II (35–39.9) 1,794,812 (15.0) 1462 (0.08)

Obese III (40+) 678,109 (5.7) 658 (0.10)

Missinga 1,242,341 (10.4) 340 (0.03)

Smoking

Never smoker 5,540,732 (46.3) 2499 (0.05)

Former smoker 3,921,016 (32.7) 4745 (0.12)

Current smoker 2,253,231 (18.8) 737 (0.03)

Missing 257,968 (2.2) 18 (0.01)

Ethnicity

White 10,184,871 (85.1) 6952 (0.07)

Indian 405,477 (3.4) 299 (0.07)

Pakistani 262,882 (2.2) 161 (0.06)

Bangladeshi/other Asian 262,882 (2.2) 161 (0.06)

African/other black 280,466 (2.3) 173 (0.06)

Caribbean 80,863 (0.7) 124 (0.15)

Chinese 103,423 (0.9) 20 (0.02)

Mixed/others 392,097 (3.3) 147 (0.04)

Deprivation

IMD 1 (least deprived) 2,315,449 (19.3) 1255 (0.05)

IMD 2 2,375,974 (19.8) 1443 (0.06)

IMD 3 2,398,815 (20.0) 1537 (0.06)

IMD 4 2,489,997 (20.8) 1791 (0.07)

IMD 5 (most deprived) 2,392,712 (20.0) 1973 (0.08)

Location

Urban 9,595,617 (80.1) 6775 (0.07)

Rural 2,377,330 (19.9) 1224 (0.05)

Region

East 2,730,203 (22.8) 1773 (0.06)

London 1,018,332 (8.5) 755 (0.07)
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Table 1 Description of base cohort (Continued)

N (%) COVID-19-related deaths (row %)

Midlands 2,673,963 (22.3) 2005 (0.07)

North East and Yorkshire 2,242,375 (18.7) 1679 (0.07)

North West 1,053,537 (8.8) 905 (0.09)

South East 744,930 (6.2) 309 (0.04)

South West 1,509,607 (12.6) 573 (0.04)

Blood pressure

Normal 2,797,632 (23.4) 1725 (0.06)

Elevated 1,757,455 (14.7) 1406 (0.08)

High, stage I 3,899,203 (32.6) 2454 (0.06)

High, stage II 2,492,161 (20.8) 2389 (0.10)

Missing 1,026,496 (8.6) 25 (0.00)

Diagnosed hypertension 2,448,605 (20.5) 5332 (0.22)

Comorbidities

Respiratory

Asthma, no OCS use 1,829,710 (15.3) 1008 (0.06)

Asthma, with OCS use 112,407 (0.9) 248 (0.22)

Respiratory disease 495,699 (4.1) 1809 (0.36)

Cystic fibrosis or other conditions 3167 (0.0) 4 (0.13)

Cardiovascular

Cardiac disease 783,896 (6.5) 3008 (0.38)

Atrial fibrillation 430,798 (3.6) 1808 (0.42)

DVT/PE 249,969 (2.1) 773 (0.31)

PAD or lower limb amputation 41,362 (0.3) 220 (0.53)

Diabetes, controlled 738,369 (6.2) 1908 (0.26)

Diabetes, uncontrolled 346,726 (2.9) 1054 (0.30)

Diabetes, status unknown 133,387 (1.1) 306 (0.23)

Neurological

Stroke 240,401 (2.0) 1287 (0.54)

Vascular dementia 22,792 (0.2) 489 (2.15)

Other neurological conditions 114,431 (1.0) 480 (0.42)

Cancer (non-haematological)

Diagnosed < 1 year ago 54,290 (0.5) 216 (0.40)

Diagnosed 2–5 years ago 157,859 (1.3) 358 (0.23)

Diagnosed 5+ years ago 362,457 (3.0) 879 (0.24)

Haematological cancer

Diagnosed <1 year ago 6151 (0.1) 47 (0.76)

Diagnosed 2–5 years ago 18,722 (0.2) 95 (0.51)

Diagnosed 5+ years ago 42,492 (0.4) 116 (0.27)

Kidney and liver

Reduced kidney function (eGFR in range 30–<60 mL/min/1.73m2) 607,308 (5.1) 2793 (0.46)

Very reduced kidney function (eGFR <30 mL/min/1.73m2) 58,081 (0.5) 694 (1.19)

Dialysis 8871 (0.1) 115 (1.30)

Liver disease 74,193 (0.6) 189 (0.25)

Organ transplant 11,349 (0.1) 50 (0.44)
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model was fitted), but different in the second and third
(Table 2). In validation period 2, the mean observed risk
was ten times higher than in validation period 1, but the
mean predicted risk was (by design, since it ignores the
infection prevalence) almost identical for all three
periods.
For the approach B models incorporating model-based

estimates of infection prevalence, the mean and observed
risks were very similar in all validation periods. The

calibration intercept was slightly less than zero in valid-
ation periods 1 and 3, indicating slight over-estimation
on average, with calibration slopes close to one. Re-
placing model-based estimates by either the rate of A&E
COVID-19 attendances or the rate of suspected COVID-
19 cases in primary care resulted in poorer calibration,
particularly in the first validation period which had a
very low infection prevalence. All approach B models
had worse calibration than the approach A model in

Table 1 Description of base cohort (Continued)

N (%) COVID-19-related deaths (row %)

Immunosuppression

Spleen 19,815 (0.2) 29 (0.15)

RA/SLE/psoriasis 609,421 (5.1) 733 (0.12)

Immunosuppression 13,091 (0.1) 28 (0.21)

HIV 23,078 (0.2) 17 (0.07)

Inflammatory bowel disease 152,080 (1.3) 169 (0.11)

Others

Fracture (in >65 year old in last 2 years) 55,952 (0.5) 443 (0.79)

Learning disability 158,350 (1.3) 161 (0.10)

Serious mental illness 150,928 (1.3) 254 (0.17)

BMI Body Mass Index, IMD Index of Multiple Deprivation, OCS oral corticosteroids, eGFR estimated glomerular filtration rate, DVT/PE Deep vein thrombosis/
Pulmonary embolism, PAD Peripheral arterial disease, RA/SLE Rheumatoid arthritis/Systemic lupus erythematosus
aCombined with normal category into a “no evidence of overweight/underweight” for modelling

Table 2 Measures of model performance in predicting 28-day risk of COVID-19 mortality, using the “selected” models

Approach; measures of infection
prevalence included; model form

Validation
period

COVID-19
deaths/
sample size

C-
statistic

Observed
mean risk
(%)

Predicted
mean risk
(%)

Calibration

Intercept (95%
CI)

Slope (95%
CI)

(A), none, Cox 1 455/11,972,492 0.924 0.0038 0.0038 0.00 (−0.10, 0.09) 0.95 (0.86,
1.05)

2 4471/
11,955,296

0.934 0.0374 0.0038 2.30 (2.27, 2.32) 1.02 (0.99,
1.05)

3 1246/
11,942,608

0.941 0.0104 0.0037 1.03 (0.97, 1.08) 1.05 (1.00,
1.11)

(B), modelled estimates, Poisson 1 455/11,972,492 0.925 0.0038 0.0044 −0.15 (−0.24,
−0.06)

0.93 (0.84,
1.02)

2 4471/
11,955,296

0.937 0.0374 0.0354 0.06 (0.03, 0.09) 1.00 (0.97,
1.03)

3 1246/
11,942,608

0.944 0.0104 0.0128 −0.20 (−0.26,
−0.15)

1.03 (0.98,
1.09)

(B), A&E COVID-19 attendances, Poisson 1 455/11,972,492 0.921 0.0038 0.0145 −1.34 (−1.43,
−1.25)

0.92 (0.83,
1.02)

2 4471/
11,955,296

0.933 0.0374 0.0420 −0.12 (−0.15,
−0.09)

0.99 (0.96,
1.02)

3 1246/
11,942,608

0.943 0.0104 0.0197 −0.64 (−0.69,
−0.58)

1.05 (0.99,
1.10)

(B), Suspected COVID-19 in primary care,
Poisson

1 455/11,972,492 0.921 0.0038 0.0085 −0.80 (−0.89,
−0.71)

0.90 (0.81,
1.00)

2 4471/
11,955,296

0.935 0.0374 0.0378 −0.01 (−0.04, 0.02) 1.00 (0.97,
1.03)

3 1246/
11,942,608

0.942 0.0104 0.0156 −0.41 (−0.46,
−0.35)

1.04 (0.98,
1.09)
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validation period 1 but considerably better calibration
than the approach A model in the other two validation
periods. Figures S3-S6 show flexible calibration curves
and predicted versus observed risks by twentieths of pre-
dicted risk.
Calibration intercepts varied by region (e.g. approach

A in validation period 1, range of estimated calibration
intercepts: −1, +1.12), but calibration slopes varied less
(Table S4). The intercepts varied least for approach B in
validation period 2 (range of estimated calibration inter-
cepts: −0.28, 0.21), which was the period with the high-
est infection prevalence.
Geographical internal validation showed that estimated

calibration intercepts were sensitive to removal of a geo-
graphical region, but slopes less so. Using approach A
models, the temporal validation results were similar to
the overall internal validation findings. In contrast, using
approach B, we found worse calibration under the tem-
poral validation (Table S6, Fig. S8).

Models with fewer predictors
A simple model including only age and sex provided rea-
sonable discrimination (C-statistic ~0.80) among the
18–<70 age group (Tables 3 and S5). Among older age
groups, in contrast, discrimination was substantially
lower in the “age-sex” model compared to the models
with more predictors.
Among females in the 18–<70 age group, both the

“comorbidities” and “full” models had C-statistics of 0.89
in validation period 1. In males, the analogous numbers
were 0.92 (“comorbidities”) and 0.93 (“full”). Among this
age group, across the validation periods in both ap-
proaches A and B, discrimination was at most 0.03 lower
for the “comorbidities” compared to the “full” model.
The COVID-AGE algorithm had C-statistics at most

0.03 lower than the most complex models used among
the 18–<70 age group (e.g. validation period 1 C-statistic
0.91 (“COVID-AGE”) vs 0.89 (“full”) among females; 0.92
(“COVID-AGE”) vs 0.93 (“full”) among males). In older

Table 3 C-statistics for different sets of predictor variable sets, by sex and broad age group
Approach; measures of
infection prevalence
included; model form

Validation
period

Predictor set C-statistic

Age 18–<70 Age 70–<80 Age 80+

Female Male Female Male Female Male

(A), none, Cox 1 Age-sex 0.809 0.834 0.580 0.575 0.641 0.533

Comorbidities 0.887 0.917 0.842 0.772 0.772 0.641

COVID-AGE 0.908 0.915 0.833 0.762 0.720 0.631

Selected 0.876 0.910 0.838 0.785 0.765 0.651

Full 0.892 0.929 0.846 0.789 0.762 0.662

2 Age-sex 0.794 0.815 0.593 0.560 0.631 0.633

Comorbidities 0.895 0.888 0.775 0.730 0.705 0.688

COVID-AGE 0.906 0.888 0.765 0.733 0.698 0.679

Selected 0.888 0.892 0.813 0.776 0.746 0.731

Full 0.921 0.915 0.835 0.796 0.776 0.763

3 Age-sex 0.832 0.819 0.570 0.600 0.655 0.650

Comorbidities 0.905 0.890 0.784 0.735 0.706 0.708

COVID-AGE 0.907 0.897 0.808 0.721 0.711 0.701

Selected 0.910 0.890 0.837 0.792 0.747 0.750

Full 0.918 0.908 0.856 0.830 0.780 0.783

(B), modelled estimates, Poisson 1 Age-sex 0.814 0.851 0.709 0.634 0.723 0.607

Comorbidities 0.884 0.918 0.856 0.773 0.790 0.668

Selected 0.862 0.906 0.861 0.765 0.789 0.679

Full 0.890 0.928 0.863 0.786 0.786 0.688

2 Age-sex 0.808 0.828 0.625 0.583 0.634 0.648

Comorbidities 0.897 0.889 0.778 0.733 0.706 0.697

Selected 0.894 0.895 0.825 0.786 0.767 0.751

Full 0.923 0.915 0.836 0.799 0.777 0.765

3 Age-sex 0.835 0.836 0.638 0.611 0.692 0.684

Comorbidities 0.900 0.897 0.797 0.740 0.724 0.727

Selected 0.900 0.889 0.852 0.794 0.781 0.772

Full 0.919 0.908 0.863 0.824 0.793 0.792
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Table 4 Measures of model performance in predicting 28-day risk of COVID-19 mortality in the temporal and geographical internal
validation, using the “selected” models

Approach; measures of
infection prevalence
included; model format

Validation
period

Region omitted from
analysis

C-
statistic

Observed
mean risk
(in
validation
data) (%)

Predicted
mean risk
(in
validation
data) (%)

Calibration

Intercept (95% CI) Slope (95% CI)

Temporal internal validation

(A), none, Cox 3 – 0.941 0.0104 0.0037 1.03 (0.97, 1.08) 1.05 (1.00, 1.11)

(B), modelled estimates, Poisson 3 – 0.943 0.0104 0.0195 −0.63 (−0.68, −0.57) 1.04 (0.98, 1.09)

Geographical internal validation

(A), none, Cox 1 East 0.907 0.0036 0.0034 0.05 (−0.15, 0.25) 0.85 (0.65, 1.05)

London 0.948 0.0102 0.0024 1.46 (1.27, 1.65) 0.98 (0.78, 1.17)

Midlands 0.927 0.0052 0.0038 0.31 (0.14, 0.48) 0.95 (0.78, 1.12)

North East and Yorkshire 0.896 0.0024 0.0046 −0.66 (−0.92, −0.39) 0.81 (0.55, 1.08)

North West 0.857 0.0021 0.0045 −0.78 (−1.19, −0.36) 0.72 (0.31, 1.14)

South East 0.946 0.0025 0.0035 −0.33 (−0.78, 0.12) 1.06 (0.61, 1.51)

South West 0.933 0.0014 0.0042 −1.10 (−1.53, −0.67) 0.92 (0.50, 1.35)

2 East 0.930 0.0365 0.0034 2.39 (2.33, 2.45) 1.05 (0.99, 1.11)

London 0.932 0.0396 0.0023 2.84 (2.74, 2.94) 0.90 (0.80, 1.00)

Midlands 0.931 0.0405 0.0038 2.39 (2.33, 2.45) 0.99 (0.93, 1.05)

North East and Yorkshire 0.937 0.0420 0.0046 2.22 (2.16, 2.28) 1.00 (0.94, 1.07)

North West 0.931 0.0493 0.0045 2.40 (2.32, 2.49) 1.02 (0.94, 1.11)

South East 0.938 0.0238 0.0035 1.92 (1.77, 2.07) 1.04 (0.89, 1.19)

South West 0.941 0.0235 0.0041 1.74 (1.64, 1.84) 1.05 (0.94, 1.15)

3 East 0.942 0.0106 0.0033 1.17 (1.05, 1.28) 1.08 (0.97, 1.20)

London 0.947 0.0033 0.0023 0.37 (0.04, 0.71) 0.91 (0.57, 1.24)

Midlands 0.935 0.0120 0.0037 1.18 (1.07, 1.29) 0.99 (0.88, 1.10)

North East and Yorkshire 0.945 0.0142 0.0045 1.15 (1.04, 1.26) 1.04 (0.93, 1.15)

North West 0.935 0.0168 0.0044 1.33 (1.19, 1.48) 1.06 (0.92, 1.21)

South East 0.965 0.0052 0.0035 0.42 (0.10, 0.73) 1.20 (0.89, 1.52)

South West 0.920 0.0047 0.0041 0.15 (−0.09, 0.38) 1.07 (0.83, 1.30)

(B), modelled estimates, Poisson 1 East 0.913 0.0036 0.0020 0.57 (0.37, 0.77) 0.87 (0.68, 1.07)

London 0.952 0.0102 0.0081 0.23 (0.04, 0.42) 0.99 (0.80, 1.19)

Midlands 0.924 0.0052 0.0058 −0.12 (−0.29, 0.04) 0.91 (0.75, 1.08)

North East and Yorkshire 0.907 0.0024 0.0035 −0.37 (−0.64, −0.10) 0.86 (0.59, 1.12)

North West 0.857 0.0021 0.0045 −0.77 (−1.19, −0.36) 0.71 (0.30, 1.13)

South East 0.937 0.0025 0.0048 −0.63 (−1.08, −0.18) 1.01 (0.56, 1.45)

South West 0.931 0.0014 0.0047 −1.21 (−1.64, −0.79) 0.93 (0.50, 1.35)

2 East 0.936 0.0365 0.0356 0.03 (−0.04, 0.09) 1.02 (0.96, 1.09)

London 0.937 0.0396 0.0429 −0.08 (−0.18, 0.02) 0.93 (0.83, 1.02)

Midlands 0.933 0.0405 0.0373 0.08 (0.02, 0.14) 0.99 (0.93, 1.05)

North East and Yorkshire 0.939 0.0420 0.0352 0.18 (0.11, 0.24) 0.99 (0.93, 1.06)

North West 0.931 0.0493 0.0392 0.23 (0.15, 0.32) 0.99 (0.91, 1.08)

South East 0.943 0.0238 0.0319 −0.30 (−0.44, −0.15) 1.04 (0.89, 1.19)

South West 0.941 0.0235 0.0277 −0.17 (−0.27, −0.06) 1.02 (0.91, 1.12)

3 East 0.943 0.0106 0.0103 0.03 (−0.09, 0.14) 1.05 (0.93, 1.17)

London 0.954 0.0033 0.0102 −1.12 (−1.46, −0.78) 0.94 (0.60, 1.28)
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age groups, the “full” model had higher discrimination
than “COVID-AGE” (e.g. validation period 2 C-statistic
0.70 (“COVID-AGE”) vs 0.78 (“full”) among females; 0.68
(“COVID-AGE”) vs 0.76 (“full”) among males).

Discussion
We have proposed a modelling approach based on land-
marking which enables dynamic incorporation of time-
and region-dependent information on infection preva-
lence. We have demonstrated that our modelling ap-
proach can provide well-calibrated estimates, with good
discrimination, of absolute risk of 28-day COVID-19
death in the general population. In contrast, absolute
risk estimates cannot be transported from models which
do not explicitly model the infection prevalence, al-
though they did rank individuals well. We demonstrated
that the performance of our proposed modelling ap-
proach depended critically on the proxy used for infec-
tion prevalence. We found that the calibration of our
modelling approach worsened when applied to time pe-
riods with patterns of infection not seen in the model
development data. We did not undertake external valid-
ation; performance may worsen in completely new
settings.
Identifying a readily available proxy of infection preva-

lence is challenging in practice. Models including
model-based estimates provided the best performance,
but this may be impractical for most situations due to
the complex modelling required to obtain these esti-
mates. Models using proxies more readily available
through automated data streams gave slightly inferior
performance, albeit considerably better than ignoring
the burden of infection entirely. Proxies involving more
serious consequences of infection, such as A&E attend-
ance, performed poorly when the underlying infection
prevalence was low, since these serious consequences
are rare and therefore imprecisely estimated in low
prevalence periods. Furthermore, one limitation of this
work was that we were unable to explore the level of
granularity required in the data used as a proxy for in-
fection prevalence. Where COVID-19 testing is

geographically widespread, direct estimates of local in-
fection are likely to provide the best measure. While this
was unavailable in the UK at our study start, more re-
cent testing data are much more comprehensive.
Joint modelling offers an alternative approach to

obtaining dynamic predictions [21]. We chose a land-
marking approach because it is computationally efficient
and it is easier to extend to make predictions beyond the
temporal subset of data used for model development.
Our underlying theoretical model for COVID-19-

related death suggested it may be possible to separate
the dynamics of the epidemic from the process of risk
prediction based on patient characteristics, allowing the
infection process to be ignored, provided that models
carefully account for geographical region. Surprisingly,
we found that our approach A models, which did not ac-
count for region, were still able to provide good discrim-
ination which transported well geographically and
temporally. This provides reassurance that these poten-
tial theoretical biases do not lead to substantial deterior-
ation in practical performance in terms of ranking
patients, but region-specific performance suggested ac-
counting for region may be important when good cali-
bration is desired.
We found that the existing COVID-AGE tool [13, 14]

had very high discrimination, similar to the best per-
forming models considered, suggesting this provides a
reliable ranking of COVID-19 mortality risk. Interest-
ingly, very simple models including only age, sex, ethni-
city, a rural indicator, and a count of total comorbidities
led to models with very good discrimination. When fo-
cusing on specific patient groups with higher morbidity,
more complex models may provide useful additional dis-
crimination, but in many cases much simpler models are
able to discriminate well.
We did not correct any of the models for optimism

[22, 23], although the similarity of the C-statistics in the
overall and geographical internal validations suggests op-
timism was not a major problem. We compared a num-
ber of models that differed in terms of parsimony,
ranging from no variable selection to a model containing

Table 4 Measures of model performance in predicting 28-day risk of COVID-19 mortality in the temporal and geographical internal
validation, using the “selected” models (Continued)

Approach; measures of
infection prevalence
included; model format

Validation
period

Region omitted from
analysis

C-
statistic

Observed
mean risk
(in
validation
data) (%)

Predicted
mean risk
(in
validation
data) (%)

Calibration

Intercept (95% CI) Slope (95% CI)

Midlands 0.938 0.0120 0.0153 −0.24 (−0.35, −0.13) 0.99 (0.88, 1.10)

North East and Yorkshire 0.944 0.0142 0.0140 0.01 (−0.10, 0.12) 1.03 (0.92, 1.14)

North West 0.935 0.0168 0.0205 −0.20 (−0.35, −0.05) 1.03 (0.88, 1.18)

South East 0.965 0.0052 0.0110 −0.74 (−1.05, −0.42) 1.16 (0.85, 1.48)

South West 0.921 0.0047 0.0071 −0.41 (−0.64, −0.18) 1.04 (0.81, 1.27)
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only age and sex. The regression penalization used in
the selected model has the effect of shrinking model co-
efficients; however, over-optimism can still remain [24].
Electronic health record data are not collected for re-

search, so information on certain characteristics can be
incomplete or absent. Our approach to missing data
reflected the way in which these models might be used
in practice if applied within electronic health record sys-
tems. Our measures of model performance reflect per-
formance under this implementation [25]. Differences
observed between approaches are unlikely to have been
affected by the approach taken to missing data.

Conclusion
The pandemic and our response to it are evolving rap-
idly. As vaccines and booster programmes roll out, risk
prediction models will need to be updated and re-
calibrated. Our results have a number of implications for
researchers developing risk prediction algorithms in
COVID-19. First, models that do not explicitly model
the infection prevalence can provide good discrimination
which transports well geographically and temporally.
However, the calibration of such models is poor when
applied to different temporal and geographical contexts.
When calibration is important, models must explicitly
model the infection prevalence. However, performance
of these models is very sensitive to the quality of the
proxy measure used. Furthermore, our temporal valid-
ation suggested that for these models, calibration de-
clines when applied to data which has patterns of
infection prevalence not seen in the data used to develop
the model, such as occurred in our third validation
period. Discrimination, conversely, did not decline. For
all models, region-specific calibration was worse than
overall calibration, suggesting that there may be regional
differences which are important for COVID-19 risk pre-
diction beyond (our measures of) infection levels. While
we have focused on COVID-19 death, these findings are
relevant for models predicting other severe outcomes of
COVID-19 in the general population, such as
hospitalisation.
Finally, most of the discriminating power in each

model evaluated here was driven by simple features such
as age, sex and a count of comorbidities. Complex risk
prediction models driven by multiple variables from di-
verse sources can be difficult, slow and expensive to im-
plement in routine care: our results suggest that the
opportunity costs and complexity of such implementa-
tions may not be warranted. The finding that simple
models produce very high discrimination also suggests
that policies targeting population-level reduction of
COVID-19 mortality risk may not need to distinguish
between all comorbidities in detail. For policy decisions,
including ongoing restrictions on social contact and

return-to-work strategies, a simple approach to predict-
ing risk incorporating simple eligibility criteria, could ac-
celerate programme rollout and delivery of policies.
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